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SuperAuid helium in fully saturated porous media
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The flow of superfluid He through spongelike media at full saturation is modeled by the flow of
current through an Ohmic network with random resistors. Solving Kirchhoff's equations leads to the
conclusion that the superfluid critical point is a percolation threshold, with critical exponent 1.7. The
fractal dimension of the percolating cluster is 2.6. These lead to a specific-heat exponent a= —5.4, by
the Josephson hyperscaling relation. Existing experiments apparently do not cover the critical region.
Instead, they measure "mean-field" exponents, whose values for Vycor, aerogel, and xerogel can all be
reproduced by choosing appropriate distribution functions for the resistors.

There have been many experimental studies of
superfluid He adsorbed in the spongelike media Vycor,
aerogel, and xerogel, with porosities ranging from 30 to
96%%uo.

' The superfluid density and specific heat have
been measured, for wide ranges of coverage, from a few
atomic layers to full saturation, and for wide ranges of
temperature below the X point of bulk liquid helium. The
superfluid transition temperature is found to decrease
with decreasing covera'ge, extrapolating to zero at a
nonzero critical coverage. Thus, superfluidity disappears
below a critical coverage, even at absolute zero. Near the
critical coverage, the superfluid exponent has the ideal-
gas value /= 1. When the coverage is increased from the
critical value, however, different physics takes over at
some point, for g is observed to cross over to a different
value. At full saturation, the g for Vycor, and xerogel are
respectively 0.67 and 0.89. For aerogel, the values are
0.80 according to Ref. 2, and 0.75 according to Ref. 4.
For comparison, /=0. 672 for the bulk liquid. In an ear-
lier work, we demonstrated the disappearance of
superfluidity at absolute zero in a dilute hard-sphere Bose
gas in random potentials, due to boson localization, i.e.,
pinning of the Bose condensate by the random potentials.
In this paper, we consider the full-saturation case, and
propose a model that can explain some of the observa-
tions in that regime.

We model the flow channels in the spongelike medium
as bonds in a cubic lattice, with channel radii chosen at
random from a given distribution. We have considered
two types of distributions: a Gaussian distribution with
adjustable center and width, and a uniform distribution
with adjustable lower and upper cutoffs. In either case,
the medium is characterized by two parameters.

In a long channel of radius r filled with liquid He, the
superfluid transition temperature T, (r) decreases with r,
for large r, according to a power law:

1 —T, (r)/T =(r/ro)

where q =2, ro=5 nm, and T„=2.172 K is the bulk

transition temperature. We use a simple interpolation
formula for all r: T, (r)/T =1—[I+(r/ro)~] '. The
superfluid density in a channel of radius r at temperature
T, denoted by p, (r, T), is of course zero for temperatures
T) T, (r) For .0.9& [T/T, (r)] & 1, we take

p, (r, T) =It. i [1—T/T, (r)]», (2)

This looks like Ohm's law with current density j, electro-
static potential P, and electrical conductivity p, . Thus,
each bond can be replaced by a resistor, and the
superfluid density of the medium corresponds to the con-
ductivity of the network. Because of the close analogy,
we shall freely use the language of the electrical analog
when convenient.

After assigning the bond radii, and with that the elec-
trical resistances, we calculate the conductivity of the
network by solving Kirchhoff's equations numerically,
using Gauss-Seidel iteration with (simultaneous overre-
laxation) SOR. We use lattice sizes 10 and 20, with
some calculations done on 30 and 50 lattices. In the fol-
lowing, we summarize the insight gained from the com-
puter simulations, illustrated with plots of quantitative
results, and conclude with some critical remarks.

where /=0. 67 is the bulk critical exponent and K, a con-
stant. Outside of the indicated interval we use a polyno-
mial form that reduces to 1 —K2T near T =0, and joins
smoothly to the formula above. Our results are not sensi-
tive to how we interpolate. The channel lengths are
effectively infinite. How realistic this assumption is will
be discussed later.

The momentum density for superfluid flow is given by
j=p, v, +p„v„, where the two terms refer to the
superfluid and normal fluid, respectively. Assuming that
all channels are so small that the normal fluid is pinned,
we put v„=0. Thus, writing v, =V/, where P is propor-
tional to the superfluid phase, we have
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Imagine that a voltage (superfluid phase) difference is
established between the top and bottom plates of the lat-
tice, taken to be equipotentials. At high temperatures all
channels are closed, and the network is nonconducting
(no superfluid Row. ) As the temperature is lowered, some
channels become conducting, but the whole network
remains nonconducting until a percolating cluster of
open bonds connects the top to the bottom plate. The
percolation threshold To (which is not the T, of the ex-
periments) is the true critical point for the onset of
superAuidity. The behavior near this threshold, in a finite
lattice, has a complicated structure. When the tempera-
ture is decreased, opening up a single bond can appreci-
ably enlarge the percolating cluster. As a result, the
superAuid density exhibits a series of bumps with discon-
tinuous derivatives. The slope at the beginning of each
bump corresponds approximately to the bulk critical ex-
ponent g, which is an input to the calculation. This
behavior is illustrated in Fig. 1(a), where the cluster size,
as well as the fraction of open channels, are also shown.
When we go to a larger lattice, the bumps in the
superAuid density tend to be smoothed out. The critical
exponent go for an infinite lattice can be approximately
calculated by averaging over these bumps. We obtain in
this fashion go= 1.7, which agrees with numerical results
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0.8

on percolation in 3D.
The specific heat at percolation threshold behaves like

C=(A /a)i To —Ti +B,
where 2 and B are constants. Josephson hyperscaling
predicts god = (2—a )(d —2). Using go

= l. 7 and
d =d&=2. 6, we obtain for the specific-heat exponent
u= —5.4, which would make it difficult to detect the
singularity experimentally. Specific-heat peaks were ob-
served in aerogel at full saturation in Ref. 3, which also
reports slight shifts of To in different samples of aerogel
cut from the same block. The latter can be explained by
the dependence of the percolation threshold on pore dis-
tribution. The peaks observed in Ref. 3 are probably due
to crossover to a "mean-field" region discussed below, the
true critical region being buried in the sharp rise of the
specific heat.

When the temperature is decreased from the percola-
tion region, the system crosses over to a mean-field re-
gime, in which the superAuid density has a different
power-law behavior, with exponent g. This is shown in
Fig. 1(b) and the process is continued in Fig. 2. The
mean-field region corresponds to that studied extensively
in experiments, while the crossover region corresponds to
the "tails" in the- data that have always been ignored.

The difference between the mean-field and the critical
regions is revealed by measuring the fractal dimension d&
of the percolating cluster in the computer. As shown in
Fig. 3, d& =2.6 at the percolating threshold, which agrees
with previous numerical results. ' With decreasing tem-
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FIG. 1. Panel (a) shows the superAuid density from the com-
puter simulation as a function of temperature, very near the per-
colation threshold. Curve 3 shows the percolating cluster size,
and curve 8 shows the fraction of open bonds. Lattice size is
20, with a Gaussian distribution of bond radii. Panel (a) is an
enlargement from (b), whose temperature range is shown in (b)
enclosed in curly brackets. The very beginning of the mean-
field region now comes into view. Curve C is the power-law fit
that determines g and T, .
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FIG. 2. Panels (a) and (b) continue from Fig. 1(b). The tem-
perature interval covered in the previous region is enclosed in

curly brackets. In (a) the mean-field region is fully visible, to-
gether with the power-law fit. In (b) the power-law fit becomes
indistinct.
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FIG. 3. Fractal dimension df of the percolating cluster as a
function of the fraction of open bonds p. The latter was given as
a function of temperature in curve B of Fig. 1(a). The simula-
tion was done in a 50' lattice.
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perature, df rapidly rises toward 3, when the mean-field
region is established. Almost all sites are then connected
to the percolating cluster (though not necessarily all
bonds are open. ) In the mean-field region, a continuum
approximation gives

p, (T)= J drP(r)p, (r, T), (5)

where P(r)dr is the probability that the radius of a chan-
nel lies between r and (r+ dr).

We determine g by introducing an effective transition
temperature T„plotting the computed superAuid density
against T, —T in a log-log plot, and adjusting T, until a
straight line obtains for a range deemed significant. The
method involves subjective judgment, but it is precisely
that used on the experimental data. " Since g is not asso-
ciated with critical phenomena, there is no reason to ex-
pect it to have universality. It depends strongly on the
distribution function of the radii. The discrepancy in the
aerogel results between Refs. 2 and 4 might be due to
differences in distribution functions. In Fig. 4(a), we plot

g for a Gaussian distribution as a function of the width of
the distribution. Figure 4(b) shows that for a uniform dis-
tribution, as a function of the upper cutoK The observed
values for Vycor, aerogel, and xerogel can all be repro-
duced.

Examples of the log-log plots used to determine g are
shown in Fig. 5, where we include three choices of the
distribution function that can reproduce the experimental
data for Vycor, aerogel, and xerogel, respectively. In the
following, we comment on the comparison with experi-
mental data.

Vycor is known to have relatively uniform pore radii,
which are small compared to channel lengths. " The as-
sumptions in our model are tailored for this case, and we
can fit both g and the crossover region rather well. It is
not surprising that g lies close to the bulk value, while T,
does not. In the extreme case where all pores sizes are
exactly the same, the percolation cluster would be sa-
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FIG. 5. Log-log plot of superAuid density against T, —T,
where T, has been adjusted to yield the best straight line in the
mean-field region. The distribution functions are chosen to
reproduce g. The curves have been displaced vertically relative
to one another, for visual comparison of the slopes. The dots
are experimental points read off the graphs in Ref. 2.

FIG. 4. The effective exponent g as a function of parameters
that define the disordered medium. The crosses are from com-
puter simulations, and the curves are obtained using the contin-
uum approximations [Eq. (5)]. In (a) the radius distribution is a
Gaussian centered at 100 A, with variable width in angstroms.
In (b) the distribution is uniform from zero to a variable upper
cutoff in angstroms.
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turated as soon as it occurs, and g would have the input
bulk value. The transition temperature, however, would
be depressed by the finite pore size.

Aerogel has fractal structure, and the pores are not
particularly channel-like. ' Our best chance is to choose
a broad distribution of radii. Not surprisingly, this
makes g different from the bulk value, but brings T,
closer to bulk value, because of the prevalence of large
pores. Although g can be fit by adjusting the width of the
distribution, the data show a wide mean-field region.

Xerogel is essentially collapsed aerogel, and has long
channels along which the radius varies, because small
offshooting branches have been pinched shut. ' Again,
we can fit g but not to the extent of the mean-field region.
A better model for this case might be to allow the chan-
nel to have segments of varying radii.

We feel confident that the fits for the aerogel and xero-
gel data can be fit, essentially perfectly, by introducing
more adjustable parameters. Our main purpose, howev-
er, is not to produce good fits, but to point out that exist-
ing experiments may have missed the true critical re-
gions, which should be governed by a universal critical
exponent of 1.7. To show that this is not ruled out by
present data, we show in Fig. 6 a log-log plot of the low-
temperature tails in existing data, which have been ex-
cluded in fits for the mean-field exponent. The "true"
critical temperature T, is adjusted for each medium so as
to obtain the best straight line.

Further studies are needed to clarify the nature of the
critical point, particularly concerning finite-size scaling,
and effects of thermal fluctuations.
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FIG. 6. Log-log plot of superfIuid density against T, —T,
where values for T„ the true critical temperature, are given in
parentheses. They are adjusted to give the best straight line in
the critical region. The data do not rule out a universal critical
exponent of 1.7. We obtained the 85, 95, and 98%%uo aerogel data
through the courtesy of M. W. H. Chan and J. Ma, and the 91
and 94% aerogel data, and the xerogel and Vycor data, through
the courtesy of J. Reppy and P. Crowell.
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