
PHYSICAL REVIEW B VOLUME 48, NUMBER 10 1 SEPTEMBER 1993-II

hcp Ising model in the cluster-variation approximation
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We present a study of the hexagonal-close-packed Ising model for binary alloys within the cluster-
variation approximation. Ground states of order stabilized by interactions that span the next-nearest-
neighbor (NNN) distance (octahedron and all of its subclusters) were determined with the cluster-
configuration polyhedron method. We predict 32 physically realizable ground states with
stoichiornetries A, AB, A2B, A3B, A, B, and A4B3. Of these structures, six are stabilized by NN pairs
and eight by NNN pairs; the remaining 18 structures require multiplet interactions for their stability.
The results in this study are consistent with previous pair-interaction studies. Information concerning
ground states and their domains of stability was then used in conjunction with the cluster-variation
method (CVM) to calculate the finite-temperature phase equilibria for prototypical binary alloys. We
present ordering phase diagrams computed with the CVM that contain all relevant ground states for
both isotropic and anisotropic NN pair interactions. The results of the ground-state and CVM calcula-
tions are compared with those for ordering on the face-centered-cubic lattice.

I. INTRODUCTION

In many problems concerning phase equilibria of
binary alloys A B, , the thermodynamic behavior of
(solid) alloys can be approximated by an Ising model.
The configurational energy associated with a given ar-
rangement of atoms is then calculated using the Ising-
model Hamiltonian with a specified set of effective in-
teraction parameters. These interactions can either be
pairwise or multiatom, depending on the level of com-
plexity required by the problem at hand. In general, the
problems associated with the configurational statistical
mechanics become more intractable as the range of the
interaction increases. For either antiferromagnetic or
ferromagnetic interactions on the chosen lattice, there are
two distinct, yet related, domains of study: (a) analysis of
the structures with the lowest configurational energy
(ground states) as a function of composition at T =0 K
and (2) analysis of finite-temperature phase behavior.

Several approximate methods of computing ground
states of the Ising model on a given lattice have been
used, most of which revolve around constructing a set of
constraints on some set of configurational variables. The
methods of Allen and Cahn' and Kanamori have been
widely used for ground states of binary alloys. The tech-
nique of sublattice division can also be used to
enumerate sets of possible structures, for which the ener-
gies can then be calculated and possible ground states
determined. Ground-state analyses have been performed
for numerous Ising lattices (see Ref. 4 for a complete list-
ing), but in the field of alloy theory, perhaps the most
widely studied of these are the fcc and bcc lattices, since
ordered superstructures based on these parent lattices ap-
pear frequently in binary-alloy phase diagrams. Ordered
superstructures of hcp (some of which are closely related

to fcc superstructures) also appear in alloy systems such
as Ti-Al and Cd-Mg. However, hcp ground states have
not been analyzed as extensively as those of fcc and bcc.

The study of finite-temperature equilibrium can be car-
ried out using any number of statistical-mechanical
methods. The cluster-variation method (CVM) is a gen-
eralized mean-field theory; the molecular-field or Bragg-
Williams (BW) approach and the Bethe approximation
are the point and pair approximations of the CVM, re-
spectively. Additional (non-mean-field) theories for com-
puting phase equilibria include Monte Carlo simulation,
renormalization-group theory, and transfer-matrix tech-
niques. ' As a mean-field theory, the CVM yields classi-
cal critical exponents. However, by using higher-order
approximations in the CVM entropy, extremely accurate
transition temperatures can be determined. In particular,
the CVM is a simple and very useful method for studying
first-order transitions, and for this reason, it will be used
in the present analysis. The CVM has been formulated in
several ways, but the form that will be used here is based
on the orthonormal cluster expansion of Sanchez, Du-
castelle, and Gratias. " This formulation of the CVM in-
volves an expansion of the energy in terms of multisite
cluster functions; cluster probabilities used for computa-
tion of the entropy are also written as an expansion in
these variables. The ground-state problem can also be
formulated in this framework, where one uses the cluster
expansion of the probabilities to obtain the necessary
constraints in the analysis. We will hereafter refer to this
ground-state method as the cluster configuration polyh-ed
ron method (CCPM). The CCPM has been used for pro-
totype studies on the bcc, fcc, and hcp lattices (see Ref. 4
for a summary).

An extensive study of hcp ground states which goes
beyond pair interactions has not, to our knowledge, been
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performed previously using the CCPM, although
ground-state searches have been done using several other
methods. ' ' In this paper we consider the hcp analog
of the fcc tetrahedron-octahedron (TO) approximation.
The complete hcp ground-state search is performed in
this approximation, for which interactions corresponding
to clusters up to the octahedron are included. The
uniqueness of the present study resides in the inclusion of
multiatom interactions which, to our knowledge, no pre-
vious hcp ground-state searches have considered. Mul-
tiatom interactions have been shown to be important in
several previous studies, ' ' and they should be included
in the ground-state search to obtain the most general re-
sults.

For a given Ising Hamiltonian, the CVM free energy
can be computed for any of the hcp ground states found
above. Once the free energy has been computed for all
phases which are ground states for the given set of in-
teractions, binary concentration-temperature (c-Q phase
diagrams are synthesized using standard common-
tangent constructions. In this paper we present several
prototype-ordering phase diagrams with free energies
computed for all relevant ground states. No previous
CVM computations for hcp included all of the ground
states for either isotropic or anisotropic pair interac-
tions 20 22

The paper is organized as follows. A brief discussion
of the formalism is presented in Sec. II. Results of the
TO hcp ground-state analysis are given in Secs. III A and
III B, and these results are discussed in Sec. III C, where
a comparison is made with previous hcp studies and with
analogous fcc results. Section IV is devoted to CVM
prototype-ordering phase-diagram results and to a discus-
sion of these results. One main objective of this paper is
to point out the analogies and differences between the
hcp and fcc Ising models for both ground states and
finite-temperature behavior.

II. FORMALISM:
CONFIGURATIONAL THERMODYNAMICS

Ising models are typically used to examine the decora-
tion of a rigid lattice with various configurations of
"atoms, " and the Hamiltonian used defines the energy of
these arrangements. In the case of a binary alloy with
two atoms 3 and B, one assigns an atom to every site in
the lattice (assuming that vacancies are not allowed).
This assignment does not require atoms to lie directly on
lattice sites. It is only necessary that the assignment be
unambiguous; i.e., exactly one atom is associated with a
given site. One then specifies the pair and/or multia-
tom effective interactions between sites in the lattice,
which defines the configurational energy of the system.
Once the Ising model is formulated, any number of
statistical-mechanical methods can be used to examine
configurational energies, but in this paper we will be us-
ing the cluster-variation method.

A. Cluster-variation method

The cluster-variation method (CVM) was originally
proposed by Kikuchi in 1951 (Ref. 5) to treat cooperative
phenomena in solids. The basic goal of the CVM is to

derive a hierarchy of approximations for the
configurational entropy of the Ising lattice which con-
verge to the exact solution of the Ising model. To this
end one considers configurations of atoms on various
clusters of atomic sites, with these clusters defined by the
level of approximation used. The level of approximation
of the hierarchy is specified by defining maximal
cluster(s) of atomic sites. All possible combinations of
subclusters up to and including this maximal cluster are
treated as being correlated. A detailed discussion of the
CVM and related topics can be found in a number of
references. ' '

The essence of the CVM lies in minimizing a suitably
constructed free energy with respect to a chosen set of
configurational variables. A particularly convenient for-
mulation for this set of variables is provided by the
method of cluster expansion put forth by Sanchez, Du-
castelle, and Gratias" to describe any function of
configuration in multicomponent systems. The cluster
expansion (see also Refs. 27 —29) is based on an expansion
in terms of an independent set of multisite cluster func
tions; it was originally proposed by Sanchez and de Fon-
taine that this formulation be used to describe binary al-
loys. The cluster expansion for an arbitrary function of
configuration in a binary system (the energy E, for exam-
ple) on a given lattice is written as follows. Let the
configuration of a lattice composed of X sites be written
using the vector cr = t o „.. . , o~ I, where the pseudospin
variable cr = —1 (+1) if an 2 (8) atom is associated
with site p; (in the case of a binary alloy). The
configurational energy of the lattice can then be written
as

E( cr ) =g V 4 (cr ),

where 0. denotes a cluster of sites in the lattice, V is
called the efj"ective cluster interaction (ECI) for cluster a,
and 4 is the cluster function for cluster a. If we write
an abbreviated "site" vector for cluster a as
a =

Ip i, . . . ,p„J, where a consists of n lattice sites, then
the cluster function 4 is defined as a product of the
spins on the n sites:

(2)

These cluster functions form a complete orthonormal set
defined with respect to an inner product which is a sum
(trace) over all possible configurations tr "The ex.pecta-
tion values (ensemble averages) of the cluster functions
are referred to as correlation functions

The cluster expansion can be used to obtain the neces-
sary information to compute the CVM free energy of a
given structure. The internal energy is the expectation
value of the configurational energy in Eq. (1). The gen-
eral form of the configurational entropy in the CVM in-
volves reduced-density matrices" (p ), which we will
hereafter refer to as cluster probabilities; p is defined as
the ensemble probability of observing configuration J on
cluster e. The internal energy and entropy can then be
combined to express a general CVM free energy. Since
group theory will be used to simplify the problem, the
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free energy needs to be written using the symmetry of the
structure under consideration (see Ref. 27):

general parametric study using different possible values of
the interactions.

aM n~

f= g V m g +ktiT g yti g pplnptt,
ns(~) Qs(P) J 1

(3)
B. Ground-state analysis

where f is the Helmholtz free energy per lattice point.
The sum over fls(a) stands for a sum over crystallo-
graphic orbits of clusters up to the maximal cluster(s).
The orbit of a cluster a in the structure S is defined as the
set of all clusters of type o. which are obtained by apply-
ing all space-group-symmetry operations of the structure
S to the cluster. In other words, all clusters in the struc-
ture which are equivalent by symmetry are said to be in
the same crystallographic orbit. In this way a single clus-
ter in a given orbit is a representative of that orbit. The
symmetry of the structure is implicit in the variable m
which is the number of a clusters per atom (multiplicity
of a). The energy sum contains all clusters which are
considered in the Hamiltonian, i.e., if one considers
effective interactions up to and including only the
nearest-neighbor pair, then the sum only contains terms
for the empty (configuration independent), point, and
nearest-neighbor pair clusters.

The second term in Eq. (3) is the expression for the
negative of the CVM entropy (multiplied by absolute
temperature). The sum over P in this expression contains
all subclusters of the maximal CVM cluster(s) (a~); it
should be noted that the energy expansion must contain
subclusters of the maximal cluster(s), but not necessarily
all subclusters. The coefficient y& is the Kikuchi-Barker
(KB) coe%cient for cluster P. This is a strictly geometri-
cal quantity and can be determined using a set of recur-
sive relations originally derived by Barker (see also Ref.
11). The essential approximation of the CVM is to fac-
torize the density matrix over a restricted set of clusters,
i.e., clusters up to and including the maximal cluster. "
In order to minimize the free-energy functional, it is
desirable to write the cluster probabilities in Eq. (3) as a
cluster expansion, where the function of configuration is
now the probability of observing a given configuration on
a cluster of atomic sites. The coefficients of the cluster
probability expansion form the elements of the so-called
configuration matrix, the C matrix (see Refs. 27 and 30).

Once one has chosen a structure to be examined, the
CVM problem reduces to finding a set of symmetry-
related properties (subclusters of a~, y&, m, C matrix)
and the set of effective cluster interactions for the physi-
cal system under study ( V ). In principle, if one
possesses all of this information, one can compute the
equilibrium CVM free-energy and equilibrium values of
the correlation functions by minimizing Eq. (3) with
respect to the correlation functions. Effective cluster in-
teractions for real systems (see Refs. 28 and 29) can be
obtained through any number of techniques, for example,
the method of direct configurational averaging (DCA), '

the generalized perturbation method (GPM), the
embedded-cluster method (ECM), and the Connolly-
Williams (or inversion) method. In this paper we are
not concerned with the calculation of ECI's using any of
these methods. Rather, we are interested in performing a

a ~.&Ql {a)
(4)

where a; denotes a cluster which is in the orbit [Ql (a)]
of cluster o.'in the disordered phase and N is the number
of clusters in the orbit. This quantity 4 is simply the
average of the cluster function N for all clusters o. in the
lattice. In any realizable ground state, the CCPM re-
quires that the probability of observing a given
configuration on one of the chosen maximal clusters at
T=0 K (the orbit average) is constrained to values
greater than or equal to zero. The goal of the ground-
state analysis is then to minimize the configurational en-
ergy constructed using Eq. (1). Thus we are minimiz-
ing a linear function subject to a set of linear constraints
(a classical linear-programming problem).

At a given level of approximation, there will be q-
independent cluster functions with r distinct orbit-
averaged cluster probabilities. If each cluster probability
is individually set equal to zero, the resulting equation
defines a hyperplane in the multidimensional vector space
spanned by the cluster functions (dimension q). It can be
shown that the set of r hyperplanes can be used to obtain
a convex polytope of dimension q which is called the
conftguration polyhedron (CP). The set of allowed values
of the cluster functions lie on or within this polyhedron,
and thus one can obtain bounds for the energy. It is well
known in such problems that the minimum values of the
energy will be obtained when the cluster functions corre-
spond to one of the vertices of the CP. Any structure
which has its cluster functions defined by a point on the
line joining two vertices will be degenerate with respect
to the appropriate linear combination of the vertices
which define the edge and similarly for points on faces of
the polytope. Thus the ground-state problem reduces to
finding the vertices of the CP for the given set of cluster
functions. The enumeration of all vertices of a polytope
defined by its hyperplanes is a (linear-programming)
problem which occurs frequently in operations research,
and the same methods can be used in the current
analysis. For an overview of the different algorithms

The determination of the ordered structures which
possess the lowest energy at T =0 K (ground states) is of
great importance, since it is expected that these struc-
tures will also be observed at finite temperature, depend-
ing on the set of effective cluster interactions. As stated
previously, several methods exist for finding ordered
ground states (GS's) given a certain range of interaction.
One such formulation (the CCPM) involves the use of
"orbit- (or lattice-) averaged" cluster probabilities to ob-
tain the set of constraints on allowable structures. The
lattice-averaged cluster probabilities are then written as a
linear combination of lattice-averaged cluster functions
(using the C matrix for the disordered phase) which are
defined as
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used for this problem, the interested reader is referred to
Refs. 35—37.

The range of interaction treated in the ground-state
search is determined by the clusters which are used to
construct the constraints. In principle, one can construct
the dual-space map corresponding to this CP (see, for ex-
ample, Ref. 4), in which the vector space changes from
configurational coordinates to interaction coordinates.
This map illustrates which vertices are stable for various
ranges of the interactions. It should be noted that not all
of the ECI's contained in the given level of approxima-
tion act to stabilize a given structure. For example, some
structures may be stabilized by only pair interactions; i.e.,
no multibody interactions are needed in the energy ex-
pansion to make the structure a ground state. In order to
determine what set of interactions stabilize what struc-
tures, one can project the CP down to the space spanned
by the cluster functions (interactions) of interest.

One problem which is inherent in the method de-
scribed above is that some vertices of the CP may corre-
spond to structures which are not physically realizable;
such vertices are called inconstructible. This type of ver-
tex often occurs in ground-state searches for lattices
which possess a high degree of frustration, i.e., the fcc
and hcp lattices. In most cases one can prove that a ver-
tex is inconstructible by utilization of the C matrix (see
Sec. III C).

III. hcp GROUND-STATE ANALYSIS

The hexagonal-close-packed (hcp) structure is shown in
Figs. 1(a) and 1(b); Fig. 1(b) is the (001) projection of Fig.
1(a) and will be used extensively. The nearest-neighbor
(NN) pairs indicated in Fig. 1(a) as V, and V2 are crystal-
lographically distinct, but when the hcp c/a is ideal, they
span the same distance within the structure. The next-
nearest-neighbor (NNN) pair is indicated as V3 in Fig.
l(a). In the remainder of this study, when Vi = V2, we
will say that the interactions are isotropic; if V, A Vz, the
interactions will be referred to as anisotropic. Even with
an ideal c/a ratio, the interactions Vi and Vz may be
different because they are distinct by symmetry.

A. hcp cluster functions in the TO approximation

As stated in Sec. II B, in the CCP method, one needs to
consider some set of clusters (also referred to as the basis
clusters) in order to obtain the constraints used in the
ground-state (GS) problem. The CCP analysis has been
done for the fcc lattice using the tetrahedron (see Ref. 4)
and tetrahedron-octahedron' approximations. The
analogous computations in hcp correspond to the NN
tetrahedron-triangle (TT) and the NNN tetrahedron-
octahedron (TO) approximations of the hcp structure. In
a calculation which accurately treats correlation within a
given distance, it is then necessary to consider all
symmetry-distinct clusters which span this distance. The
analysis of all symmetry-distinct clusters up to NNN has
already been performed for the hcp structure. A
correct hcp CVM entropy in the TO approximation must
consider subclusters of both the NN tetrahedron (1,2,3,4)

0
4

'% F
5

2V3 = 3 2V2 J

&1=J2

(a)

FIG. 1. (a) Three-dimensional hexagonal-close-packed struc-
ture. Effective pair interactions V&, V2, and V3 correspond to
sites (1,6), (1,2), and (1,8), respectively. (b) hcp structure in (001)
projection, illustrating how the three-dimensional structure can
be mapped onto a two-dimensional hexagonal lattice with in-
teractions J& —J3.

and the octahedron (1,2,3,6,7,8) [see Fig. 1(a)]. The clus-
ter functions which correspond to the seven clusters (4 „
@2, 43, Ns, 4&6, 48, and C&9) in Table I form the basis set
for the TT CVM approximation in hcp, the cluster func-
tions for all 14 clusters in Table I form the basis for the
TO approximation. The ground-state analysis will be
performed in the 14-dimensional configuration space
spanned by the TO cluster functions.

B. hcp tetrahedron-octahedron vertex enumeration

The independent variables which will be used in the GS
analysis have now been listed. The constraints used in
the TO ground-state analysis are formulated using the ex-
pansion coefficients of the cluster probabilities (i.e., the C
matrix computed for the 14 cluster functions given in
Table I). Cluster probabilities are considered for all
symmetry-distinct configurations on the NN tetrahedron
(C&9) and the octahedron (N, 4). If constraints are
satisfied for these basis clusters, then they are also
satisfied for all of their subclusters. "

Computation of the C-matrix coefficients can be per-
formed in several ways. Sanchez and de Fontaine
present a detailed example for several maximal clusters in
the fcc lattice; the C matrices in these examples can be
generated by hand. When one uses large maximal clus-
ters such as the fcc 13+14 point approximation,
group-theoretical techniques are well suited (if not neces-
sary) for computing the C matrix. Ceder used group
theory to generate the disordered fcc 13+14 C matrix
(see also Ref. 19), and those techniques will be used in the
present analysis.

Once the C matrix (or the relevant submatrix) has been
computed for the disordered hcp structure, the ground-
state analysis can be performed. The configuration po-
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TABLE I. Tetrahedron-octahedron CVM cluster analysis for the disordered hcp structure. Infor-
mation by column is as follows: (1) independent cluster functions; (2) symbol for cluster function; (3)
sites for cluster from Fig. 1(a); (4) multiplicity of cluster (clusters per atom), (5) y& coe%cients (TT ap-
proximation), and (6) y& coeKcients (TO approximation).

Cluster
function

Point
IP pair
OP pair

NNN pair
Triangle (basis)
Triangle (tet. )

3-pt
Triangle (OP)
Tetrahedron

4-pt'
4-pt
4-pt
5-pt

Octahedron

Symbol

@10

@14

Site(s)

1

1,6
12
3,6

1,6,7
2,3,4
1,3,6
1,2,6

1,2,3,4
2,3,6,7
1,2,3,6
1,2,6,7

1,2,3,6,7
1,2,3,6,7,8

Multiplicity
(m&)

1

3
3
3
1

1

12
6
2
3
6
6
6
1

yp (TT)

5
—3
—3

yp (TO)

—1

3
3
0

—1
—1

0
—6
2
0
0
0
0
1

lyhedron in the tetrahedron-octahedron approximation is
the polytope formed by 21 hyperplanes (8 tetrahedron
and 13 octahedron cluster probabilities in the C matrix)
in the 14-dimensional space spanned by the cluster func-
tions in Table I. The vertices of this polytope were
enumerated using the algorithm proposed by Mattheiss.

is increased, i.e., a larger maximal cluster is chosen, then
the degeneracy can be broken.

When the vertices from the GS search are analyzed us-
ing the method outlined above, we find that only 32 of
the 111 distinct vertices (i.e., those with degeneracy re-
moved) are constructible; the other 79 are inconstructi-

C. hcp TO ground states: Results and discussion

The full vertex search in the hcp TO approximation
yielded a total of 172 vertices. All ground states with
stoichiometries other than AB are symmetric with
respect to the exchange of A and B atoms (i.e., there is a
1/ —1 degeneracy). The number of distinct vertices (de-
generacy removed) is 111, 50 with stoichiometry AB and
61 non-AB vertices. The set of cluster functions which
correspond to a particular vertex is not directly useful,
and so one must construct the physical structure(s) which
corresponds to the vertices (if such structures exist).
Several approaches are viable when constructing the
ground states, but the simplest involves using the previ-
ously derived C matrix to determine which of the
configurations on the basis clusters will appear in the
structure of a given vertex. The problem then reduces to
tiling the hcp lattice with the configurations correspond-
ing to the nonzero cluster probabilities such that (1) no
inconsistencies are found and (2) the resulting structure
has lattice-averaged cluster functions which correspond
with the vertex in question. If no such tiling exists, then
the vertex is inconstructible.

In many cases more than one structure can correspond
to a given set of cluster functions. This is the case, for ex-
ample, when structures can be related by antiphase boun-
daries (APB's), e.g. , the L lz and D02z superstructures of
the fcc lattice4 (degenerate within the NN distance). The
structures which have the same cluster functions are en-
ergetically degenerate from the standpoint of the granite
cluster expansion [Eq. (6)j. If the range of the expansion

041 4E

3 0 ~I~I

5

I~I
~ 0
~ 0I~I

6

p ~

IF
o p

li o
o ~

14

0 ~ ~ 16
0 0

~ ~
0 0

17

l~
Q o

ii o ii
~ ~

18

A38
~ ~ 0

23

~ ~
~ 0 0
~ 0 ~

24

~ ~ ~
0 0 ~0

26

27 ~

28,.'
Q o

~ ~
o—Q

B3

30

FIG. 2. Unit cells of the hcp tetrahedron-octahedron ground
states in hcp (001) projection. Designations are consistent with
those used in Table III. Structures of a given stoichiometry are
grouped together in boxes for simplicity. It is clear that many
of the structures predicted have unit cells larger than the range
of interaction in the TO approximation. In addition, no struc-
tures are predicted with a periodicity which is greater than 1

along the z direction.
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ble. The physically realizable ground states are given in
Table II with the values of their lattice-averaged cluster
functions (vertex coordinates). The realizable ground
states predicted have stoichiometries A, AB, A 2B,
A 4B3 A 3B, and A 5B. A complete listing of the ground
states is given in Table III with their stoichiometry, pro-
totype {if applicable), Strukturbericht designation (if ap-
plicable), range of interactions required for stability (see
below), and fcc structural analogs (if possible). It should
be noted that fcc analogs are not necessarily stabilized by
the same range of interactions. The most common exper-
imentally observed hcp-based superstructures are those
designated B19,DO&9, and DO, . Hereafter, we will refer
to all phases by their Strukturbericht designations (if pos-
sible) or by their stoichiometry followed by the number of
the GS in Table III.

Unit cells which correspond to all ground states are
given in Fig. 2 in [001] projection; these cells do not
necessarily correspond to the unit cell which possesses
the highest symmetry. The space-group symmetry of
those structures with Strukturbericht designations or

prototypes can be found in standard references; ' the
space groups for some of the other pair GS's can be
found in Ref. 15. A knowledge of the space groups and
Pearson symbols for all of the predicted ground states
might allow the determination of more prototypes. The
only complication in this approach is that one needs to
include all symmetry-allowed relaxations when compar-
ing with possible prototypes. It is interesting to note that
several structures with large unit cells [e.g. , AB(17—19),
A2B(29)] are ground states despite the relatively limited
range of interaction. The range of interaction is not actu-
ally correlated with the unit-cell size of ground states;
this fact is intimately related to the conception of the
ground states as a tiling of the lattice with the
configurations which have nonzero cluster probabilities.
Note also that we predict no ground states with a periodi-
city in the z direction larger than 1.

In the TO approximation, it is possible to have multi-
body interactions corresponding to any subclusters of the
tetrahedron or octahedron which have more than two
points. The question remains as to which of the vertices

TABLE II. Lattice-averaged cluster functions for hcp ground states in the tetrahedron-octahedron approximation. The clusters
which correspond to each cluster function (@ ) are given in Table I.

No.

1

2

3

4
5

6
7

8

9
10
11

12

13
14
15

16
17
18

19
20
21
22
23
24
25
26
27
28

29
30
31
32

1

0

0
0

0

0

0

I
2
I
2
I
2
I
3
I
3
I
3
I

3
I
3
I
3
2
3
I
7
1

7

1
I
3
I
3

1
I
3
I
3

0
I
9

9

I

3

I
5
I
9
I
5
I
9
I
6
I
6
I

9
I
9

0
0

I
3
I
3
I
9
I
9
I
9

I
3
I
7
I
7

1
I

3
I
3—1
I
3
I
3

0
I

3
I

3

0
I
3

0
I

15
I

9
I

15
I

9

I
9
I
9

0

I
3
I
9
I
3
I
9
I
3
I
9
I
3

3
3
7
I
7

I
3
1

3
I
3
I

9
I
9—1
I
3—2
3
I

15
I
9
I

15
I
9
I
3
I
3
5
9
5
9

2
3

I
9
I
3
I
3
I
9
5
9
I
3
I

3
I
7
3
7

—2
3
2
3

—2
5—2
3
2
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TABLE III. Ground states in the hcp tetrahedron-octahedron approximation. A numerical designa-
tion is given in column 1, followed by the stoichiometry in column 2. If available, the prototype and
Strukturbericht designation are given in columns 3 and 4, respectively. Column 5 indicates the range of
interactions required for stability: I-NN pairs, II-NN and NNN pairs, III-multiplets which are sub-
clusters of the TO, and IV-NN multiplets (subclusters in the TT approximation). The fcc analog is
given in column 6, if such an analog exists.

No.

1

2
3
4
5

6
7
8
9

10
11

12—20
21
22
23
24
25
26
27
28
29
30
31
32

Concentration

A

AB

A3B

A, B

AqB
A4B3

Prototype

Mg
AUCd
CuTe
WC

Ni3Sn
P-Cu, Ti

B2NdRh3

SizZr

82NdRh3

Designation

A3
B19

DO,

C49

Range

I
I
I
I
II
II
III
III
III
III
III
III
I
II
II
I
II
II
II
III
III
II
IV
III

fcc analog

Al
L10

AB(i)'
Lli
40b

AB(e)'
AB(b)'

AB(a)'

L lq

DOq2

A2B C2/m
MoPt&
A, B(c)'

AqB C2/m

'Designation of Ducastelle (Ref. 4).
Designation of Kanamori and Kakehashi (Ref. 45).

'Designation of Sanchez and de Fontaine (Ref. 17).

in the ground-state analysis are stabilized by only
effective pair interactions and which require multiatom
interactions. One method of solving this problem is to
project the configuration polyhedron from its 14-
dimensional space down to a space spanned by various
sets of clusters. In the present analysis, we can project
onto spaces spanned by @,—4 3 (for NN pair GS), 4, —@~
(for NN+NNN GS), or to the space spanned in the TT
analysis (multiplets within the NN; see Sec. III A). One
then constructs a new polytope in the projection space
which is the "convex hull" for the set of projected points.
A summary of the results when these projections are per-

formed is given in Table IV, where we indicate the num-
ber of distinct vertices, the number which are constructi-
ble, and the designations used in Table III.

Typically, one constructs so-called ground-state maps
which show the stable phases as a function of the values
of interactions. Such a map was constructed for NN pair
interactions V& and V2 where we computed the lowest-
energy vertex as a function of interaction ratio ( V2/ V&)
and normalized chemical field (p/V&). A map can be
constructed for V, either positive or negative (corre-
sponding to ordering and clustering, respectively). The
ground-state map for V& (0 only contains two ground

TABLE IV. Stable ground states for various sets of interactions. The configuration space indicates
the set of clusters which span the space (see text). For approximations beyond NN pairs, there is over-
lap between the constructible ground states that each analysis predicts (indicated in parentheses; m
designates a multiplet (GS). The designation in column 4 is the one used in Table III, given in the same
order as the structures in parentheses in column 3.

Configuration space

NN pairs
NN+NNN pairs

TT
TO

Distinct vertices

7
15
18

111

Constructible

6
14(6+8)
7(6+ lm)

32(6+8+ lm + 17m)

Designation

I
I and II
I and IV

I, II, IV, and III
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states: A3 (disordered hcp, a= V2/V, &p/6V, ) and Bz
(a) p/6V&). The ground-state map for V, )0 is essen-
tially identical to the map constructed by Bichara,
Crusius, and Inden ' for V3 =0; all GS's stabilized by in-
teractions of type I (column 5, Table III) are present.
The only discrepancy between the present analysis and
that of Ref. 41 is that the present analysis predicts an in-
constructible vertex (stoichiometry A~Bz) in the region
where Bichara, Crusius, and Inden"' predict an infinite
series of phases (discussed in Sec. III D 1). A map which
includes V„V2, and V3 (restricting V, = V2) is given in
Ref. 12.

D. Discussion

1. Comparison with previous hcp GS studies

A comparison between the present results and those of
Kudo and Katsura, ' Singh and Lele, ' ' and Singh,
Singh, and Lele' is given in Table V. The results of the
present study are shown in column 1, and those of the
previous investigators are shown in the other columns us-
ing the notation adopted by these authors. All of the pre-
vious studies only considered pair interactions up to V3
(either in two or three dimensions). All of the vertices
present in our analysis which are stabilized by pair in-
teractions appear in previous studies (omitting incon-
structible vertices). Structures which are not obtained in
the present analysis are as follows: A 9B5, A7B5, A2B,
and A2B . Singh and Lele' find all of these structures to
be on edges or faces of their configuration polyhedron.
The authors state that these structures are ground states,
but in fact they are degenerate with respect to phase sep-
aration between the vertices which bound either the edge
or plane. Hence they are absent from the present analysis
and from that of Kudo and Katsura. ' The studies of
Refs. 12 and 14 predict several structures which are in-
constructible (XIV and XV from Ref. 12); we have not in-
cluded a comparison with these since it is not possible
beyond the range of pair cluster functions and because
the utility of comparing inconstructible GS's is limited.
The 79 inconstructible GS's in the present analysis are
not included in Table V.

Kanamori' performed a search on the plane hexago-
nal lattice in which he predicted an infinite series of
ground states (devil's staircase) for interaction ratios
greater than 1; he refers to these phases as the H„, T„,
and R„phases, formed by mixtures of different types of
dislocation junctions in two dimensions (see Ducastelle
for a complete discussion). Some of the Kanamori desig-
nations correspond to phases in the present study:
AB(3)=R&, DO»=M&, and BI, =T =R . Bichara,
Crusius, and Inden ' mapped the two-dimensional results
of Kanamori onto three dimensions [see Figs. 1(a) and
1(b)], constructing a series of ground-state maps for vari-
ous values of the NNN pair interaction (V3). As men-
tioned in the previous section, the map of Bichara,
Crusius, and Inden ' for V3 =0 predicts a devil's staircase
of phases (T2 —T„and Rz —R„) in the stability region
of an A3B2 inconstructible vertex in our analysis. Kiku-
chi and Cahn constructed a GS map for cx) 0 which is
identical to the results we obtained; they also predicted

an A3B2 inconstructible vertex, although it is impossible
to know whether the vertex in this study is equivalent
since they did not present any structural information.

The correspondence on the GS map between the incon-
structible A3B2 vertex of the present work (and also Ref.
20) and the infinite series of ground states is by no means
coincidential. The existence of a devil's staircase in hcp
implies the following: An hcp ground-state analysis us-
ing any configurational polyhedron (CP) method must
have at least one inconstructible vertex at any level of ap-
proximation which includes at least the NN pairs. This
is most easily proven by contradiction: Assume a CP
analysis produces a finite number of vertices, all of which
are constructible. This implies that at the leuel of approx
imation used the analysis is exact; there are no more
ground states for that set of interactions. This contra-
dicts the existence of the devil's staircase predicted by
Kanamori, and hence there must be at least one incon-

No.
Isotropic Plane Configuration Cluster Sublat tice

hcp' hex. ' polyhedron method' method"

1

2
3

5

6
7—20

21
22
23
24
25
26
27

28,29
30

31,32

I
IX-1
VII-2
VII-1

V

VIII
III

IV-1
VI-1
VI-2
IV-4

II-2

I
V
III
II

XIII
XII

A

AB
AB
AB'
AB"
AB'

IV
IX
XI
VI

VIII

A3B'
A3B
A3B
A2B
A, B'

A2B (II)

VII A, B(I-III)

XIV
XVT

A9B5~
AqBq~f
A2B4tt
AB~

A2B( V)

A3Bp( V)

AB
AB'
AB'
AB

A3B'
A3B
A3B

A,B'

A. 5B

AB
AB
AB'
AB4
AB'

A3B'
A3B
A3B
A2B
A,B'

A2B (II)

A5B

A9B5
A7Bq
A B

'Reference 12.
Reference 13.

'Reference 15.
"Reference 14.

TABLE V. Comparison of present ground-state analysis with
the studies of Refs. 12—15~ Column 1 gives the number of the
ground states (corresponding to Table VI). A blank entry indi-
cates that a given ground state was not predicted. Ground
states which are inconstructible are denoted (f), while those
which are actually degenerate are indicated with i tT). If a
column is empty, this indicates that a comparison was not possi-
ble. The agreement is essentially quantitative for all pair
ground states, but the previous studies were unable to predict all
multiplet ground states (indicated with italics in column 1). In-
constructible GS's from the present analysis have not been in-
cluded in column 1 for brevity.
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structible vertex. In essence, this one inconstructible ver-
tex allows for more and more of the devil's staircase to be
predicted as the level of approximation in the GS analysis
is increased (i.e., as the constraints are based on clusters
which span a larger range).

The present analysis predicts 18 ground states which
are stabilized by multiplet interactions (14 AB, 2 A2B,
and 2 A~B3). These structures are completely absent
from all other studies' ' ' since previous authors only
included pair interactions in their analyses. The omission
of many-body interactions is unjustifiable on intuitive
grounds, and it has also been demonstrated that such in-
teractions are actually needed in order to explain the ob-
served structures in numerous transition-metal-alloy sys-
tems' ' and also in the Ti-Al system.

2. Ground states on the hcp and fcc lattices

One expects a one-to-one mapping of the fcc ground
state onto hcp ground states (but not the converse) when
only interactions between two close-packed planes are
considered. " In particular, this will be true when consid-
ering NN and NNN pair interactions in hcp [sites
(1,2)—:(1,6) and (1,8), respectively, in Fig. 1(a)]. The
analogy between fcc and hcp is clear when one constructs
[111]projections of tioo close-packed planes for the fcc
lattice; such a [111]fcc projection is identical to the [001]
hcp projection. In order for there to be analogies be-
tween fcc and hcp, one must map the interactions in fcc
onto the corresponding clusters in hcp. For example,
consider fcc ground states in the tetrahedron approxima-
tion with NN pair (VNN) and NN triangle (VrR) interac-
tions. hcp ground-state analogs will exist provided the
hcp TT interactions obey the following (see Table I and
Fig. 1): V~ = V~ = VNN and Ve = Ve = V~ = VrR.
This mapping reestablishes the symmetries that are bro-
ken in passing from the fcc to the hcp lattice. The fcc-
hcp ground-state analogy can be seen quite easily when
one compares the NNN pair ground-state map for fcc
(Refs. 4 and 44) and the NNN pair map for hcp (Ref. 12)
with V, = V2: Their topologies are identical.

The analogs relevant to the current analysis are listed
in Table III. The most commonly observed hcp struc-
tures (B19, DO», and DO, ) correspond to the fcc Llo,
L12, and DO&2 structures, respectively. If the ground-
state search is performed in the tetrahedron approxima-
tion on the fcc lattice, the only ground states predicted
are pure 2, L10, and L12. The fcc search in the TO ap-
proximation' yields six NNN pair GS's [L 1„DOE&,
MoPt2, AzB2 ("40" in Ref. 45), A~B, and A2B) plus
seven multiplet ground states [AB(a, b, d, e,f), A2B(c),
and A &B3(g)]. In the hcp TT approximation (equivalent
to fcc tetrahedron), there are seven ground states (includ-
ing one multiplet), as opposed to three in fcc with no
multiplet GS. The hcp search in TO stabilizes the ana-
logs of the fcc NNN pair GS's [Bi„DO„SizZr, AB(5),
AsB, and A2B(26)] with the NNN pair acting to break
the same NN pair degeneracies in hcp (e.g. , between D0,9
and DO, ) that occur in fcc (between L12 and DOzz). As
far as the multiplets are concerned, there are only hcp
analogs for four of the fcc multiplet GS's: AB(6,7, 11)

and AzB(28). The hcp analogs of the other three fcc
multiplets [AB(d,f) and A583(g)] lie on one-
dimensional (1D) edges of the configuration polyhedron
and hence are degenerate with respect to phase separa-
tion between the vertices that define the edge. All of the
hcp GS's in Table III which do not have fcc analogs are
probably stable over ranges of the interactions where the
aforementioned mapping between fcc and hcp interac-
tions is violated. It should also be mentioned that the in-
teractions required to stabilize the analogous fcc and hcp
ground states are not necessarily the same; for example,
the hcp analog of AB (e) from Ref. 17 (a multiplet
ground state) is a NNN pair GS in hcp.

From the above discussion, the similarities between fcc
and hcp are quite striking when considering only the pair
ground states; in fact, the mapping is perfect since hcp
analogs exist for all nine pair fcc GS's out to the NNN.
However, there is a distinct departure between fcc and
hcp when looking at all possible ground states. In the
hcp TO, there are a total of 32 GS's, while there are only
16 in fcc; in other words, the differences in symmetry be-
tween fcc and hcp result in twice as many hcp ground
states at the level of the TO. Although fcc and hcp are
identical within two-close-packed planes when the hcp
c/a ratio is ideal, they are not identical at the third
plane. The existence of this third plane alters the symme-
try such that even when the c/a ratio of hcp is ideal, it is
possible for the values of interactions V, and V2 to be
different. In fcc, however, the NN pairs which corre-
spond to V, and V2 in hcp are identical by symmetry and
must always have the same effective pair interaction. The
relationship between the hcp c/a ratio and the values of
V, and V2 seems to be a point of confusion in numerous
previous studies. ' ' ' ' Previous authors tend to make
the (incorrect) assertion that when the two NN pair in-
teractions are different in hcp, this implies that the c/a
ratio is nonideal.

IV. hcp CVM PHASE DIAGRAMS

In order to perform prototype CVM computations in
either the TT or TO approximations of hcp, one needs
(for all phases in the computation) the KB coefficients
and multiplicities for each approximation (those for the
disordered phase are in Table I) and also the C matrices.
The entropy expressions and independent cluster func-
tions (at the chosen level of approximation) must be de-
rived for each phase which is a ground state for the set of
interactions which are used. If a calculation is done us-
ing isotropic NN pairs in the TT entropy approximation,
one would need to consider the disordered, B19, and
D0$9 phases. '

The phase-diagram calculations in the following sec-
tion necessitated computing the free energy for the B19,
D0,9, and A2B(24) phases. Hence the independent clus-
ter functions and entropy expressions were derived for all
of these structures in both the TT and TO approxima-
tions. The results of the cluster determination are given
in Table VI; it is clear that for the ordered phases, a com-
plete presentation of the entropy expressions and cluster
information would be quite lengthy. Hence that informa-
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TABLE VI. Maximal (basis) clusters and number of independent cluster functions in the TT and TO
approximations for the A 3, B19, DO», and A 2B(24) phases (Tr = triangles, T =tetrahedra,
0 =octahedra).

Structure

Disordered ( A3)
B19
DO] 9

A 2B (24)

Basis clusters
(TT)

1Tr, 1T
2Tr, 2T
2Tr, 2T
2 TI, 2 T

TT cluster
functions

7
19
16
22

Basis clusters
(TO)

1 T, 10
2 T, 20
2 T, 20
2 T, 20

TO cluster
functions

14
47
37
57

tion will not be presented for all structures in all approxi-
mations. The increase in the number of independent
cluster functions as a function of the symmetry of the
phase is exhibited in Table VI.

A. Phase-diagram calculations

This section is devoted to a discussion of phase-
diagram calculations using the CVM in combination with
the ground-state results discussed in Sec. III. We will be
considering prototypical ordering systems (V, )0) for
different values of V2/V, . Ordering will be considered
for both isotropic and anisotropic NN pair interactions
only; no multiplet interactions will be considered.

1. Isotronic interactions

Three ground states exist at the interaction ratio
V2/V, =1:B19,DO», and A3. The A3B2 and AzB(24)
phases share a single degenerate point in the GS map
with the 8 19 and DO» phases when V2/V& = 1, but these
phases will not be considered. This is in fact an assump-
tion, since it may be possible for the entropy to stabilize
the degenerate phase(s) when T)0 K. A low-
temperature expansion might be used to prove whether
one of the degenerate phases would exist at finite temper-
ature. '

CVM calculations were performed in the TT and TO
approximations for V2/V& =1 for the three phases in
question. The results of the phase diagram calculations
are shown in Fig. 3 (bold lines=TT, thin lines=TO);
since no odd-body interactions are considered, the phase
diagram is symmetric around c =0.5, and hence only half
of it is shown. The results of the Monte Carlo calcula-
tions of Crusius and Inden (see Sec. IV C) are given with
dashed lines. Both the 819 and DO&9 phases are seen to
have a large stability range, and both congruently disor-
der at or near their respective stoichiometries. In addi-
tion, there is a eutectoid reaction in which the disordered
phase decomposes into the 819 and DO» phases. This
phase diagram is completely analogous to the prototype
fcc phase diagram, as will be discussed in Sec. IVC.
Three things change when the level of approximation is
increased from TT to TO: (1) Both the DO» and B 19
order-disorder transition temperatures decrease, (2) the
width of the two-phase regions decreases, and (3) the tem-
perature at which the eutectoid reaction occurs decreases
relative to the 819 and DO&9 transition temperatures.

2. AnisotroIpic interactions

Now we consider the range of interaction ratios
0 (a = V2/V, (1. Four ground states exist for this set of
interactions: ' B19, DO&9, A 3, and A2B(24). Calcula-
tions were performed for several values of a between zero
and one; the phase diagrams for a=O. 8 and 0.5 (TT) are
shown in Figs. 4 and 5, while that for a =0 (TT and TO)
is shown in Fig. 6. Monte Carlo results of Crusius and
Inden ' are superimposed on Figs. 4 and 6 (dotted lines)
for comparison. When a=0.8 (Fig. 4), the A2B(24)
phase exhibits a very narrow range of stability and has a
transition temperature which is much less than those of
the 819 and DO&9 phases. The 819 and DO&9 transition
temperatures have also decreased compared to the case of
isotropic interactions. In the case where a=0.5 (Fig. 5),
it is seen that the B19, DO», and AzB(24) phases all
have roughly the same relative stability, i.e., their transi-
tion temperatures are roughly the same. The 819 and
DO]9 transition temperatures have again decreased com-
pared to a =0.8, and the A2B(24) transition temperature
has increased by a comparable amount. When the in-

2.0

kT, 4
V1

1.0

0.8
0.1 0.2 0.3

Concentration

04 0.5

FICx. 3. hcp ordering phase diagram with isotropic NN pair
interactions ( V& = V& )0) computed in the CVM TT (bold lines)
and TO (thin lines) approximations. The Monte Carlo results of
Crusius and Inden (Ref. 46) are superimposed {dashed lines).
As the level of the CVM approximation is increased, the transi-
tion temperatures for the B19and DO» phases decrease, as does
the eutectoid temperature.
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FIG. 4. hcp phase diagram for anisotropic interactions
(V2 =0.8 V& & 0) computed in the TT approximation (bold lines).
The A2B(24) phase (now a ground state with this set of interac-
tions) is only marginally stable and thus transforms into the
DO]9 phase at a relatively low temperature. The Monte Carlo
results of Crusius and Inden (Ref. 46) are superimposed (dashed
lines). The Monte Carlo phase diagram has a different topology:
The A 2B(24) phase (significantly off stoichiometric) disorders
into the hcp solid solution with two sets of eutectoid reactions
occurring.

FIG. 6. hcp phase diagram for V2=0 V& )O. The ApB(24)
phase is the only ordered ground state at this interaction ratio.
All transitions are first order, except at c =0.5, where the tran-
sition is second order. The Monte Carlo results of Crusius and
Inden (Ref. 46) are superimposed (dotted line); all of their tran-
sitions are second order, and no finite transition temperature ex-
ists at c =0.5 [see Wannier (Ref. 51)]. The CVM results are in-
correct regarding the finite transition temperature at c =0.5
and the order of the transitions.

1.4

A3

kT tp

0.6
0.1 0.2 0.3 0.4 0.5

Concentration

FIC. 5. hcp phase diagram for anisotropic interactions
V2 =0.5 V& & 0 (TT approximation only). At this interaction ra-
tio, the A2B(24), DO», and B19 phases all have the same rela-
tive stability. The A2B(24) phase now disorders into the hcp
solid solution, as opposed to the behavior observed for a=0.8
(Fig. 5).

teraction ratio is zero, there is no coupling between the
close-packed planes, and the B19 and DO&9 phases are no
longer observed, as seen in Fig. 6. The TT and TO re-
sults for this calculation are identical, contrary to the
trends (Sec. IV A 1) seen in the case for isotropic interac-
tions (Fig. 3). When a=0 the planes are decoupled, and
the system is essentially two dimensional; the ordering
within a single plane of the AzB(24) phase is identical to
the ordering in the plane above or below it. The absence

of the B 19 and DO» phases when a =0 is consistent with
the GS map:"' When +=0 these two phases only exist at
degenerate points.

B. Discussion

Comparison with previous prototype hcp phase diagrams

The amount of work done on hcp phase diagrams is
even more sparse than it is for hcp ground states. In two
similar studies, ' ' Kikuchi used the CVM in the TT ap-
proximation to determine the A 3-DO» phase boundaries
and the A2B(24) phase boundaries for a=O; his studies
do not consider equilibria between the DO&9 and

B19/AzB( 24) phases. Monte Carlo (MC) simulation on
the hcp Ising lattice has been performed by Crusius and
Inden for a =1 (Fig. 3), 0.8 (Fig. 4), and 0 (Fig. 6), and
by Bichara, Crusius, and Inden for a = 1.5 and 2.0.
Studies using Monte Carlo simulation and analytical
techniques ' ' have also been performed in the case when
a =0.

In the case of isotropic interactions, the hcp CVM and
Monte Carlo phase diagrams are given in Fig. 3. As the
level of the CVM approximation is increased from TT to
To, there is better agreement with the Monte Carlo re-
sults of Crusius and Inden. In general, all of the transi-
tion temperatures (hcp~B 19, hcp~DO», and
hcp~D0, 9+B19)are lower in the Monte Carlo analysis.
The TO results agree fairly well near the B19 and DO&9
transitions, but there is still quite a large discrepancy at
the triple point. The same type of behavior is observed in
CVM and MC calculations on the fcc lattice. Finel
has actually shown, however, that by using a higher ap-
proxirnation in the CVM, it is possible to obtain virtually
exact agreement between the MC method and the CVM.
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When the interactions are anisotropic, the A2B(24)
phase appears between the DO» and B19 phases in the
phase diagram, and the hcp~ AzB(24) transition tem-
perature depends on the value of the interaction ratio.
The same behavior is observed in the MC analysis of Ref.
46, although the MC transition temperatures are again
lower. The difference in transition temperatures makes a
comparison between the Monte Carlo and CVM analyses
dificult because the topologies of the phase diagrams are
not the same. For example, in the case when a =0.8 (Fig.
4), the CVM predicts A2B(24) to transform into the DO»
phase (c =0.33, kT/V, =0.9) with a eutectoid reaction
still occurring between hcp, B19, and DO» (c =0.4,
kT/V, =1.3). The Monte Carlo study predicts the
AzB(24) to disorder into the hcp solid solution, with two
eutectoid reactions hcp ~ A 2B (24) +B19 (c =0.42,
kT/V, =0.6) and hcp~A2B(24)+DO» (c =0.33,
kT/V& =0.9). If the level of the CVM entropy approxi-
mation were increased (i.e., to TO), then we would expect
the hcp ~B19+DO, 9 and DO»~ A 2B (24) transition
temperatures to drop, with the former changing more
than the latter. As the level of CVM approximation is
successively increased (for a =0.8), the transitions would
most likely change to the point that the
hcp~ A2B(24)+DO&9, A2B(24)+B19 reactions would
be observed, in agreement with the Monte Carlo results.
Indeed, the topologies of the CVM analysis for +=0.5
(Fig. 5) and the MC phase diagram for a=0.8 (dotted
lines, Fig. 4) are quite similar, although the transition
temperatures are different.

For a=O the only stable ordered phase is A2B(24)
(Fig. 6); the largest disparity between the present results
and those of the other previous studies occurs in this
phase diagram. The CVM predicts a finite order-disorder
transition temperature at c =0.5 and first-order transi-
tions all the way across the concentration range except at
the transition temperature for c =0.5, where the transi-
tion is second order. There is excellent agreement be-
tween the phase diagram of Fig. 6 and the CVM phase di-
agram of the 2D triangular lattice calculated by Bur-
ley. The hcp Monte Carlo results of Crusius and In-
den predict a lower hcp~AzB(24) transition tempera-
ture (as expected), and they predict only second-order
transitions (dashed line, Fig. 6). Metcalf' performed
Monte Carlo simulations on the two-dimensional triangu-
lar antiferromagnet (equivalent to ordering interactions
with a =0), finding results quite similar to those of
Crusius and Inden. Houttapel and Wannier ' proved
analytically that there is no long-range order (LRO) at
T =0 K and c =0.5 for the 2D triangular antiferromag-
net. Thus the analytical results ' ' prove that the CVM
result presented in Fig. 6 is incorrect regarding the finite
transition temperature at c =0.5, and the Monte Carlo
results imply that the CVM is incorrect regarding the
order of the transitions between hcp and A2B(24). This
is perhaps not surprising since AzB(24) is essentially two
dimensional, and it is known that mean-field models are
less accurate as the dimensionality of the system de-
creases. The two-dimensional character of this phase is
further illustrated by the equality of the TT and TQ re-

suits for a=0. The Hamiltonian for a=0 only considers
interactions within a plane. Hence the partition function
for the entire system can be factored, thus allowing the
free energy to be written as a sum of free energies associ-
ated with the planes. Since the TT and TO approxima-
tions both span the NN distance within a plane, their re-
sults will be identical.

The differences between the CVM results and those ob-
tained with Monte Carlo or other analytical techniques
are due to the mean-field nature of the CVM, which
neglects correlations beyond the maximal cluster. Hence,
by increasing the size of the maximal cluster, the CVM
takes longer-range correlations into account so that one
expects the CVM results to converge to those of non-
mean-field theories, consistent with present results and
with previous studies in fcc (Refs. 52 and 53) (see Fig. 3).

2. Ordering phase diagrams in fcc and hcp

The analogies between fcc and hcp ground states were
analyzed in Sec. III C2, where the two NN pair interac-
tions in hcp were assumed to be equal. It has been sug-
gested ' that the fcc and hcp phase diagrams for NN iso-
tropic interactions should be identical. The hcp TT
phase diagram with isotropic NN pair interactions (Fig.
4) shows a topology identical with the tetrahedron fcc
phase diagram computed by Van Baal. In the fcc case,
it is also found that the ordering transition temperatures
decrease as the level of the CVM entropy approximation
is increased, and the same is observed in hcp (Sec.
IV A 1).

We performed calculations at high temperatures (i.e.,
above the order-disorder transition) for both fcc (T and
TO) and isotropic hcp (TT and TO). We find the free en-
ergies of the disordered fcc and hcp phases consistently
converge to slightly different results. This difference will
of course lead to small but detectable differences in the
fcc and hcp transition temperatures. It could be argued
that computational inaccuracy is the cause for the
discrepancies, but this is not the case. The systematic
difference in transition temperatures has also been
confirmed analytically by high-temperature expansion of
the CVM free energy.

It is possible to obtain fcc and isotropic hcp CVM free
energies which are identical, but this involves imposing a
constraint on the values that the hcp correlation func-
tions may take. If we require all hcp correlations to be
equal which were in the same orbit in fcc (e.g. , the in-
plane and out-of-plane NN pairs), then the fcc and hcp C
matrices would be identical, and the CVM problems
would be indistinguishable. This is an artificial situation,
however, and we believe it is more correct to say the fol-
lowing: At finite temperature, CVM computations of or
dering on the fcc and isotropic hcp lattices are almost but
not exactly equivalent, even with only interactions between
two close-packed planes. Despite the equivalence of the
hcp and fcc Ising Hamiltonians when considering two
close-packed planes, it is likely that the hcp phases can
attain a higher entropy, and thus a lower free energy, by
allowing certain correlations (which were equivalent in
corresponding fcc phases) to take on different values.
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All of the foregoing discussion has been for the case of
isotropic pair interactions in hcp. If one allows for aniso-
tropic pair interactions, then the equivalence between fcc
and hcp CVM phase diagrams disappears. The simplest
example of this is the TT phase diagram computed for
a=0.5, shown in Fig. 6. There is no fcc tetrahedron
ground state which corresponds to AzB(24), and hence it
would be impossible to obtain a tetrahedron fcc phase di-
agram with a topology like that in Fig. 6. In general, the
symmetry of the hcp lattice allows for ground states
which could never be observed on the fcc lattice, and
hence the finite-temperature behavior would be different
also.

V. CONCLUSION

Ising models are a powerful tool which can be used to
study ordering phenomena for substitutional alloys on
various lattices. Numerous studies in the past have con-
sidered ground states of order and finite-temperature
behavior on the fcc and bcc lattices, but not nearly as
much attention has been given to ordering in hexagonal-
close-packed (hcp) alloys. Previous ground-state analyses
in hcp have not allowed for the possibility of many-body
interactions between atoms; these types of interactions
are now known to play a potentially significant role in al-
loy phase stability. ' ' The cluster-variation method
(CVM) is well suited to treating interactions between
clusters of atoms, but no ground-state searches have been
done using the cluster-configuration polyhedron method,
and few phase-diagram computations have been per-
formed on hcp alloys using the CVM.

Thus we have presented a study of the hcp Ising model
in the cluster-variation approximation. Ground states of
order stabilized by interactions within the range of the
octahedron were computed using the cluster-
configuration polyhedron method. This ground-state
method enumerates constraints on allowed structures by
using the linear relationship between the probability of
observing a given configuration on a cluster of atomic
sites and an independent set of multisite configurational
variables. In order to obtain all of the necessary con-
straints in the present analysis, all 14 symmetry-distinct
subclusters of the octahedron and NN tetrahedron are re-
quired. The ground-state search yields results consistent
with previous NN pair ground-state analyses, although
we predict 18 new structures which are stabilized by mul-
tiplet interactions. In addition, it has been shown that
any hcp ground-state search which uses a configuration
polyhedron method must have at least one inconstructi-
ble vertex in order to be consistent with the infinite series
of ground states predicted by Kanamori. '

Prototypical ordering phase diagrams for binary hcp

alloys were computed for several different values of the
two NN pair interactions using the CVM in the
tetrahedron-triangle (TT) and/or tetrahedron-octahedron
(TO) approximations. The analysis presented in this
study considered equilibria between all ground states for
the chosen interactions, which does not appear to have
been done previously with the CVM. The observed phase
equilibria for isotropic pair interactions are roughly
analogous to ordering in fcc, but anisotropic pair interac-
tions yield much more interesting behavior. Results are
in generally good agreement with previous Monte Carlo
studies of ordering in hcp alloys, although discrepancies
do exist due to the mean-Geld nature of the CVM. The
CVM does, however, fail to correctly predict the
behavior of ordering when the two close-packed planes in
hcp are energetically decoupled: The order of the transi-
tions is wrong, and the CVM incorrectly predicts a long-
range-ordered phase at finite temperature for c =0.5.

Ordering in fcc and hcp is found to be similar, as one
would expect. There are hcp analogs for all NN and
NNN pair fcc ground states, but there are large
discrepancies when considering the multiplet ground
states. If the hcp NN pair interactions are restricted to
being isotropic, it is expected that hcp and fcc ordering
phase diagrams will be exactly the same. We do not find
this to be the case: Small but consistent differences exist
between the fcc and hcp results. The difference between
fcc and hcp lies in the symmetry which each structure
possesses. The fcc lattice and hcp structure are
equivalent within two close-packed planes, but the ex-
istence of a third different plane makes the global symme-
try different for each. Hence clusters of sites (and their
corresponding interactions) which were equivalent by
symmetry in fcc are no longer equivalent in hcp. As a
consequence of this, the configurational entropy in hcp
alloys can be distinct from that in fcc alloys even when
the Hamiltonians are the same. Anisotropic interactions
in hcp allow for new ground states to be stabilized which
would not be observed in fcc, thus providing a much rich-
er spectrum of possible finite-temperature behavior.
Therefore to make generalizations about ordering in hcp
based on fcc behavior is not strictly valid.
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