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Quantum calculation of giant magnetoresistance in layered magnetic films
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We compute the magnetoresistance of a step-potential model of an FeCr multilayer. We use a

Boltzmann-equation method incorporating exact quantum-mechanical wave functions obtained by a

transfer-matrix method. The only parameters required are the (spin-dependent) potentials and efFective

masses of the bulk materials, and the bulk and surface densities of point scatterers. Oscillatory magne-

toresistances of the order of several percent are obtained without spin-dependent scattering, due to
Fermi-surface necking effects.

In this Brief Report we give results for the magne-
toresistance (MR) in a simple model of an FeCr multilay-
er, which has been found experimentally' to exhibit a
large ("giant") MR. This effect has been observed in
many different systems, which suggests that it is not sen-
sitive to details of the band structure of specific materials,
so that a simple model based on free-electron-like band
structures might be adequate to explain the data semi-
quantitatively.

We model the multilayer by a potential function which
is constant within each layer, but which may depend on
spin. The system has Fe magnetic layers alternating with
Cr spacer layers, so if the Fe layers are aligned ferromag-
netically, the overall periodic unit consists of two layers.
This is the well-known Kronig-Penney model, for which
the wave functions can be calculated analytically. We
have developed a transfer-matrix scheme that gives the
exact result for an arbitrary number of layers, so we can
handle the antiferromagnetic case (a four-layer period), as
well as nonperiodic multilayers of arbitrary thickness.
We calculate the wave functions at a sample of several
hundred points on the Fermi surface for each spin, and
solve the Boltzmann equation to obtain the conductivity
parallel to the layer planes. The result depends on the
relative alignment of the magnetic layers, which is anti-
ferromagnetic (AF) at zero magnetic field (for suitable
choices of Cr layer thickness dc, ) and switches to fer-
romagnetic (F) at high field. The difference between the
F and AF conductivity results determines the MR.

The scattering kernel used in the Boltzmann equation
depends on the scattering mechanism assumed. We as-
sume a distribution of delta function scattering potentials
Vo 5(r —rsc) located at points rsc, both in the bulk
(where their density in layer L is pl ) and at the interfaces
(where their areal density at interface I is pt ). The
scattering probability from state k to a volume element
dk' is

Q(k, k')d k'=A' V()D (2') (d kFs/fiu)

xlgpllfk«I%i (zI)l'
I

+g pl. f ~Q~(z)gj, ,(z)~ dz]
0

where zl is the position of the Ith interface, D is the total

periodicity distance (the sum of 2 or 4 layer thicknesses
in the F and AF case, respectively), v is the velocity, and
d k„'s is the area of Fermi surface contained in d k'. We
have used the exact values of fk(zl) at the interfaces in

Eq. (1); interference effects can cause it to vary consider-
ably. The bulk term in Eq. (1) is an average over z and
varies much less; we have used /=1 for simplicity. The
relaxation rate ~k for state k is obtained by integrating
Eq. (1) over the Fermi surface. The in-plane conductivity
is an integral of the relaxation time over the Fermi sur-
face; if we denote the effective mass by m * and assume it
is the same for all layers,

o =o „=(2ir) e m* ' f (u k„rklv )d kFs . (2)

For notational consistency, we parametrize the bulk
scattering by

~OP L Sbulk (4)

so that the free parameters S„-,S,d, and Sb„)k control the
spin-independent, spin-dependent, and bulk scattering re-
spectively.

Most previous giant MR calculations have been based
on the semiclassical Boltzm ann-equation approach of
Sondheimer and Fuchs, ' in which reAection or refrac-
tion of electrons at interfaces is taken into account
through reflection and transmission coefficients (usually
free parameters, although they have also been calculated
from quantum scattering theory ). Our fully quantum-

The scattering probability due to interface I in Eq. (1)
is proportional to Vopl. In choosing a model for this
quantity, we note that interfacial roughness is found ex-
perimentally to enhance the giant magnetoresistance.
The scattering centers in this case are atoms situated on
the wrong side of the interface; the perturbation to the
potential at such an impurity site is the difference be-
tween the atomic potentials of the two materials. Within
our step-potential model, this is just the potential jump
AVI at a step I. Allowing also for interface scattering
due to impurities or lattice defects, which does not de-
pend on the potential difference, we thus parametrize the
interface scattering by

VopI =~s'+~sd(~ VI )
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mechanical approach goes beyond this in that it accounts
for interference between waves reAected at different inter-
faces. Interference effects are probably negligible for
large layer spacing d, but may be important for the
thinner (10—20 A) layers that have now been investigat-
ed experimentally. Quantum-mechanical calculations
have also been carried out by a tight-binding method for
clusters and sandwich structures, ' and by a more
abstract approach based on a Kubo formalism" and lead-
ing to a local or nonlocal' conductivity from which the
overall conductivity of the layered structure is obtained
by integration.

In the free-electron model, the electron density is relat-
ed to the Fermi energy Ez, Fermi wave vector k~ and po-
tential Vby

(G3

(b3

F+

TABLE I. The parameters used in the calculations. Only
one of S„and S,d is nonzero in each calculation. The overall
scale of the scattering strengths S is irrelevant; only the relative
values affect the MR. S„was chosen so S„/S,d =(A /2m *) .

m*
V

V

Vc,
bulk

S„
S,d

4m,—3.515 eV
—1.896 eV
—2.148 eV
0.358 (eV) A
0.946 (eV)2 A
1.0 A

N=(2') (4m/3)kz, Ez —V=(A /2m*)kz . (5)

In a free-electron model of a real material, N represents
the density of itinerant electrons, moving in a weak pseu-
dopotential determined by the core potentials and the
electrons bound in the cores. Thus the number of
itinerant electrons per atom need not be an integer—
these are plane wave states, which may include admix-
tures of both s- and d-like orbitals. In the present calcu-
lation we need to choose three potentials V~,+, V„,
and VGR, where + and —refer to the spin directions.
We have taken the relative values of these Vs from the
work of Inoue et al. ' Relative to the mean Fe potential,
these are V~,+ =+0.81 eV, Vc, =0.56 eV. To set the ab-
solute levels (i.e., the Fermi energy), we have chosen
N„+ to be 2 electrons/atom = 30 A . Setting the en-

0

ergy origin at EI;, this gives k~ = 1.93 A and
V + = —3.52 eV. The resulting values of all the poten-Fe
tials are given in Table I.

%"e have assumed the Fe and Cr layers are of equal
thickness d, and used values of d from 1.0 to 12.0 A. The
lower values are experimentally unrealizable, but note
that d can be scaled up or down by changing the assumed
itinerant-electron density. We show some sample Fermi
surfaces in Fig. 1; note that the left-hand (inner) sheets
are quite free-electron-like ( a circle sliced by horizontal
planes).

We use the conservative (intrinsically ( 1) definition

1/o (F)—1/o (AF)
1/o'(AF)

for the magnetoresistance. (Note that we use the tradi-

(c3

I

o,g ~ -) 1,0

FIG. 1. Cross sections of the Fermi surface for the (a) majori-
ty spin, (b) minority spin in the ferromagnetic configuration,
and (c) the antiferromagnetic configuration of FeCr, using

0
d =2.685 A (the point marked "la" in Fig. 2). The vertical axis
(k, ) is the component perpendicular to the layer planes, and k„
is parallel to them. The FS is a solid of revolution about the
vertical axis. In the repeated zone scheme, the leftmost piece is
a "lens" and the other pieces are undulating cylinders. The FS
is a screen dump from an IBM-PC program that calculates the
MR; anyone interested in a copy should contact the authors.

tional sign here: MR) 0 if the resistance increases with
field. ) The magnetoresistance result with only bulk
scattering and no interface scattering (Fig. 2) is easiest to
understand. The conductivities of + and —spins in the
F case, and the spin-independent conductivity in the AF
case, are only weakly dependent on layer thickness d.
The relaxation rate r ' is just proportional to N(E)
Sb„,k, where N(E) is the density of (final) states at the
Fermi level. The conductivity cr is proportional to nw,
where n is the electron density, so

o ~ n /N(E)Sb„]g

Both n and N (E) are larger for the majority spin than the
minority, but n differs more [in a free electron model,
N(E) ~k~ but n ~ kF] so o„+)cr„If o.~„(.per spin)
were exactly midway between these two, the MR would
exactly vanish; it can be seen from Fig. 1 that it is slightly
positive. This cannot be understood from a purely free
electron model, which predicts it to be negative. With a
perturbing potential, however, the circular Fermi surface
is distorted near the Brillouin zone boundaries (the hor-
izontal line k, =sr/D in Fig. 1) in such a way as to de-
crease its area and the density of states. Because the
periodicity D is larger (4d) in the AF case than in the F
case (Zd), the Brillouin zone is smaller, so the Fermi cir-
cle in Fig. 1(c) is chopped into more slices. This reduces
the density of states more in the AF case, so its conduc-
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FIG. 2. Conductivities (scale at left, arbitrary units) and mag-
netoresistance (scale at right) for the case of bulk scattering
(Sb„&„=0.358 eV'A, S„=S,d=0), as a function of layer
thickness d, assumed the same for all layers. The conductivities
for + spins in the ferromagnetic state are labeled F+, while the
AF o. is spin independent. Fermi surfaces at points labeled "la"
and "3"are shown in Figs. 1(a) and 3.

tivity is larger, giving a positive MR as seen in Fig. 2.
Another notable feature of Fig. 2 is the strong oscilla-

tion of the MR, especially for small d. Its origin can be
seen in the conductivity curves, which have regularly
spaced anomalies consisting of a minimum, a rapid rise,
and a maximum. The Fermi surface at the minimum la-
beled "la" in Fig. 2 was shown in Fig. 1(a). It can be
seen that the Fermi surface (which moves outward rela-
tive to the Brillouin zone as d increases) has just hit the
zone boundary k, =m /2d. The conductivity is a
minimum because the FS area is a rnaxirnum at this value
of d, as it is about to shrink to the undulating cylinder in
Fig. 3, corresponding to the point labeled "3" in Fig. 2.
The area has a minimum and begins to increase again
when a new lens pops into existence at k„=0 (Fig. 3),
leading to the conductivity maximum ("3") in Fig. 2.
The other anomalies in Fig. 2 have similar origins, except
that every second new lens forms at k =0 instead of

4 —3k, =m/D. The period (about b,d=0. 95 A ) is close to
the free-electron prediction m/2kF. Variations with this
periodicity Ad would of course not be directly observable,
although Ad can be made larger by assuming a smaller

effective itinerant-electron density. These oscillations
should not be confused with the oscillations in magnetic

4coupling that lead to antiferrornagnetic coupling in the
first place; we have assumed antiferromagnetic coupling
at all values of d. Most explanations of the periodicity
Ad of the coupling oscillations involve features on the
scale of 2m. /b, d in the bulk FS,' whereas in the present
context the FS itself depends on d.

We show in Fig. 4 the conductivities and MR when
there is spin-independent interface, as well as bulk, '

scattering. For large d, the interfaces become irrelevant
and the conductivities approach those in Fig. 2 (bulk
scattering only). For smaller d, all conductivities de-
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FIG. 4. Conductivities and magnetoresistance for the case of
spin-independent interface scattering (Sb„&„=0.358 eV A
S„=0.358 eV A, S,d =0). Notation is as in Fig. 2.
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FIG. 3. Fermi surface, as in Fig. 1(a) but for d =2.81 A.

FIG. 5. Conductivities and magnetoresistance for the case of
spin-dependent interface scattering (Sb„&k =0.358 eV A
S,d =0.358 A, S„=O). Notation is as in Fig. 2.
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crease due to interface scattering. There are still substan-
tial (several percent) oscillations in the MR, but it is still
positive.

We obtain the negative MR that is found experimental-
ly in giant-MR systems only by including spin-dependent
scattering; these results are shown in Fig. 5. Now the
minority spin conductivity (labeled F ) i—s much larger
than the majority one, because the potential jump at the
Fe-Cr interface is much smaller (Table I) giving weaker
impurity scattering [Eq. (3)]. Quantitative comparison is
not possible because we have chosen the surface density
of scatterers arbitrarily, but it is clearly possible to get
negative magnetoresistances of the order of those found
experimentally, with reasonable scatterer densities.

Recent results for granular films' suggest that the gi-
ant MR effect does not even depend critically on the ex-
istence of ordered layers, but only on the juxtaposition of
domains of different magnetization. However, it is not

yet possible to handle the effects of disorder theoretically
in a credible way, so a layered model is probably the best
one to study at present. In fact, a reasonable model for
the behavior of a granular film might be obtained by
averaging the results for layered systems over the angle
between the field and the layers, thus including the CPP
(current parallel to planes) and CIP (current in plane)
geometries as limiting cases. Although we have given re-
sults here only for the CIP case, our method is generaliz-
able to CPP as well.

The transfer matrix method makes it possible to calcu-
late the electron wave functions in a model magnetic mul-
tilayer ef5ciently and rapidly enough that one can aver-
age over the Fermi surface and evaluate the giant magne-
toresistance. We have done so using spin-dependent del-
ta function scatterers situated at layer interfaces (a sur-
face roughness model) and found that this yields experi-
mentally reasonable magnetoresistances.
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