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Localization of collective dipole excitations on fractals
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Dipole optical excitations on fractals are numerically simulated. It is shown that dipole eigen-
modes of fractals are localized. The corresponding localization length dependence on the generalized
frequency parameter (dispersion law) has been calculated. The value of optical spectral dimension
found from the dispersion relations is in agreement with the result obtained earlier from calculations
of the density of eigenstates.

Objects with irregular geometry are ubiquitous in na-
ture, and their dynamical properties are of general inter-
est. The emergence of &actal geometry was a signi6cant
breakthrough in the description of irregularity. It is now
well established that excitations of &actals also possess
&actal properties. In particular, for vibrations on &actals
the dispersion relation has the scaling form L oc u
where ~ is the excitation &equency, d is the &acton di-
inension, D is the fractal (Hausdorff) dimension, and L is
the coherence length. Dynamical excitations of random
&actals should be characterized by a single unique length
scale L which combines the roles of a wavelength and a
localization length. In the trivial limit (D = d = dEs,
where dFs is the dimension of the embedding space) the
relation reproduces the dispersion law of running waves
(phonons) with L as the wavelength.

However, it is clear that the dispersion law for vibra-
tions on &actals can only be valid for excitations of the
Goldstone type which do not have a gap in the spectrum
and become running waves in the trivial limit. For non-
Goldstone excitations on &actals ', such as dipole ones
(e.g. , of the plasmon type), one can expect a dispersion
law which possesses a spectral gap for D ~ dEs and
therefore it should be different &om that for vibrations.

I et us consider a cluster as a &actal set of N polar-
izable rnonoiners [N = (R,/Rp), where R, is the gy-
ration radius and Ro is the characteristic distance be-
tween neighbor monomers] with a light-induced dipole-
dipole interaction between them determined by the com-
plex polarizability yo of the isolated monomer. VFe de6ne
Z = yo, X:——ReZ, and b = —ImZ. In the theory, X
plays the role of a natural spectral variable (generalized
frequency parameter) and b is a positive parameter which
describes dielectric losses. For monomers having an iso-
lated resonance Xp ———io R (fl + iT) (& = io —imp,

where u and uo are the laser and the resonant &equen-

cies, io and R are the characteristic excitation fre-
quency and the monomer's size, respectively, and I' is
the homogeneous width of the resonance) one finds that
X = R 0/io, b = R I'/io . If monomers are spher-
ical particles with Xp

——R (e —1)/(e + 2), then X
—R s(i2e+ li2 —9)/(4ie —1]2), and b = 3R e"/ie —1[
We assume here and below that A )) R, Rp .

An external electrical 6eld, whose value at the site
of the ith monomer (i = 1, 2, ..., N) is equal to E'
El ) exp[ —iiot + ik r, ], induces the transitional dipole
moment d' = d' exp[ —iieet + ik . r;](n = x, y, z). We in-
troduce the 3N-dimensional vectors ]d) and ~E( l) with

components (in
~

d) = d; and (in
~

E(pl) = E( l. Sim-
ilar notations will be also used for other vectors. The
equation for

~
d) acquires the form

where

(in~ V~ jp) =
/u$ 3@2n( ~)n( ~)a p

— n n&
r3"U

x exp(ikr;, —ik. r;, ), (2)

a'~ = 1 —ikr;~ —(kr;~),
b's = 1 —ikr;; —i(kr;, ) .

Here V is the dipole-dipole interaction operator (V = 0
for i = j), r,s

——r; —rs, and n's = r;s/r, s. The inter-
action (2) includes the near-zone (nonradiative), transi-
tional, and far-zone (radiative) terms of the dipole field.
It was shown in Ref. 4 that if Rp~X~ &) (Rp/A) (this
condition is always fulfilled at A )) Rp) for D ( 2 and
Rps~X~ && (Rp/A)Ni 2~+ for D & 2 then the transi-
tional and far-field zones (i.e., monomers positioned at
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distances r,~ A and r;~ )) A &om the given ith one)
contribute negligibly to the local field. In this case one
can reduce V in (1) and (2) to the Hermitian near-zone
dipole-dipole interaction operator

X =0.22

~ ~

Note that for small clusters (R, (( A) the substitution
of R' for V is quantitatively applicable without invok-
ing additional assumptions discussed above. Introducing
eigenvectors

I n) and the corresponding eigenvalues io
of the TV operator, one can present a solution2' of (1)
(with the change V + W) for the cluster polarizability
y~'l (d~~' = g d' = y '&E& ) in the forms

~ ~ ~

~ ~
0

~ ~
~ ~

~ ~

~ ~

X=-0.18

. X =0.08
~ ~

(c) X (c}
X~p = g an, ann p ) x", = a„(x,—'+m„)—', FIG. 1. Localized dipole modes on the fractal.

Thus, a strong dipole interaction leads to the renormal-
ization of the problem. Rather than N dipole moments
in a cluster one should consider 3N dipolar eigenmodes
having polarizability y, [(n I

d)—:d = y, E ] and(c) ( ) (o)

contributing to the total cluster polarizability with the
weight an ~. These modes are shown to be localized on
&actals within the coherence length L~ given by

Ro(Rolxl) &"--'&~&'—

where d is an index called the optical spectral dimen-
sion (0 ( d ( 1). Formula (4) can be obtained2's using
the self-similarity of a &actal and the idea that collec-
tive excitations of large coherence length L~ should be
invariant with respect to scale transformation Ro —+ Ro.
It is clear that these scaling arguments are valid only un-
der the condition Ro (( L~ (& R„A,which we assume
to be fulfilled.

In order to clarify the meaning of formula (4) let us
rewrite it in the following equivalent form:

(IxlRo) Ro(Rolxl)' '- Lx.
Factor Ro(RolXI)" in (5) represents the imaginary
part of the polarizability (absorption) averaged over the
ensemble of clusters per one particle, Imp . Taking this
into account, one can see the physical meaning of Eq. (5)

[and, accordingly, Eq. (4)]: Because of the scaling, there
exists a coherence length L~ such that for the monomers
within Ix the total polarizability (to be exact, its imag-
inary part, giving absorption and having dimensionality
of length cubed) neither depends on the smallest scale Ro
nor on the largest scale R, and is determined by the co-
herence length itself. Thus the localization of dipole exci-
tations on &actals expressed by dispersion law (4) is a di-
rect consequence of the scale invariance (self-similarity).

Note that the localization of dipole excitations on &ac-
tals is a nontrivial fact since the long-range dipole-dipole
interaction for "usual" media (D ~ 3) leads to the log-
arithmic divergence and the excitations spread over the
entire sample unless there is mutual compensation of the
local fields due to high symmetry of the system. In Fig.
1 three difFerent eigen dipole modes of the &actal are pre-
sented. Each mode is determined by certain value of the
dimensionless spectral variable Ro IXI(Ro = 1), and it is
excited at the corresponding frequency of the external
(laser) field. The cluster was simulated by the cluster-
cluster aggregation. Points in the figure correspond to
the centers of particles touching each other and forming
the cluster. Radii of the circles drawn around the parti-
cles give the values of dipole moments induced on them.
These dipole moments were calculated by determining
the eigenvectors of the interaction operator W and sub-
stituting them to Eq. (3). It is clear &om the figure that
strong localization of the collective dipole modes occurs.

The coherence length L~ of the eigenmodes with a
given eigenvalue m is defined as

where (. . ) denotes averaging over the ensemble of clus-
ters. This definition has a clear quantum-mechanical
analogy with (ia

I n) as the wave function [P,. (in I n)
1]. In order to find the localization length at certain value
of X = Xo we used in our simulations the following for-
mula which is equivalent to (6) at small values of decay
constant b:

N - 2

'LCL AI, I'

i=1
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where xo „E[Xo —h/2, Xo+b/2] and nx, = 1, ..., m. The
summation in (7) is over nx, for all realizations in the
ensemble.

We have examined the cluster-cluster aggregates (frac-
tal dixnension D 1.78). The clusters in our sixnulations
were generated using the Monte Carlo method and well-
known procedures. Then, following Ref. 2, the clusters
have been subjected to dilution (random decimation),
which consists of the following. The ith (i = 1, ..., K)
monomer is randomly retained in the cluster with some
small probability P or rexnoved with probability 1 —P.
This procedure simpli6es the &actal structure at small
scales and reduces the total number N of monomers in
the cluster on average by a factor P, simplifying greatly
the numerical simulations. At the same time, the result-
ing (diluted) &actal is characterized by the same &actal
dimension as the original one. In most cases, 32-fold deci-
mation (P 0.03) has been performed. Some sixnulations
have been done with P as small as 10 s for comparison.
The results of the computations clearly show that the
optical properties of &actals in the scaling range do not
depend on the dilution, as expected. Finally averaging
over a large ensemble of &actals (200 clusters) has been
performed.

The localization length L~ as a function of the di-
mensionless spectral variable Ro~X~(Ro = 1) for both
positive and negative X is shown in Fig. 2 in a double-
logarithmic scale. The number of particles in the diluted
cluster is N = 128 (for smaller number of particles strong
"finite-size" efFect was obtained in our simulations). The
calculations were made on the basis of formula (7) by
using eigenvectors of the operator of dipole interaction
TV. The calculated points lie along straight lines, having
slopes —0.53+0.07 and —0.56+0.06 for X & 0 and X & 0,
respectively. The corresponding value of the optical spec-
tral dimension, in accordance with (4), is d = 0.33+0.08.
This value agrees well with d = 0.3 + 0.1 found in Ref.
4 from the density of states.

0

I
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Ln X

FIG. 2. Localization length L~ of dipole excitations on

fractals as a function of the frequency parameter X for X ) 0

(triangles) and X ( 0 (circles).

Summarizing, strong localization of dipole collective
excitations on &actals occurs under resonant light exci-
tation conditions. The localization of the optical excita-
tions on &actals results in very high local fields leading
to the huge enhancement of resonant Rayleigh, Raman,
and, especially, nonlinear scattering such as degenerate
four-wave mixing. The localization length dependence
on the generalized &equency parameter (dispersion law)
has scaling dependence (4) with the exponent expressed
in terms of the optical spectral dimension and HausdorK
dimension. Our direct simulations of the localization
length for cluster-cluster aggregates con6rm the disper-
sion law predicted in Ref. 2 and generalized in Ref. 3
for arbitrary polar excitations and in Ref. 4 for arbitrary
cluster size.
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