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Elastic dipole moments, originally devised to describe the interactions between defects in a continuous
medium, can also describe the interaction of nonpolar, nonspherical molecules in pure solids at low tem-
peratures. The lowest-energy orientation state of elastic dipoles on an fcc lattice corresponds to the ex-
perimentally determined crystal structure of CO, and N,. Mean-field theory predicts a first-order transi-
tion from an asymmetric ground state to a random-orientation excited state. We also examine the possi-
bility of a second-order transition involving symmetry breaking in tetrahedral molecules.

INTRODUCTION

Elastic dipoles were originally introduced as a model
for the interaction of two or more defects or impurities in
a bulk solid.1'? It is, however, also possible to extend this
model to the interaction between individual molecules in
a solid.

The elastic dipole moment Q is a measure of the extent
to which an object embedded in an elastic medium dis-
turbs the medium by deviating from sphericity towards
being a prolate (positive Q) or an oblate (negative Q)
spheroid. Unlike an electric dipole, the elastic dipole and
its field are symmetric about the plane perpendicular to
the generating object’s symmetry axis. The elastic
dipole’s symmetry properties therefore resemble those of
an electric quadrupole rather than an electric dipole. The
term dipole is used because a pair of symmetrically placed
point particles, considered to have both moved out from
the origin, generate the elastic dipole field, as well as
higher moments. There is nothing corresponding to a
negative point charge in elastic multipole theory.

The actual form of the field is as follows. An elastic di-
pole aligned with the z axis produces a displacement field
u=Q (2zZ2—xX—y¥)/r3, where Q is the elastic dipole
moment. The field, for positive Q, points away from the
source everywhere on the z axis, and towards the source
everywhere in the xy plane. There is no difference be-
tween the +2z and —z orientations of the source, which is
taken to have the symmetry properties of a spheroid.
Similarly, and of more relevance to the ground state of an
array of elastic dipoles in a fcc lattice, as discussed in the
next section, there would be no difference between, for
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example, the (1,1,1) and (—1,—1,—1) orientations for
spheroids or for N, or CO, molecules.

The displacement field u produces a strain field e,
which, in turn, in the simplest approximation, generates a
stress field o =K¢, where K is the bulk modulus of the
solid. The strain and displacement can then be combined
to give an interaction energy between two elastic dipoles.
For example, the energy of interaction between a pair of
dipoles oriented in the (1,1,1) and (1, —1, —1) directions
with a relative displacement of R =(X,Y,Z) is

U=47KQ?*2YZ —8/3(2X*—Y*—Z%]/R",

the interaction between a pair in the (1,1,1) and

(—1,1,—1) directions is
U=47KQ?%2XZ—8/3(2Y>—X*—Z?)]R">,

while other combinations of cubic body diagonal orienta-
tions give similar functional forms of the interaction en-
ergy U.

THE GROUND STATE

A face-centered-cubic lattice with lattice constant a
consists of four simple-cubic sublattices with the same
lattice constant. We designate the four sublattices as fol-
lows: sublattice A centered at (0,0,0), sublattice B cen-
tered at (0,a/2,a/2), sublattice C centered at
(a/2,0,a/2), and sublattice D centered at (a/2,a/2,0).
There are also four possible orientations, each along a cu-
bic body axis. They are designated as orientation a in the
(+1,+1,+1) direction, orientation b in the (+1,—1,
—1) direction, orientation ¢ in the (—1,+1,
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—1) direction, and orientation d in the (—1,—1,
+1) direction.

In all that follows, all the molecules of a sublattice will
be assumed to be in the same orientation. This will allow
us to define system states by assigning one of the four
orientations to each of the four sublattices. For example,
the system state aaaa has all the molecules in all four sub-
lattices in orientation a; while the system state abcd has
all the molecules on the A sublattice in the a orientation,
all the molecules on the B sublattice in the b orientation,
all the molecules on the C sublattice in the ¢ orientation,
and all the molecules on the D sublattice in the d orienta-
tion; and the acdb system state has all the molecules on
the A sublattice in the a orientation, all the molecules on
the B sublattice in the ¢ orientation, all the molecules on
the C sublattice in the d orientation, and all the molecules
on the D sublattice in the b orientation.

Of the 256 possible system states, there are 8 which
share the lowest energy. The 8 states subdivide into two
families of 4, with states within a family obtainable from
each other by simple translation from one sublattice to
another. Each family therefore corresponds to one crys-
tal structure, with the separate states defined around
different origins. A change from one of the states within
a family to another which did not involve a translation
would require changing the orientation of all four sublat-
tices and should be highly unlikely at low temperatures.
It is therefore appropriate to treat the states within one
family as distinct, even though they all represent the
same crystal structure.

The lowest-energy states are as follows, with members
of the same family enclosed in square brackets

[acdb,bdca,cadb,dbac];[ adbc,bcad,cbda,dacb] .

Each family represents a crystal structure with some ro-
tational symmetry, but no reflective symmetry whatever.
Reflection about a plane for a state in one family gen-
erates a state in the other family. The ground-state crys-
tal structures are therefore a pair of enantiomers. Figure
1 gives a view of the elastic dipole at the origin at its 12
nearest neighbors from a direction slightly above (closer
to the z axis) the (1,1,1) direction.
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FIG. 1. View of the elastic dipole at the origin and the 12
nearest neighbors from the (1,1,V'2) direction for the acdb
(ground) state.

The energy per molecule of these states is
—327V2KqQ%/a? ,

where ¢ =0.54 is a correction factor due to the inclusion
of non-nearest neighbors.

The crystal structure of CO, (Ref. 3) and N, (Ref. 4) at
very low temperatures has been found experimentally to
be face-centered cubic with the molecules oriented along
cubic body diagonals with the same distribution of orien-
tations among sublattices as in the family containing the
acdb system state. In addition, with the B, C, and D sub-
lattices in the ¢, d, and b orientations, the potential at the
origin for this model is

(—3277"/§KqQ2/a3)(P1xp1y +p1yplz +plzp1x ) ’

for which the a orientation (p,,=p,,=p,,=+ 1/V3)
has the overall minimum energy. We therefore take acdb
as the reference ground state for the mean-field theory.

MEAN-FIELD THEORY

We define a promotion parameter s to describe the
behavior at finite temperatures of a system which is in the
acdb state at zero temperature. s is the relative probabili-
ty that molecules of one sublattice be in a different orien-
tation from the ground state. System states will have rel-
ative probabilities of occupation relative to the ground
state of s”, where n is the number of sublattices which
have molecules in orientations different from the ground
state. The parameter s ranges from 0, in which case only
the ground state is occupied, to 1, which gives all system
states an equal probability of being occupied.

A molecule at the origin in the a orientation has an en-
ergy of

E=(Eo/W)[—q+(—5¢+1)s+(—3q+1)s?
+(9¢ +11)s°],

while a molecule at the origin in one of the other orienta-
tions has an energy of

E=(Eo/W)[(q/3+%)+(5¢/3+1)s
+(g+2)s2+(—3g+%)s°],

where E,=647V2KQ?/a? W=1+9s+27s2+27s>, and
the g-independent terms in the energies are from surface
terms that arise if two or more sublattices are in the same
orientation.
This gives an energy gap of
A=(E /W)[(4g/3+ L)+ (209 /3+ J1L)s

216

+(4g+ L)s?—(12g + 2L)s°]

216
which yields the self-consistent equation for the promo-
tion parameter
§ =g ~A/KT
s is single valued when kT <0.185E,, triple valued when
0.185E, <kT <0.228E,, and equal to 1 when
kT >0.228E,. A domain simulation gives a first-order
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FIG. 2. The promotion parameter s as a function of tempera-
ture, including the location of the first-order transition.

transition at kT =0.2247E,. s rises from O to 0.124 be-
fore the transition, and has a value of 1 everywhere above
the transition. The dependence of s on kT /E, as well as
the location of the transition, is indicated in Fig. 2.

For both CO, and N,, the elastic dipole moment Q has
the value Q =pr3/2, where r is the distance from the
center of the molecule to an end. The crystal structures
of the two solids,>* together with the bulk modulus of ice
at 50 K,> K=1.128X10'"° N/m? give 0=0.115 A?,
E(,=1.530 meV, and T, =0.2247E, /k=4.0 K for CO,;
and Q =0.0734 A %, E,=0.596 meV, and 7,=1.56 K for
N,.

SECOND-ORDER TRANSITIONS

Of the common tetrahedral molecules, none of the car-
bon tetrahalides have face-centered cubic structure,®”?
while methane does.”'® The orientation of the methane
molecules is undetermined.”!® A deformation in the

threefold degenerate bending mode produces an elastic

dipole moment of

M+4m r2
V' M?*+8Mm +24m?

where r is the distance from the central atom to one of
the peripheral atoms, M is the mass of the central atom,
m is the mass of a peripheral atom, and 7 is the normal
coordinate. Methane yields a value of E=—gE,
= —0.038 eV/A 27 for the elastic dipole energy per mol-
ecule, which compares with the vibrational energy of

(3M +4m)(M +4m) 1

M?*+8Mm +24m? 2

(Ref. 11). The elastic dipole in this case is clearly too
weak to produce symmetry breaking.

Q::

maw*n?=17.723 eV /A%’

CONCLUSIONS

Direct application of the simplest version of the elastic
dipole model to pure solids, in which individual mole-
cules are treated as spheroids immersed in an isotropic
elastic medium, with all the molecules on a sublattice
possessing the same one of four allowed orientations,
correctly predicts the ground-state orientation of nonpo-
lar, nonspherical molecular solids with a face-entered-
cubic lattice. It predicts first-order transitions at temper-
atures roughly an order of magnitude smaller than those
of the actual first-order transitions for the substances ex-
amined. Comparison of the elastic dipole and the vibra-
tional energies for methane suggests that a symmetry-
breaking second-order transition due to the elastic dipole
interaction almost certainly does not take place. This
would still be the case even if the elastic constant K were
increased to produce correct temperatures for the first-
order transitions, or intermediate states and the zero-
point energy were included in the calculations, which
would have the effect of lowering the first-order transi-
tion temperature for a given value of K.
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