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Tilted and curved vortices in anisotropic superconducting films
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The shapes of the Abrikosov vortices and of the magnetic-field lines in c-oriented superconducting
slabs or films in a tilted magnetic field B, are calculated from anisotropic London theory. In thick slabs
for not too small 8, )&8„ the vortices and field lines have the same tilt as 8, apart from small devia-
tions near the surfaces. However, in thin films the vortex lines are nearly straight and perpendicular to
the surface even when the field lines are strongly tilted or curved by a high current density. Each field
line can thus cross many vortex lines.

The discovery of high-T, superconductors (HTSC)
with pronounced anisotropy caused by their layered
structure and with interesting equilibrium and pinning
properties of the Abrikosov fiux-line lattice (FLL) has re-
vived numerous experimental techniques. At the surface
of HTSC, the FLL is observed by decoration with "mag-
netic smoke"' and the penetration of magnetic Aux by
the Faraday effect in a magneto-optic layer on the Aat
surface. Bulk experiments measure the magnetization
and its change with time (fiux creep) or the nonlinear
current-voltage curves revealing features of Aux Aow and
of pinning and depinning of Aux lines which in HTSC
may occur by thermal activation. Other experiments
measure the complex ac susceptibility, or the dissipation
and frequency change of HTSC performing tilt vibration
in a dc magnetic field, ' or the torque exerted by the an-
isotropic magnetization. ' In many of these experiments
the HTSC is a Aat monocrystalline platelet or a thin film
with the crystalline c axis perpendicular to the Aat sur-
face.

This paper presents the slope and curvature of the Aux
lines (vortex lines) and of the magnetic-field lines in such
Aat HTSC. The shape of the magnetic-field lines inside
the specimen in general does not coincide with the vortex
shape and in principle can be measured by small-angle
neutron scattering. The curvature of the Aux lines
inAuences pinning by the misalignment between Aux-line
core and linear or Aat pins.

The theory of tilted vortices in thin and thick films
near the upper critical field B,2,

' where the linearized
Ginzburg-Landau theory applies, is discussed in an excel-
lent review by Thompson. " Here I shall use anisotropic
London theory, which for HTSC applies to the more real-
istic range B «B,2. This means that effects on the
length scale of the coherence length (or vortex core ra-
dius) g=g, b will not be considered. Since we are interest-
ed mainly in the tilt of the vortex cores and field lines, the
periodic spatial variation of the internal field and of the
external stray field (caused by the magnetic monopoles of
the Aux-line ends and depending on the effective penetra-
tion depth 2A, /d) will be disregarded; this is allowed for
vortex spacing a & vririax(A, , 2A, /d ) and uniform tilt. For
larger a the stray field modifies the elasticity of the FLL
near the surface' and the xy dependence of the internal
and external 8 becomes important (x and y along the sur-

face, z along the c axis).
For the present purpose it su%ces to consider the

linear response of the FLL with respect to the parallel
component 8, of the applied 8, =(8„0,8, ). Nonlinear
results may be obtained from the general solution B(r) of
anisotropic London theory given in Ref. 13. The linear
elastic response of the FLL in anisotropic superconduc-
tors with B along c has a large range of validity' if dis-
tortion wavelengths smaller than the penetration depth
A, =i,,b are considered, namely, ~tanO~ &&I, where O is
the angle between the tilted Aux line and the c axis and
I'=A, , /A, =g/g', is the anisotropy ratio (I =5 for Y-Ba-
Cu-O, I ) 60 for Bi-Sr-Cu-Cu-0). This large range of va-
lidity follows also from the explicit treatment of layered
HTSC (Ref. 15) and from a scaling concept. '

To find the slopes of vortices and field lines, I calculate
the vortex displacement u(z) and the smooth internal
transverse field B„(z) inside a fiat infinite superconductor
( —d /2 & z & d /2). Due to demagnetizing effects 8,
penetrates completely, and the local slope of the field
lines is 8 (z)/8, . Thus the shape of one field line is
v(z) =8, ' fB„(z)dz Two .problems may be dis-

tinguished: (a) a superconductor in tilted applied field
B,=(B„O,B, ) yields odd displacements u( —z)= —u(z)
and even field 8 ( —z)=8„(z) with 8 (+d/2)=B, ; (b) a
superconductor carrying a transport current with density
J= [O,J(z),0] in perpendicular field 8, = (0,0,8, )

has even u ( —z) =u(z) and odd 8„(—z) = 8(z)—
with derivative 8'(z)=pP(z)=v"(z)8„, at the surfaces
one has 8, =8 (d/2) = 8„(—d/2) =p—oI/2, where
I= f ~z&2J(z)dz is the sheet current. '

Here the equilibrium case (a) will be considered. In the
current-carrying case (b) the Lorentz force density B,J(z)
has to be balanced, e.g. , by a constant frictional force
(drag) —gv =B,J(z) (v =drift velocity, g=volume
viscosity of the FLL). This balance implies that in the
stationary Aux-Aow state, the current density and field
curvature is spatially constant, J(z) =J=const,
8„(z)=pPz. If pinning of the FLL is considered, the re-
sulting u (z), 8 (z), and J(z) depend on the assumed dis-
tribution of the pinning-force density B,J, (z) and on the
magnetic history.

I consider first a thick (d ))A, ) isotropic fiat infinite su-
perconductor in tilted field (B,O, B, ) and disregard image
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vortices and elastic nonlocality of the FLL. The parallel
field 8, generates a Meissner surface field 8~(z) along x
and a shielding current JM(z) along y,

BM(z) =B,cosh(z/A. ) /cosh(d /2A, ),
JM(z) = (8, /poI(. )sinh(z/A, )/cosh(d /2A, ) . (2)

The surface current exerts a force per unit area B,B, /pp
1-on the Aux-line ends. This shearing force along x is ba-

anced by the elastic restoring force per unit area of the ti-
lted FLL, c44t where t =tanO=du /dz is the Aux-line tilt
and c~=B,H(8, ) the modulus for uniform tilt of the
FLL, ' H(B, ) is the thermodynamic magnetic field
which would be in equilibrium with the induction B,.
Thus, the Aux lines and field lines are straight with con-
stant tilt and slope (Fig. 1),

i =8,8, /poc q4
=8, /poH(8, ) . (3)
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For large fields 8, ))B,i(B„=poH„= lower critical
field) one has poH(B, )=B„and thus t=8, /B, =r, is

just the slope of the internal and external field. For small
fields 8, &B„one has H(B, )=H, i, and thus
1 =8 /8, &t =8, /8, . Thus, for 8, /8„ the slopes ofs cl s
the vortex lines and of the average field lines inside the
superconductor are smaller than the slope of the app ielied
field, but for B,»B,

&
the tilted field lines penetrate the

superconductor without change of slope; the supercon-
ductor is "transparent" to fields B »B,&.

I show now that consideration of the correct boundary
conditions and finite range A, of the vortex-vortex interac-
tion [the nonlocality or dispersion of c44(k)] modifies the
simple result (3) near the surface and in thin films. For
uniform tilt one has in general,

c~(8,8 ) =BH(8,8 )+ Ii F(8,8 ) II38 (4)

where F is the free energy of the FLL and 0 is the angle
between B and the c axis. In our example, B=B, and
8=0 (i.e. , 8

~~
c i~z). For 8 ))B„one has

F(B,O)=8 Ipo, thus the second term in (4) is much
smaller (proportional to the small magnetization) than
the first term, and the isotropic result (3) still applies.
For 8 «B, i one has F(B,O)=BH, i, thus
c~~=BH„(8)+BH,", (8}, which for I ))1 and Bllc is
much smaller than the isotropic value c44=BH, j since
H" is negative because the self-energy of the Aux linesc1

~ ~(0) is maximum for 0=0 and mmimum forc1
8=r//2. Explicit results for t(B, ) are given below.

The exact treatment has to account for the boundary
conditions. Since the stray field is unimportant when
a &ir max(A, , 2A, /d ) and the tilt is uniform, it suffices to
add the magnetic field of image vortices, which provides
that no current Aows through the surface. As a result,
the flux-line displacement u (z) and the perturbation
Bi(z) and formally also the Meissner field (1) and shield-
ing current (2), become Fourier series which have physi-
cal meaning only for ~z~

& d /2 (Fig. 1),

u (z) =oui~sin(Kz ),
8, (z) =QBx-cos(Kz ),

Ba"
/ / I/'I /g

Bg )&Bc]

~rg
/

B~=B g
d &(dp

48 ( 1)n
JM(z) =g Jx.sin(Kz), J~ =

Ppd 1+% A.

(&)—(7) the sums are over all
=( /der)(2n+1))0, n=0, 1,2, 3, . . . . In (7) J& was de-
rived «om (2). From (5) we see that the flux lines are per-
pendicular to the surface, g'(z =+d/2) =(), and the field
change (6) caused by the flux-line tilt vanishes at the sur-
face, 8

&
(z = +d I2)=0. The total transverse internal

field
FIG. l. Magnetic-field lines and vortex lines in a thick slab in

magnetic field B, &&8,
&

(left column), B,=B,l (middle column),
an ln ad in a thin slab with thickness d « do =min(A, ,a /m)/I (right
column). Top: Field lines through a slab in the inclined fie d.
Middle: Vortex lines (solid) and their images (dashed) for the
same cases as above. Some of the image surfaces are indicated
as dash-dotted lines. Bottom: Vortex lines (solid) and field lines
(dashed) in slabs carrying a transport current I in perpendicular
field B,. Here a spatially constant pinning force or drag force is
assumed. For clarity the figures at the right (d «do) are
stretched along z. uxu /(x1 K+A)+4t, (

—1)"I, d(A, +K ) . (10)

8 (z)=BM(z)+8, (z)

equals B, at the two surfaces. Linearizing the anisotropic
London field B(r) (Ref. 13) one obtains for our geometry,

8~=uxB,K/(1+K A, ),
which is independent of the anisotropy I . For the field
lines u(z) one obtains a Fourier series like (5) with



48 BRIEF REPORTS 6701

The vortex displacement u (z) is the linear response to the
Lorentz force density B,J~ exerted by the shielding
current J~(z). Minimizing the elastic energy

g[ ,'c4—4(K)K ux B—,Jeux ] one obtains

ux =JxB, /c44(K)K

Here c4~(K) =c4~(O, O, K) is the dispersive tilt modulus of
the FLL with a tilt which is constant in the xy plane and
periodic along z. In the London limit A. )&g, B «B,z
one has for B ~~c ~~z (Refs. 18—20) (as above, A, = A,,b),

c~(K)=(B Ipp) +I

1+E k k

u (z) = u psin( mz /d ),
up=4t, d I /a n ln(d/mg, ).,

(18)

(19)

or up =4t, d lm 1 . The maximum vortex slope is now
t =u'(0) =(4d'/~'1')t, «t, .

For the transverse field B (z) one obtains from (6), (8),
(9), and (15),

the applied field, but at a distance 1 «d from the sur-
faces they curve in order to hit the surface at a right an-
gle, u(z)=t, (z —le ") with x=(d/2 —z)/1 (for z)0).
For very thin films with d &1« a « m.A, , (15) gives
u~ ~E 4, thus,

(12) Bx =4B ( —1)"/dK(1+K A, )(1+K 1 ) (20)

2

(K)= ln
2I k +K +I k

Bs 1 cosh(z/1)B„z =B,+
cosh(d /21 )

cosh(z/A, )

cosh(d /2A, )

P=(4 p4/~p Ap, )(I 1nK+1/2) . (13)

In the limit I ~ oo the line tension (13) of a straight fiux
line stays finite. From (6), (9), and (11)follows

4t, ( —1)"

dK [1+(X +K )kBzf(K)]
(14)

with t, =B,/B, the slope of the applied field. The
Fourier coefficients ux. (14), Bx(9), and ux. (10) are the
central result of this paper. I will now discuss special
cases.

For not too small fields B,)2B,
&

one has Aux-line spac-
ing a « rrA, and kBz )&A, ' and (14) gives

ux =4t, ( —1)"Id(K +K 1 ),
u (z) = t,z —t, l sinh(z/1 )/cosh(d/21),

(15)

(16)

for ~z~ &d/2; (16) is obtained by evaluating the Fourier
series (5). The new length 1 is given by

1 I'2
a a

3.8I 3.8$
(17)

The results (15)—(17) apply to all thicknesses d ))g. For
not too thin films or slabs with d ))1=a/el, (16) means
the Aux lines are straight lines with the same slope t, as

in[1+K /(A, +kp)+
2K A,

with kBz=(4nBIC&p)' =(8m/&3a )'~ =3.81/a the
Brillouin-zone radius and k0 =kBz a cutoff radius,

g, =g/I, @p=h /2e the fiux quantum, and a the fiux-line
spacing. The first term in (12) originates from the in-
teraction between Aux lines, and the second term mainly
from the tension of isolated Aux lines. Due to the last
term in f(K) the tilt modulus (12) is slightly more general
than in Ref 19 and yields the correct limit
B~O, I ~~, k~O, which gives the finite line tension
P of a stack of pancake vortices along c for zero Joseph-
son coupling between the CuO layers. ' One has
P=c~4@p/B =@p(M„+d 0„/dO ), '

+ tsl 1 sinh(z/1 )
v z =t,z+

cosh(d /21)
A, sinh(z/A, )

cosh(d /2A, )

(21)

(22)

Since 1 «X, (21) means B (z) =B,=const. The
magnetic-field lines u(z) =t,z (22) go straight through the
specimen, but near the surface they exhibit a small dip of
width A, and relative depth l'/dA, «1, which originates
from the curvature of the Aux lines.

For small fields B, &B„(a&ark, ) the first term in

c&4(12) (originating from the vortex interaction) and the
unity in ux. (14) may be disregarded and one obtains

4t, ( —1)"k iiz
2 —2 2,

(23)
dK (A, +K )f(K)

Though the derivation of (23) assumes ~A, &a &&n.A, /2d
and thus d «A, , it yields the correct u and average B in
the bulk even for thick films with d ))A, ; (23) then gives
ux(15) and u(z)(16) with t, replaced by t and 1 by 1',

t = t, (~A la )'I[I 'ln(1"x)+-,' ] & t, ,

1'=X/(1+ I lnI /indi)' =1,/I

(24)

(25)

This means that for a )mk, d ))mk only a small fraction
of the transverse field B (0)/B, =t/t, «1 penetrates,
i.e., in the bulk both Aux lines and average field lines have
smaller slope t (24) than the applied field. The ratio of
these slopes coincides with the above estimate [below Eq.
(4)] tlt, =B,I[B„(O)+B,",(0)]o p. Note that in this
case the periodic variation of B,(x,y, z) can be large. In
fact it is the "bundling" of field lines along the vortex
lines which for a &mA, enhances the line tension (=tilt
modulus per fiux line) and thus decreases the tilt inside
the specimen, cf. the middle column of Fig. 1. Our ap-
proximation has thus a large range of applicability. The
stray field is negligible since in thick specimens the bulk
is far from the surfaces, and in thin films the field modu-

lation is small due to the large effective penetration depth
2A, /d.
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If the film is thin (d « I'=A, /I and a )mA, ) one has
the same solution u(z) =uosin(~z/d ) Eqs. (18) and (19),
as found above for d «a/mI and a «~A, . Thus in the
general thin-film limit d «do =min(A, ,a/n)/I the fiux
lines are sinusoidal with very small maximum slope
t = u '(0) =uovrld = [4d I /a vr 1n(d /erg, ) ]t, « t, .

In conclusion, for thick flat superconductors with
d »mX in not too small perpendicular field, B, & 2B,

&
an

applied transverse field component B,=t,B, tilts the flux
lines such that their slope coincides with that of the ap-
plied field. The resulting internal field lines have the
same slope. Near the two surfaces the flux lines curve
over a short length I =a/I ~ &&d in order to hit the sur-
face at a right angle, cf. u (z), Eq. (16). This vortex curva-
ture causes a weak dip in the transverse field component
B„(z) (21) and in the field lines v(z) (22). In small fields
the slope t of the flux lines and field lines falls below the
slope t, of the external field, and the length of the curved
section near the surface is l'=A, /I . Thus for arbitrary

B, this length do =min(A, , a/~)/I is small for large an-

isotropy I . The slope t follows also from the modulus for
uniform tilt c44 =BH+8 F/BO .

For thin films with d «do one has the interesting situ-
ation that the flux lines are practically perpendicular to
the film even when the field lines are strongly tilted and
just traverse the film. Applied to the case of a thin film
with transport current I (bottom of Fig. 1) this finding
means that the current J(z)=v"(z)B, /po is carried by
the curvature of the field lines, not the flux lines, which
are practically straight and perpendicular to the surface
even when the field lines curve strongly. At large current
densities each curved and tilted field line can thus cross
several vortex lines.
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