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Conductivity fluctuations in a single crystal of Bi~Sr2CaCu20
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We present an analysis of the measured excess conductivity that results from the Auctuations of the su-

perconducting order parameter for a single crystal of the Bi2Sr2CaCu20 high-T, superconductor. The
measured excess conductivity in the temperature range 84—245 K is best fitted by the two-dimensional
(2D) Aslamazov-Larkin theory. By using this theory, the 2D characteristic length was obtained to be
12.6 A, which is within a physically acceptable range. We find that the interlayer coupling strength pre-
dicted by the Lawrence-Doniach theory leads to too small a value of the c-direction coherence length.
This seems to be an intrinsic property of this superconductor due to its high anisotropy. Further, the in-

direct Maki-Thompson effect is found to be negligible. Thus we claim that the excess conductivity of the
Bi2Sr2CaCu20 single crystal is solely caused by the two-dimensional thermal fluctuations of the order
parameter with the absence of the 2D-3D crossover and that the effect of fluctuating Cooper pairs in as-

sociation with pair breakers is negligible in considering the excess conductivity.

I. INTRODUCTION

High-T, superconductors are known to have a relative-
ly broad resistive transition. This is known to be largely
caused by the thermal fluctuations of the superconduct-
ing order parameter. These thermal fluctuations allow a
finite probability of forming superconducting electron
pairs above T„and thus induce excess conductivity (or
paraconductivity). The functional form of the excess
conductivity depends on the dimensionality of fluctua-
tions due to the nucleation and decay of superconducting
droplets above T„or a dimensional crossover between
two and three dimensions due to the interlayer coupling
by the Josephson tunneling. Since anisotropy is
significant in high-T, superconductors, a careful exam-
ination of the dimensionality of transport is of great im-
portance.

A number of studies on the excess conductivity for
Y,Ba2Cu30 systems were done by using various fitting
schemes. For polycrystalline bulk systems, ' most
analyses are consistent with the characteristics of three-
dimensional (3D) therma1 fluctuations. However, for the
highly c-axis-oriented epitaxial thin films Oh et al. re-
ported that the 2D-3D crossover was observed. Accord-
ing to Pogrebnyakov et al. , the dominance of 3D fluc-
tuations, or 2D-3D crossover depended on the range of
temperature. For single crystals, ' different experimen-
tal results have been reported. Hagen et al. reported
that the dominance of 2D fluctuations. However, their
results are inconsistent in that the zero-resistance transi-
tion temperature (T,

=
) was found to be higher than

T, ", the mean-field transition temperature. On the other
hand, Friedmann et al. reported that the Lawrence—

Doniach theory gave the best fit to their data showing the
2D-3D crossover at T, =91.1 K. Again T, " below
T, was obtained from their study, including an un-
reasonably small value of the coherence length.

For the Bi2Sr2CaCu20~ or Bi2Sr2Ca2Cu30 samples,
most studies of excess conductivity have revealed the
dominance of 2D fluctuations. ' ' This observation is
remarkably different from that of the Y,Ba2Cu30 super-
conductors, in which the 2D-3D crossover is often
claimed to be present. Balestrino et al. " suggested the
presence of 2D fluctuations. Using the Lawrence-
Doniach theory, which can be applied to the 2D-3D
crossover, Ravi et al. ' reported a similar result with the
110-K polycrystal and Vidal et al. ' with the 80-K phase
polycrystal. Wnuk et al. ' also observed the 2D fluctua-
tions in both the Pb-doped 80-K phase and the Pb-doped
110-K phase single crystals. However, for the single
crystal of Bi2Sr2CaCu20, Mandal et al. ' reported a
conflicting result by claiming that the 2D-3D crossover is
present.

Conflicting interpretations of the excess conductivity
may come from the difhculty of assessing the intrinsic
properties of the samples. Different choices for the
mean-field transition temperature T, "and of the temper-
ature range of fluctuations may yield such conflicting ex-
planation when assessing the conduction mechanism.
The best-fitted parameters for T, " and the coherence
length g', in order to reproduce observed excess conduc-
tivities, are often physically meaningless and thus are not
reliable. For a valid claim, one must be careful in choos-
ing such parameters in order to find a proper conduction
mechanism.

We measured the conductivity of a high quality
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BizSrzCaCuzO single crystal prepared by the self-Aux
method with a CuO-rich environment. ' We applied the
Aslamazov-Larkin (AL), the Lawrence-Doniach (LD)
and the Maki-Thompson (MT) theories to analyze the
rounding near the transition. The zero-resistance transi-
tion temperature T, of this superconductor is 79 K,
and the normal resistivity p(T=245 K) is 3.97X10
0 cm, which is smaller than others. ' ' This proves that
the quality of our single crystal is excellent. In the
present analysis we obtained T, ", the normal conductivi-
ty, the characteristic length, and the exponent associated
with the dimensionality of transport by performing a re-
markably consistent fit to our observed data. For further
confirmation, we examined conduction due to fIuctua-
tions by using the values of previously investigated fitting
parameters. Contrary to the report of Mandal et al. ,

'

our study of the BizSrzCaCuzO„single crystal clearly re-
veals a definitive 2D conduction mechanism with the ab-
sence of the 2D-3D crossover.

II. A BRIEF REVIEW OF THEORIES FOR ANALYSIS

ho.2i3=(e /16Rd )t

hcr3t3=[e /32irig(0)]t

(2)

where d is a two-dimensional characteristic length, g(0) is
a zero-temperature coherence length, and t is the reduced
temperature, t=(T T, ")/T, ".—

Lawrence and Doniach considered a situation in
which conduction occurs mainly in two-dimensional
planes and where these planes are coupled by Josephson
tunneling. The excess conductivity is given by

—1/2
2$, (0)

d

2

5o L~= t 1+e
(4)

There exists a 2D-3D crossover temperature T„
T, = T, "exp I [2$,(0)/d ] ]; for T )T„ the Lawrence-
Doniach theory reduces to the 2D Aslamazov-Larkin
theory, and for T(T„it leads to the 3D theory.

Maki and Thompson ' corrected the Aslamazov-
Larkin theory by considering indirect effects for the de-
cay of the superconducting pairs into quasiparticles, and
vice-versa. The quasiparticle contribution to the conduc-
tivity during the breaking and reformation of the Cooper
pairs is resolved by strong inelastic scatterers and by
pair-breaking interaction. The Maki-Thompson correc-
tion, including the indirect effects described above, is
given by

The total conductivity o. is given by the sum of the
normal conductivity o.„and the excess conductivity Ao. ,

o. =o.„+ho. .

For computing Ao, Aslamazov and Larkin' took into
account the electric-field acceleration of the short-lived
superconducting electron pairs which form above T, .
The functional form of this excess conductivity varies
with the dimensionality of superconductivity,

where 5=(TM& —T, )/T, is the reduced tempera-
ture shift induced by pair-breaking interactions. This
correction term is then added to the 2D or 3D term of
Aslamazov-Larkin theory to compute the excess conduc-
tivity.

Mean-field approaches fail in a region near T, "where
thermal fluctuations become considerable. This tempera-
ture range can be obtained by the so-called Ginzburg cri-
terion. Fluctuations of superconducting order parameter
4 become larger than 4 itself when

4( TMF)3
~
T T"—

~

( 1.07 X 10
H, ~(0)

with a=A, /g, A, = penetration depth, and (=coherence
length. For conventional superconductors, the Ginzburg
criterion is

~
T T, "~ (—10 K. But the high values of

T, " and ~ in high-T, superconductors cause the
Ginzburg-Landau theory to break down within 0.1 K or
more of T

III. RESULTS AND DISCUSSIONS

The functiona1 form of the total conductivity of the
Aslamazov-Larkin theory is

o(T) = [1/( AT+B)]+Ct
where C=e /(16irtd ) for 2D, or C=e /[32irig(0)] for
3D. The exponent x is 1 for 2D and —,

' for 3D.
Since Ao. does not vanish even well above the transi-

tion temperature, one must fit o. to various theories not
only with the parameters which appear in the expression
of Ao. but also with the parameters 3 and 8 for a rela-
tively wide range of temperatures covering a normal-state
region. The initial values of A and B for the normal-state
conductivity were obtained by fitting the experimental
value of o to 1/( AT+8) for temperatures from 125 to
245 K. The lower bound of temperature for the whole
fitting region of o. was chosen to be 84 K at which a11 the
free fitting parameters were found to be stable. These pa-
rameters were observed to be not so sensitive to the
choice of the upper bound of the fitting region.

We first fitted o to Eq. (7). The results of fitting pa-
rameters from this fit are shown in Table I. The best ex-
ponent x after five-parameter fitting was found to be 1.06.
This is far from the value of —,

' for the 3D Aslamazov-
Larkin theory, but very close to 1 for the 2D theory. En-
couraged by this result, we fitted our experimental data
to the exact 2D Aslamazov-Larkin theory with x = 1, in
the same manner as discussed above. This result is
shown in Fig. 1. Since x was already determined, the
remaining four parameters A, B, C, and T, "were to be
carefully adjusted. The values obtained for d and T, "
are 12.6 A and 81.S K, respectively, as shown in Table I.
The two-dimensional characteristic length d is larger
than the thickness 4.5 A of the conducting double CuOz

0
planes, but smaller than the c-axis unit-cell size 30.7 A
for BizSrzCaCuzO . Superconductivity occurs mainly in

0
the region within -4 A from the double CuOz layers, but
does not extend its range of transport to the neighboring
conducting layers. Encouragingly, T, " obtained from
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TABLE I. The results of fittings. y =(1/X) g, (o —cr,„~);, N is the total number of data points

used for the fit.

2D AL theory
3D AL theory
'exponent-AL
MT theory

'LD theory

2 (10 Qcm/K)

9.39
8.95
9.48
9.49
9.42

B (10 ' Qcm)

1.80
2.50
1.80
1.80
1.80

C (ncm)

81.51
82.90
81.34
81.56
81.68

TMF (K)

81.51
82.90
81.34
81.56
81.68

1.373
2.153
1.367
1.376
1.376

'AL exp: fitting to the Aslamazov-Larkin theory using the exponent of t in the theory as a free parame-
ter, the result of fit, x =1.06.
MT reduced temperature shift 5=7.85.

'LD coupling strength I = [2$,(0)/d ] =4.06 X 10

our fitting procedure is higher than T, . In addition,
we found that T, " is neither a half-resistance transition
temperature nor the temperature of the inflection point of
temperature to resistivity.

We also fitted our resistivity data to the 3D
Aslamazov-Larkin theory with x= —,'. The result was

poorer than the fit to the 2D Aslamazov-Larkin theory.
We obtained the zero-temperature coherence length g(0)
of 1.36 A, which is much smaller than half the distance
between the conducting CuOz layers. This unreasonably
small coherence length ruled out the validity of the 3D
thermal fluctuations of the superconducting order param-
eter for explaining the excess conductivity. We now ex-
amine the Maki- Thompson effect by considering the
correction term of Eq. (4), which is to be added to Eq. (7).
Our result was almost the same as the 2D Aslamazov-
Larkin theory fit discussed above. The Maki-Thompson
correction was found to be in the order of 10, com-
pared to the 2D Aslamazov-Larkin term. Thus the
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FIG. 1. The excess conductivity fit of Bi2Sr2CaCu20„ to the
mean-field theories in the temperature range from 84 to 245 K.
All the other fittings have almost same as 2D fit. However,
their fitting parameters are nonphysical. (Details discussed in
the text; filled circle=experimental data, line=2D fit. )

Temperature (K)
FIG. 2. The calculations of total conductivity using the pub-

lished values of g and d. The 2D conduction is obvious for the
excess conductivity of Bi2Sr2CaCu20„. (hollow
circle=experimental data, lines=calculated by using the exper-
imental values). (a) the 2D Aslamazov-Larkin theory: (i) d =5
A, (ii) d=12 A, (iii) d=30.7 A. (b) the 3D Aslamazov-Larkin
theory: (i) g, =0.45 A, (ii) $,„=14 A, (iii) $„=14 A, T, "=82.9
K.
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Maki- Thompson effect is negligible compared to the
dominant 2D thermal fluctuations leading to the nu-
cleation and decay of superconducting droplets which ex-
ist above T, in Bi2SrzCaCuzO„(BSCCO).

Finally, we examined the effect of the interlayer cou-
pling due to Josephson tunneling proposed by Lawrence
and Doniach. The results are shown in Table I. The
2D-3D crossover temperature T, =T, "expt[2$, (0)l
d ] I is 82.0 K. This crossover temperature is within the
Ginzburg criterion where the mean-field theories break

0
down. A zero-temperature coherence length g(0) =0.4 A
is too small to induce coupling in the c direction, but this
value is very similar to experimental result. So, we claim
that the absence of the 2D-3D crossover is intrinsic due
to high anisotropy of BSCCO systems. For this reason,
we conclude that the Lawrence-Doniach theory cannot
be applicable to Bi2Sr2CaCu20„.

Our findings above become more conclusive if we use
real experimental values for d and g instead of using them
as fitting parameters for the excess conductivity. We
reanalyzed the total conductivity of Eq. (1). We used the
mean-field transition temperature T, "=81.6 K obtained
from the best fitting. For this analysis, we calculated the
normal-state conductivity o„=l/(AT+B) in Eq. (1).
The coefficients A and B were obtained by fitting the nor-
mal region from 125 to 245 K. A was 1.00 X 10
Ohmcm/K and B, 1.55X10 Ohmcm. These initial
values of 3 and B were used to test each theories for Ao. .

First of all we compared our experimental data to the
2D Aslamazov-Larkin theory. We estimated the two-
dimensional characteristic length d in Eq. (2), based on
the structural characteristics of Bi2Sr2CaCu20„. It is an
important physical quantity in the 2D theory. We be-
lieve that the value of d should be at least greater than
the thickness of the double Cu02 layers -4 A for this su-

perconducting material. However this should not be
greater than the c-axis unit-cell length of 30.7 A (Refs. 24
and 25) because in this case the conduction of Cooper
pairs extended to the next layers, and gives 3D transport
properties not 2D. This is obvious from Fig. 2(a), where
we find that the excess conductivity is originated from
the 2D thermal fluctuations with the range of d men-
tioned above. This is a reasonable result if we consider

negligible coupling to the c direction of the superconduct-
ing electrons from the main conduction layers. We calcu-
lated also the excess conductivity by assuming the 3D
fluctuations as a main cause of this conductivity. We
used the coherence length ( in the Eq. (3) with the pub-
lished values, of g, (0.45 A), g,z(27 A) and their aver-
age. However, as seen in Fig. 2(b), the data from the 3D
theory deviate considerably from the experimental value
for both of the averaged and anisotropic values of g. This
3D theory does not fit even for T, "=82.9 K, which is
the result of the 3D best fit.

IV. CONCLUSIONS

We measured the conductivity of the Bi2Sr2CaCu20
single crystal and discussed the role of the thermal fluc-
tuations of the superconducting order parameter on the
excess conductivity near the resistive transition. We first
analyzed the excess conductivity by fitting the mean-field
theories and by applying the Ginzburg criterion based on
rigorously self-consistent choice of parameters. Contrary
to the previous work, ' the excess conductivity of this
single crystal was found to be best fitted by the 2D
Aslamazov-Larkin theory with the absence of the 2D-3D
crossover. Our values for various physical parameters
were not only self-consistent but also within well accept-
able ranges. We noted that the interlayer coupling by
Josephson tunneling leads to a very small value of coher-
ence length at zero temperature, and thus the Lawrence-
Doniach theory is not applicable for this highly aniso-
tropic superconductor. We also found that the Maki-
Thompson correction to incorporate the additional
effects of pair fluctuations is negligibly small. We made
an additional analysis by applying the measured physical
quantities for the parameters from a previous fitting.
From this result, we are confident that conclusions made
above are valid for the Bi2Sr2CaCu20 single crystal.
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