
PHYSICAL REVIEW B VOLUME 48, NUMBER 9 1 SEPTEMBER 1993-I

Nonlinear U(j) law from magnetic relaxation in BizSrzCaCu20„single crystals: Flux motion
through double-kink formation of the pancake vortices
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We have studied magnetic relaxation in a single crystal of Bi2Sr2CaCu20 and have developed the U-j

relationship by an approach we devised earlier. We explain this nonlinear U-j relationship based on the

essential modification of the local pinning potential profile associated with Aux motion through double-

kink formation of the pancake vortices. The important microscopic parameters such as condensation

energy, screening length, and vortex core energy have been extracted from the experimental data. An

implication of the U( j) law on the voltage-current E-j characteristics is discussed as well.

Magnetic relaxation in type-II superconductors has
been reported earlier by various groups. ' This
phenomenon was explained by Anderson and Kim using
a thermally activated Aux-creep model. ' According to
them the fiux motion is thermally activated, and the rate
with which fiux lines (or bundles) jump over the pinning
barriers can be described by an Arrhenius-type expres-
sion

v=voexpI —U(j )/kTI,
where vo is an attempt frequency and U( j) is the effective
activation energy.

Although Beasley, Labush, and Webb' assumed a
linear U-j relationship leading to the characteristic loga-
rithmic decay of magnetization, they realized that, in
general, there exists a nonlinear U-j relationship leading
to a nonlogarithmic decay of magnetization. Nonloga-
rithmic decay of magnetization was later observed experi-
mentally in type-II superconductor s by various
groups. ' '" ' A nonlogarithmic decay of magnetiza-
tion occurs because of three factors: (i) avalanche break-
down, (ii) reverse hopping, and (iii) shape and distribution
of the local pinning potential. When a field larger than
the full penetration field is applied, the system first forms
a supercritical state. It then organizes itself into a critical
state by avalanche breakdown governed by avalanche dy-
namics self-organized criticality. ' This type of process
may be important only near the critical-state regime. As
time progresses and the magnetization decays from the
critical state, the contribution from avalanche breakdown
decreases. In a typical magnetic relaxation experiment
we measure magnetization quite far away from the criti-
cal state. Thus, nonlogarithmic magnetization observed
experimentally is generally due to the other two factors.
At the low driving forces, the hopping rate is controlled

by the height of the pinning barrier, regardless of the de-
tailed shape of the potential and hence determined by the
reverse hopping. In the presence of high driving force,
however, the amount of deformation of the potential
well, and hence the resulting barrier height, are deter-
mined by the shape of the potential well. Our experi-
ments are conducted at large driving force regime and
therefore the contribution from reverse hopping can be
safely neglected in this paper.

We shall consider the effect of the double-kink energy,
U, (x), ' ' of two-dimensional "pancake" vortices on
the form of the U vs j relationship extracted from the
magnetic relaxation data for BizSr2CaCu20 single crys-
tals. As will be shown, this correction modifies a local
potential profile resulting in a nonlinear (logarithmic)
U(j) law. We find, in particular, that the farther the sys-
tem is from the critical state, the more important is the
two-dimensional (2D) double-kink energy contribution of
the vortex line. By applying the extracted U(j) law to
the voltage-current characteristics, we show that the neg-
ative curvature of the E-j curve as well as the true zero
resistivity is consistent with the predicted U vs j relation-
ship.

Magnetic relaxation experiments were performed on a
BizSr2CaCuzO single crystal by using a Quantum Design
Superconducting quantum interference device magne-
tometer. Magnetization as a function of time was mea-
sured for both increasing and decreasing magnetic field.
For both the cases, the sample was first zero-field cooled
to a desired temperature below T, . For increasing field, a
field of 0.5 T parallel to the c axis of the single crystal was
applied, whereas for decreasing fields a field of 3 T was
first applied parallel to the c axis, and then reduced to 0.5
T. For both cases, the initial magnetization was recorded
120 s after stabilization of the field. The travel length of
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the sample in each scan was 3 cm to avoid any field inho-
mogeneity. The current density was estimated by using a
standard Bean model. '

The effective activation energy, U(j), at a given tem-
perature was extracted from the magnetic relaxation ex-
periment performed at various temperatures by a pro-
cedure developed earlier. The typical behavior of
the U( j) curve for Bi2Sr2CaCu20 single crystals at
T=5.5 K with a field of 0.5 T applied parallel to the c
axis is shown in Fig. 1. We obtain a best fit using the
function

U„(x)=2U, lnI (x +xo)/2xo I . (4)

Here U, =CO/4m. poA is the condensation energy of a sin-
gle vortex line, A =2A,,b Id, is the effective two-
dimensional screening length in the copper-oxide plane of
the thickness d„' and xp is the vortex core size
[xo =g( T) ], where g( T) is the coherence length. Figure 2
shows U (x)/Uo as a function of x /xo.

In the presence of a driving force, the resultant barrier
becomes

U(x)= U (x) jVBx—, (5)
U,„(j) =a b(1—j /j o—)+c ln(jo/j), (2)

U~ (x)= Uo+ U„(x), (3)

where Up is the barrier height of pinning potential en-
countered by a single vortex line at the defect location.
The potential energy required for a pancake vortex to be
displaced by a distance x from its origin through double-
kink formation has the form' '

0.040

Bi2Sr2CaCu20 single crystal
X

T = 5.5 K, H = 0.5 T, H il c

0.030

where a =0.0002 eV, b =0.005 eV, and c =2b =0.01 eV.
In a hard type-II superconductor, the pinning potential

is randomly distributed. Instead of considering the dis-
tribution, one can consider an equivalent local pinning
potential, U (x). One can expect to obtain U (x) from
the actual pinning potentials by averaging them over all
ranges of pinning energies. Since the distribution of the
pinning potentials is unknown, the actual shape of U (x)
is also unknown. However, U (x) may be obtained by
different trial functions based on the U-j relationship
developed. Various shapes have been proposed to explain
the nonlinear decay of magnetization. ' It is well es-
tablished that because of the highly anisotropic nature of
layered Bi2Sr2CaCu20, the Aux lines have a two-
dimensional characteristic, often described as pancake
vortices. ' As reported earlier that it is energetically
favorable for vortices to move through the formation of
double kinks. ' ' To give a possible explanation of the
above U-j law [Eq. (2)], we assume that the effective local
pinning potential, U (x), is given by

where j is the current density, B is the magnetic induc-
tion, and V is the bundle volume. According to Eqs.
(3)—(5), the local effective barrier, U(x), has a metastable
extremum at x =xp, which gives rise to the linear
(Anderson-Kim) law, namely

U&(j ) = U(xo) = Uo jBVxo—= Uo(1 j lj, ),—
with the critical current density j,= Up/BVx p.

At the same time, U(x) has a true (stable) extremum at
x =x„where x„a stable solution of the equation
dU(x)/dx =0, has the form

x, (j)= —xo+2 U, /j BV . (7)

Thus using Eqs. (4), (5), and (7), the U( j) law due to the
vortex line 2D double-kink energy contribution reads

U(j)= U(x, )

= ( Uo —U i ) —Ui ( 1 j /j o ) +2 U—i ln( jo /j ), (8)

I I 1 I
i

I I6

with an "effective" critical current density jp= U, /BVxo.
According to Eq. (8}, the fitting parameters in Eq. (2}

are physically meaningful. The parameters a and b in Eq.
(2) are related to the pinning barrier energies, Uo and U„
as follows: a = Up —U„and b = U, . Thus, the coefficient
a defines the change of the barrier height, Up, as a result
of the double-kink formation of the vortex line with ener-
gy U&. In fact, Up —U1 Ucore& where Ucore=~U, is the
vortex core energy (a =0.08 in normal three-dimensional
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FIG. 1 ~ U-j/jo curve for a single crystal of Bi2Sr2CaCu20 at
a field of 0.5 T applied parallel to the c axis at T=5.5 K. The
curved line is fit to Eq. (2), with a =0.0002 eV, b =0.005 eV,
c =2b =0.01 eV.
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FIG. 2. Effective local pinning potential U~(x)/Uo as a func-
tion of the displacement x/xo.
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E-exp I
—CU( j)], (9)

where C is a constant. In Fig. 3 we have plotted ln E as a
function of j/j, for various U-j relationships. As can be
seen in the figure, the linear U-j relationship predicts a
finite resistance at all current densities while a zero-
resistance state has been predicted by the vortex-glass
and collective-creep models with a power-law form of
the U(j) function. Interestingly, similar to the above-
mentioned models, our U-j relationship [Eq. (8)] also pre-
dicts a negative curvature to the E-j curve and a zero
resistance at finite j in the vortex state. A similar E-j
behavior using the shape of U~(x) has been earlier ob-
served by Zeldov et al.

In summary, we have conducted magnetic relaxation

Abrikosov vortices~ ). Using absolute values of the fitting
parameters a and b [Eq. (2)], we get the two-dimensional
(pancake) vortex core energy U, „=0.0002 e&, which
gives v=0.04. In turn, if we take into account the
definition of U& [Eq. (4)], the above estimates predict a
screening length A=2k, ,bid, =250 p,m, in good agree-
ment with what is reported for Bi2SrzCaCu20„(Ref. 25)
with values of k, b =270 nm and d, =6 A.

It should be noted that by the definitions given in Eqs.
(6) and (8), the critical current densities j, and jo are re-
lated to each other as j, /jo= Up/U&. Since Uo ~ U&, we
get that j, ~ jo. Furthermore, near the critical state
(where j ~ jo and the vortex energy contribution can be
neglected, i.e., Uo —= U, and jo —=j,), x, —=xo. Thus
the nonlinear U(j) law given by Eq. (8) reduces to the
more recognized Anderson-Kim linear relationship [Eq.
(6)]. Finally, assuming that V =re, ( T)d, where
d = (&bo/8 )

' is the distance between the vortices,
xo =g, (T), and using the experimental value of
g', ( T =5.5K)—= 10 A and the value of U, =0.005 eV, we
estimate the "effective" critical current density of our
sample [Eq. (8)] jo=U, /BVxo—= 10 A/cm, which is
comparable with the typical values reported for
Bi2Sr2CaCu20 single crystals. '

Let us now consider the implication of this type of U-j
relationship on the electric field (E) as a function of j. In
the Aux-creep regime

Anderson-Kim model
Linear U-j relationship

Anderson-Kim model
Nonlinear U-j relationship

Vortex glass or collective creep theory

10 10 104 0.01

FIG. 3. E-j curves developed using the Anderson-Kim model
with a linear U j relationship [U=UO(1 —j/jo)], collective-
creep or vortex-glass theory [U= Uo(jo/j)" with @=0.2], and
the Anderson-Kim model with nonlinear U-j relationship
[U=a b(1 —j/jo)+c—ln(jo/j)] Eq. (2). Note: Uo value is
0.005 eV for all models shown in the figure.
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experiments on a BizSrzCaCu20 single crystal and
developed a nonlinear U-j relationship. We have pro-
posed a possible explanation for this nonlinear relation-
ship based on the modification of the local pinning poten-
tial profile by double-kink formation of the pancake vor-
tices. Based on this development, we have calculated
the important superconducting parameters of the
BizSr2CaCu20„system. We have also shown that the
zero-resistivity state and the negative curvature of E-j
curves as predicted by vortex-glass and collective-creep
theory can also be explained by the observed U-j relation-
ship.
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