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Collective-pinning theory for magnetically coupled layered superconductors
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We calculate the tilt modulus C44 and make collective-pinning estimates for a vortex lattice in magnet-
ically coupled superconducting layers. Complete analysis of possible pinning regimes is made. The tilt
modulus has unusual nonlocal structure which leads to peculiar pinning behavior. Namely, under cer-
tain conditions for the pinning strength and the magnetic coupling, a transition from a regime of in-

dependently pinned two-dimensional (2D) vortex lattices in the layers to a state of three-dimensional
(3D) collective pinning occurs as a first-order phase transition. The critical current in 3D collective-
pinning regime has characteristic nonmonotonic field dependence.

I. INTRODUCTION

Flux pinning in high-temperature superconductors
(HTS) depends sensitively on the anisotropy of these ma-
terials, i.e., the strength of the coupling between the su-
perconducting layers. ' The anisotropy is expressed by
the parameter @=A,, /A, ,b where A,,b and A,, are the
penetration depths of the screening currents in the ab
planes and in the c direction. Quite similar behavior is
anticipated for superconductor-normal (SN) and
superconductor-insulator (SI) multilayers. For these
artificial structures y can be changed at will by a proper
choice of the material and thickness of the nonsupercon-
ducting layer. With increasing y the vortex lattice be-
comes increasingly softer. When the magnetic field is
perpendicular to the layers (H ~~c), especially the nonlocal
tilt modulus C44 is reduced by a factor y . ' In the con-
cept of collective pinning the size of the correlated re-
gions (Larkin domains) is determined by the balance be-
tween deformation energy and pin energy. Consequently,
these domains decrease in size when the anisotropy is
enhanced, and therefore the low-temperature critical
current j, increases, while the energy barrier for Aux

creep decreases. ' Hence, there is a direct interplay be-
tween the practical properties of the HTS and the anisot-
ropy.

Depending on the value of y the tilt modulus follows
from the anisotropic Ginzburg-Landau description or
from the Lawrence-Doniach model. The former applies
when g, =g,b/y )s, where g,„ is the coherence length
and s the periodicity of the multilayer or HTS. For
g, «s the Lawrence-Doniach formulation has to be
used, but one may still discriminate between two distinct
regimes depending on whether the coupling between the
superconducting layers is predominantly Josephson-like
or mainly magnetic. The vortex lattice properties in ideal
magnetically coupled multilayers (i.e., without pinning
centers) where studied in several theoretical papers.
Collective pinning and creep in the Josephson regime has
been theoretically investigated by Feigel'man, Geshken-
bein, and Larkin and Vinokur, Kes, and Koshelev. In
this paper we study the opposite case of predominant

magnetic coupling which occurs for y )y,„=—A.,b/s. Ex-
perimentally, this situation has been realized, e.g. , in
Pb/Ge superlattices (Ref. 11), in a-MoGe/Ge (Ref. 12)
multilayers, and YBa2Cu30 /PrBa2Cu30~ (Ref. 13) mul-
tilayers with sufticiently large thickness of the insulating
layer. Investigations of the field dependence of the criti-
cal current j, were performed only in the former case.
This dependence demonstrates an unexpected minimum
which position depends upon the multilayers parameters
and temperature.

Another interesting situation may occur when the
Josephson coupling is suppressed either by thermal Auc-
tuations or by a magnetic-field component parallel to the
layers, i.e., y=y(T, H~~)) y,„. This may be the case for
Bi2Sr2CaCu20 single crystals in which a very large y
value has been observed in magnetic torque measure-
ments above 77.4 K '

y ) 150, while y,„—100—200.
This paper is organized as follows. In Sec. II we out-

line the derivation of the tilt modulus C44 for magnetical-
ly coupled layers and present the final results for small
and large fields. The derivation is given in detail in Ap-
pendix A. The tilt modulus has an unusual nonlocal
structure, namely, it does not depend on the transverse
wave vector k~ but only on the longitudinal wave vector
k, . Another feature of C44 is that it decreases sharply
when the vortex lattice parameter a becomes smaller than
the multilayer periodicity s. In Sec. III the consequences
of this peculiar C44 for the collective-pinning behavior
are investigated. Under specific conditions for the pin-
ning strength and the magnetic coupling a first-order
phase transition is predicted from a regime of indepen-
dently pinned two-dimensional (2D) vortex lattices in the
layers to a state of three-dimensional (3D) collective pin-
ning. Expressions for the size of the Larkin domains
(correlated regions ), the pinning energy, and the critical
current density in the difFerent regimes are derived. The
implications for several "multilayer system, " e.g. ,
BiSSCO, a-Nb3Ge/Ge, Pb/Ge, and Nb/Ge, are analyzed
in Sec. IV. The experimental input parameters are used
to investigate in which system the predicted phase transi-
tion may occur.

Finally, in Appendix B, we discuss the relation between
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the different parameters characterizing the strength of
the disorder and the link with the experimental critical
current.

1.2

I I I I I I I I I

I

II. TILT MODULUS FOR SUPERCONDUCTING
MULTILAYERS WITHOUT JOSEPHSON COUPLING

We consider material composed of superconducting
layers of thickness d, separated by insulating layers of
thickness d, , (see inset of Fig. 1). The period of the multi-
layer is given by s =d;+d, . The Josephson coupling be-
tween the layers is considered to be negligibly weak. The
superconducting properties of this system are determined
by the London penetration depth A,, and the coherence
length g, of the superconducting material. The average
London penetration depth of the multilayer X is connect-
ed with X, by the relation X=A,,+s /d, . In the following
we restrict ourselves to the case g, «A, . The vortex lat-
tice in such a system is composed of 2D triangular lat-
tices of pancake vortices, located in the layers. The in-
teraction between pancakes in different layers is mediated
by the magnetic field and is much weaker than the in-
teraction between pancake vortices in the same layer.
The properties of such a system for the case d, ((d; have
been considered in a number of theoretical papers.
However, a precise calculation of the tilt modulus is ab-
sent. Below we obtain the tilt modulus for such a system.

In the limit H &&H, 2 the free energy F of the system is
given by

(4„—A)F=fdr6 (z)
" +Jdr
Smk, , 8n

the dimensionless function 6 (z) is defined by the rela-
tion

1, at ~z ns~ &d—, /2
6 (z)= 0, at ~z (n+1—/2)s~ &d, /2.

0.8

0 5 10 15

FIG. 1. The function f44 describing the field dependence of
the tilt modulus for long-wavelength deformations in the small
field regime (B ((H,~) for three values of the parameter d, /s.
The inset shows the configuration of the multilayer.

and N„(r)=C&o/2vrVQ„(r) is the London vector for the
nth layer,

(r —R„)Xn,
2m fr —R

R are positions of the vortices in the nth layer. The
derivation of the tilt modulus C44 from the energy (1) for
arbitrary d„d;, and A,, in the field range H &&H,2 is
given in Appendix A. In the practically interesting case
of sufficiently large fields, B )No/(4~A, , ), the tilt
modulus is given by

g2 3 1 —[1—exp( —Qd, )]/(Qd, )
C«(k, )=

32vrA, d, ~ Q tanh(Qs/2)I [sinh(Qs/2)] +(k,s/2) ]

where the sum is performed over the reciprocal-lattice
vectors Q of the triangular vortex lattice and
k, =(2/s)sin(sk, /2). The expression for small k„C44(0)
can be written in a scaling form

Bi2Sr~CaCu20 ) s = 1.5 —2.0 nm which means that the
inequality Qs ((1 (B &(B, ) is valid in an accessible field
range. In this limiting case the complex expression (2)
simplifies significantly. For not too small fields
(Kok. ))1, Ko ="l/4vrB/@o) it takes the form:

C44(0) =
4 f44(B/B„d, /s)

m.(4~A, )

with

g 2

C44(k, ) =
8~A, Q (Q2+k )

(5)

+3@o 1.75[ T]
2m s (s/10 nm)

Plots of the function f«vs B/B, at different values of
the ratio d, /s are presented in Fig. 1.

For layered superconducting compounds (e.g. ,

It is seen that the long-range nature of the interaction
leads to nonlocal behavior of the tilt stiffness at wave vec-
tors k, &To. In contrast to 3D superconductors' ' the
tilt modulus does not depend on the transverse wave vec-
tor k j . As we will show below this kind of nonlocality
leads to a very peculiar behavior of the pinning proper-
ties. The limiting value of C44(k, ) at k, &(Ko is
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g)2
C~4(0) =3.68

(4m', )
(6)

2 2
Nor s

yPO (4 )2g4

A reasonable interpolation approximation for C«(k, )

can be obtained by changing the summation in Eq. (5) to
an integration and choosing the lower limit of integration
such that the asymptotic expression Eq. (6) is reproduced.
This gives

C~4(k, ) = 8+o k~
ln 1++

32~A, k Ko

with a =0.585.
The above equations are valid for small fields,

B «H„. In Appendix A we also obtain the asymptotic
expression of C44 for B~H, 2 valid in the case H, 2 &8„
namely

(1 b) @0-
C (k )=0.74.

(4m', ) 1+k /Q
(8)

with b =B/H, 2. To match the regions B ((H, 2 [Eq. (6)]
and B-H,2 [Eq. (8)) we use the following interpolation
formula for C~(0):

(p2
C44(0)=3.68 (1—b) (1 —0.8b)

(4m', )
(9)

In the following this expression should be supplemented
by the known result for the shear modulus'

BOO
C66=(1—b) (1—0.58b+0 29b ).

(8m'),
Note that C44(k, ) ((C« in most practical cases.

III. COLLECTIVE-PINNING ESTIMATES

(10)

A. General

A vortex lattice in layered superconductors has three
relevant energy scales, namely the typical tilt energy
U„~, =C&4(m/s)[(mr ) a /2s], the typical shear energy
U,h„,=—,'C66s(mr~), and the pinning energy U with r
being the range of the pinning force (see Appendix B) and
a being the intervortex spacing. Depending on the rela-
tive magnitude of these energies one can distinguish four
possible regimes of pinning: (1) Independently pinned
vortex lines ( U„&, ) U ) U,„„,), (2) Independently
pinned vortex pancakes ( U~ ) U„„, U,h„, ), (3) 2D collec-
tively pinned state (2DCP) in which the 2D vortex lat-
tices in the layers are pinned independently from each
other (U,h„,) U ) U„«), and (4) 3D collectively pinned

Regimes 1 and 2 occur at low magnetic fields or very
close to H, z. Which regime prevails depends on the rela-
tion between the strength of disorder and the interlayer
coupling energy. We will characterize the disorder by
the mean-square amplitude of the random force y,
y =( U„/r„) (see Appendix B). The crossover between
regimes 1 and 2 takes place when y exceeds the typical
value y 0, which can be estimated from the condition

(see Appendix B). The important parameter y~ /y~o
characterizes the strength of disorder in the multilayers
in comparison to the tilt stiffness. It can be connected
with experimentally accessible parameters by the relation

(j,o/[10 A/m ])(A,/[100 nm])
y /y 0= 0.76

r //nm]

Realization of the other regimes depends on the value
of the magnetic field. The typical fields separating
different regimes are determined by the length parame-
ters of the system (d„d, , k, , g, ) and the average square
amplitude of the random force yz. Depending on the re-
lation between these parameters different types of
behavior are possible which will be considered below.

B. Pinning estimates at small fields (B ((H, 2, B, ).
Jumplike transition between different pinning configurations

To distinguish between the pinning regimes we use the
standard co11ective-pinning scheme for the estimation of
the pinning correlation lengths R, and I., which deter-
mine the geometrical size of the Larkin domain in the
direction perpendicular and parallel to the field, respec-
tively. ' They follow from the balance between the elas-
tic energy and the interaction with the random potential.
The random potential is characterized by the mean-
square amplitude of the random force W, W

=By~~

/C&os,

and the typical interaction range r . The energy per unit
volume is estimated as

C66 (mr ) C44(m/L) (mr„) W' r
E (R,L)= +

R2 L (LR )'

(13)

where the k, dependence of C44(k, ) is given by Eq. (7).
The parameters R, and L, are given by the values of R
and L which minimize the function E (R,L). Minimiza-
tion with respect to R gives

E (L)=— W C~4(0)r,'&o
+ ln 1+a

2m C661 I. Ko

(14)

with C44(0) given by Eq. (6) and

(12)

with j,o the maximum critical current at small fields.
When the parameter y /y o is too large only regimes 2
and 3 occur, i.e., the system behaves as a collection of in-
dependent thin films. The exact criterion for this case

y„/y 0) min[A, /s, A, /(4g, ) ]

will be obtained below. In the following we restrict our-
selves to the regime of intermediate pinning

1(y /y o(min[A, /s, A, /(4g, ) ] .
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r
R, (L)=

pr 1/2

1/2
B=2

B2D s
(15)

At small fields the vortex pancakes are pinned indepen-
dently (regime 2). As the field increases, a crossover from
regime 2 to the 2D collectively pinned state takes place at
the typical field B2D, which can be estimated from Eq.
(15) by putting R, (L)=a and L =s,

1/2
y 8+p

B2D— (16)
(ark. )'Xpp

The pinning energy per unit volume for this state, E'
can be estimated from Eq. (14) by putting L =s,

C44(0)r EGO+ lnp 2(x s B
8

2~ sC66
(17)

E(.3D)
p

8'
(2~')'C66C4~(0)

4[( (())]1/2( 3/2 2

W

(18)

2m C44(0)C66r
L, = (20)

The condition L, & a is fulfilled when the parameter 8'is
sufficiently small, i.e., 8' & 8'3~ with

W'" =2m C C (0)r K ~B (21)

The parameter 8'is smaller than 8 3D for magnetic fields
B )B3D with

0o
'

X4
B3D =(1) (22)

Vpp

In the opposite limiting case W) W3o (B (B3o) the
only minimum of the function E (L) occurs at L =s,
which corresponds to the 2DCP state (curve 1 in Fig. 2).
In some field region above Bz~ the 3DCP state is meta-
stable because it does not give the global minimum to the
energy of the system (curve 2 in Fig. 2). This can be easi-
ly understood from an analysis of Eq. (14). Due to the
nonlocality the tilt contribution to the energy weakly de-
pends on L in the region L (a, namely as ln(a/L). On
the other hand the energy of interaction with the random
potential still decreases with decreasing L as —L
This leads to a maximum in E„(L) at L =L
L,„=aR'/8"~D. In the region L (L,„ the energy de-
creases with decreasing L and reaches a second minimum
at L =s which corresponds to the 2DCP state. Compar-

The second term arises from the loss in magnetic cou-
pling energy between the layers. In the case of 2DCP this
term is smaller than the first one.

To estimate the field at which the formation of the
3DCP state becomes more favorable we analyze Eq. (14).
We start with the simplest case when the minimum of the
function E (L ) occurs at L =L, )a so that nonlocality of
C44 is not important. In this case the pinning energy and
the correlation lengths are given by

2D —3D

FIG. 2. Schematic dependence of the pinning energy on the
size of the Larkin domain in the vortex lattice in a magnetically
coupled multilayer for three different field regimes: (1) the only
minimum of E~ is at L=s (2DCP); (2) a second minimum with
larger E~ appears at L &a, the pinning is still 2D; (3) the
minimum at L & a belongs to the most favorable configuration
(3DCP).

ing Eqs. (17) and (18) one can conclude that 3DCP be-
comes more favorable when the parameter W becomes
smaller than W2D

sC66B +or +o8'
32K, s B

ln (23)

which corresponds to the magnetic field B2D

7p 4@p

y~o m. A, ln[(y o/y~ )' (A. /s)]
(24)

When the field reaches B2D 3D the equilibrium
configuration of the system should jump from almost in-
dependently pinned 2D vortex lattices to a collectively
pinned 3D lattice. This means that in layered supercon-
ductors without Josephson coupling a transition from
2DCP to 3DCP occurs as a erst order phase tr-ansition
This scenario is realized when the field B2Q 3~ is smaller
than both B, and 0.2H, 2.

' Comparison gives two new
conditions for the strength of disorder

'Vp s (1 9

Ppp A,

y~ (4g, )' (1.
Ppp

(25)

(26)

If at least one of these conditions is violated then 3DCP
is not realized at all. Note that Eqs. (25) and (26) also
give conditions of the existence of the so-called "Giaever
transformer" efT'ect in the multilayer system.

The critical current j, is connected with the pinning
energy by the simple relation

(B /c)j, =
1 Ep I /rp . (27)

In the quasi-2D region [see Eq. (17)] the critical current
di6'ers from the value for a single layer by a small nega-
tive correction induced by the magnetic coupling between
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the layers,

j,=j,' '(1 B—/B2D 3D) .

B +H, 2.

(28) 7. 1(l —0.58b+0. 29b )(1—0.8b)b(1 b—)

Here j,' '=j,pB2D/B is the critical current for a single
layer. Note that the coupling-induced correction is
weakly field dependent in the region B (&H,2.

At the field B=B2D 3D a first-order phase transition
to the 3DCP takes place. As the pinning energies of the
2DCP and 3DCP states are the same in the transition
point, no strong singularity in the critical current is ex-
pected if the lattice is always in the equilibrium state.
However, due to the existence of an energy barrier be-
tween the 2DCP and 3DCP states "overcooling" is possi-
ble, which means that the system remains in the 2DCP
nonequilibrium state in some region above B20 3D and
then jumps to the 3DCP state. In the latter case a jump
in j, is expected.

In the 3DCP state the critical current can be estimated
as (B «H„)

B2D rp s 2

jc=0 B &2 jco '

rpo
(29)

Note that the critical current in the 3DCP state has the
same field dependence as in the 2DCP state (j, ~B ')
but with a smaller coefficient.

The behavior of the critical current at large fields de-
pends on the relation between g, and s, i.e., between the
fields B, and H, 2. Below we separately consider two
cases corresponding to different relations between these
parameters.

C. Large fields. Case g', )s (B ~ &,z (B, )

For multilayers with a coherence length g, larger than
the periodicity s the 3DCP survives up to some field close
to H, 2. Using interpolation formulas for C~ (9), C66 (10),
and W (Appendix B) it is possible to obtain an estimate
for the field dependence of j, in the 3DCP state which is
valid in the whole field range B ~ H, 2,

jci
b(1 —b) (1—0.8b)(l —0.58b+0. 29b )

(30)

wl'th j ]:0.1(B2D /H&2)(y& /y&p)($ /1 )j p. It follows
from this equation that the field dependence of j, has a
minimum J, ;„=11.5j,&

at a field B;„,B;„=0.23H, 2.
To estimate the field value B3D 20 at which the sys-

tem returns from the 3DCP to the 2DCP state near H, 2,
we once more compare the energies of these states given
by Eqs. (17) and (18) using the asymptotic expressions for
C44 and C66 given by Eqs. (8) and (10). This gives

r, (4k, )'
"3D 2D) =

rpp A,
(31)

with b3D 2D B3D 2D/H, 2. Note that due to condition
(26) the right-hand side of Eq. (31) is much smaller than
unity. In the case of not a too small parameter
(y~/y~p)[(4$, ) ]/A, Eq. (31) should be replaced by a
more precise condition which takes into account the field
dependencies of the elastic moduli in the field range

r, (4C, )'
~3D 2D ~

rpo
(32)

Analogous to the transition at weak fields the transition
between 3DCP and 2DCP is jumplike. Particularly, the
domain length L, jumps from L, =g, to L, =s.

At the transition field a maximum critical current
occurs which can be estimated to be

y p A,, ln(g, /s)

r, (33)

Above the field B3D 2D the vortex lattices in the layers
are pinned independently from each other and the
behavior of the critical current should be the same as for
thin films.

D. Large fields. Case g', (s(B, &B ~II,2)

For artificially created multilayers with g, ((s the dis-
tance between vortices a becomes smaller than the period
of the multilayers s when the magnetic field becomes
larger than the typical field B, given by Eq. (4). The tilt
modulus starts to decrease rapidly at B & B„because the
interaction between the layers becomes exponentially
weak [see Eq. (2) and Fig. 1]. This decrease leads to non-
monotonic behavior of the critical current with a
minimum at B-B,. This specific behavior is studied in
detail in this section.

In the 3D collective-pinning region the nonlocality in
the tilt stiffness can be neglected and we can use Eqs. (2),
(18) and (27) to obtain the field dependence of the critical
current. Using Eq. (3) the result can be written in the fol-
lowing scaling form:

B, /Bj,(B,/B, d, /s) =j,
44 B/B„d, /s

with

(34)

cy„(4iri, )
j, =0.0083

7 3@7~3

rp

rpo

' 3/2 '4

Ao. (35)

c ypp 2

$ rp $
(36)

with f4&=(B, /B)exp( 2+B/B—, ) at B ))B, and
d, /s —1. The increase of j, continues as long as the sys-
tem remains in the 3DCP state, i.e., I., )s. This corre-
sponds to magnetic fields B & B3D

2
2

rpo x2
B3D 2D=

4
n

2 (37)4'r, :B--B,

At fields B -B3D 2D a smooth crossover to the 2DCP
state takes place, which is characterized by a maximum

The plots of j, /j, vs B/B, for different d, /s are given in
Fig. 3. The rapid increase of j, at B &B, is accompanied
by the rapid decrease of I.„
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FIG. 3. The behavior of j,(B) in 3DCP for the case B, «H, 2

for three values of the parameter d, /s. The fast decrease of C44
causes the minimum and successive increase of j,.

in the field dependence of the critical current,

XpO 2

y~ s' ln[(y~o/yp )(X'/s')]
(38)

IV. APPLICATION AND DISCUSSION

In this section we explore in which multilayer system
the first-order phase transition may occur within realistic
experimental conditions. The phase transitions takes
place at B2~ 3~ and B3Q 2Q provided that both these
fields are smaller than both B, and 0.2H, z. From Eqs.
(24) to (26) it follows that the value of B2z, 3z, and the
condition that 3DCP can actually be realized are deter-
mined by the ratios y /y o, 1,/s, and A, /g, . The general
trend is that pronounced 3DCP behavior should be ob-
served in systems with small pinning strength and small
A, . The low-temperature values of parameters for five sys-
tems are determined from experimental data. The results
are summarized in Table I and the consequences are sub-
sequently discussed below. Note that due to the uncer-

tainty in the numerical constants the values presented in
this table should not be taken too literally but rather
serve to compare different systems.

(a) Multilayers of amorphous Nb3Ge/Ge. These multi-
layers are expected to behave similar to a-MoGe/Ge mul-
tilayers. ' In addition, the pinning is collective and
weak. For a single a-Nb3Ge we have g, =6.5 nm,
A., =700 nm, and 8o, =7.5X10 N m . For a multi-
layer with s/d, =2 and s=10 nm, d; is large enough to
guarantee solely magnetic coupling, ' r is taken to be
equal to g, . The parameter values we obtain are k =990
nm, j,II=1.4X10 A/m, y /y II=2.9X 10, which yields
the values for B2rI, B2o 3o, (y~/y~o)(s/A, ), and
(y /y„o)(4$, /A, ) in Table I. Although the pinning in
this system is weak, the value of the penetration depth is
very large, so that y /y„II~A, becomes very large too.
Because B,&=5.6 T, this multilayer system will behave as
a collection of independent 2D layers in the entire field
range. This situation probably will not change with in-
creasing temperature, since the parameter yp/ppo de-
pends weakly on temperature.

(b) Pb/Ge multilayers. " From the j,(B) curve in Ref.
11 at 4.2 K for a single Pb film with a thickness 14 nm it
follows that the vortices are pinned almost independently
in the whole field range, i.e., R, =ao. 8'o at 4.2 K turns
out to be 1.3 X 10 N /m . From this we estimate for a
20 nm/20 nm multilayer that j,II=2 X 10 A/m . In this
multilayer at T=5 K the j,(B) curve shows a pro-
nounced minimum at low fields followed by a maximum
at a field about twice as large as the field at the minimum.
Above the maximum j,(B) behaves like for a single film.
The other parameters we need are g, (5K) and A,,(5K).
given in Table I we estimate directly from H, 2. From this
value we estimate A,, using the relationships between pa-
rameters in the "clean" and "dirty" limits combined with
A,l (0)=37 nm and /II=83 nm for pure Pb. The resulting
value of y /y o is smaller than one, so that L, )s at
small fields and B2Q 3~ has no meaning. The maximum
in j,(B) would then denote the 3D to 2D transition at the
field B3o zo given by Eq. (32). Substitution of the pa-
rameters gives B»»=0.6H, 2, which exceeds the ex-
perimental value 0.2H, z considerably. However we note
that the estimated parameter values very sensitively de-
pend on the value of A, , see Eqs. (11) and (12). Therefore,
we conclude that according to the parameter values this
system should exhibit a weak, first-order phase transition

TABLE I. Parameter values for several multilayer system with magnetic coupling between the superconducting layers. For all
systems, except Pb/Ge, the values are taken at T-O.

Multilayers

Input parameters

[nm] s [nm] A. [nm] [10' A/m'] rp/Xpp

Estimated parameters
2

r, s )', 44',

P&p A P&p
B2D[+] +2D 3D Ã]

a-Nb3Ge/Ge
Pb/Ge (T=S K)
Nb/Ge
BiSCCO

Y/PrBa2Cu307

6.5
41
12
2

1.7

10
40
10
1.54

4.8

990
201

70
140

200

0.14
2

50
40

8.5
50

2.9 X 10
0.37
0.64
3.7X 10

170
1.3 X10'

3.0
0.015
0.013
0.45
0.02

74

20
0.24
0.3

12
0.55

148

0.07
0.025
0.135
5

1.1
15

&H„
18

&H„
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at 8-830 20 The absence of sharp features expected
at such a phase transition can be attributed to smearing
by spatial inhomogeneities.

(c) Nb/Ge multilayers. Starting form g, = 12 nm,
A,, =50 nm, and j„o=10"A/m we obtain for a multilay-
er with s=10 nm and s/d, =2 the parameter values in
Table I. Note that B,)8,2(0) and that some fine tuning
of k may easily make y~/y 0) 1. We conclude that this
system is a good candidate to observe the first-order
phase transition, although the large value of j,o may be
an experimental concern regarding contact heating.

(d) BiSCCO. To assume predominant magnetic cou-
pling is merely hypothetical, because the zero resistivity
in the c direction indicates superconducting coupling be-
tween the Cu02 planes. On the other hand recent torque
measurements' ' show that the anisotropy of this corn-
pound is very high (y ) 150) and the magnetic coupling
between the layers is not weaker than the Josephson cou-
pling. For j,p we took two values obtained by Van der
Beck et al. As follows from Table I an accessible value
for 82D 3D is obtained for sufficiently low current densi-
ties only.

(c) YBCO/PBCO multilayers. ' The large value of
pp /ppo confines this system to 2D behavior solely, i.e.,
I,, =s. Cxoing to higher temperature may drastically de-
crease j,o and y~ /y o. However, since this decrease is re-
lated to thermal fiuctuations ' which are not taken into
account here, our predictions do not apply in the thermal
depinning region.
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APPENDIX A: DERIVATION OF THE TILT MODULUS

1. Small fields (S &&H, )

d A —ki A=O, at iz (n—+1/2)s~ &d;/2 .
dZ

(A 1)

Here k ~ is the wave vector along the layers,
Q, =g & +g, . Using these expressions the energy of Eq.
(1) can be reduced by:

E = g J d ri(@„—A„)@„,
8+.A,

(A2)

with
ns+d /2

A„= J dz A(ri, z) .

Performing the Fourier transform along n and r~ the
latter expression can be rewritten as

(A3)

Due to the linearity of the Eqs. (Al) it is sufficient to
solve the vector potential induced by the London vector
in the layer n=0, i.e., to obtain the solution of (Al) for
N„=@6„. The solution for the superconducting layers
with n %0 and for the insulating layers are given by

The vector potential A(ki, z) obeys the London equa-
tions, which follows from Eq. (1):

d A 2 2—k, A= —A., @„, at ~z —ns~ (d, /2,Z'

A=a„exp[ —k, (z —ns)]+b„exp[k, (z —ns)], at iz —nsi &d, /2,
A=c„expI —ki[z —(n +1/2)s]]+d„exp[ki[z (n +1/2)s]], at—~z

—(n + I/2)s](d;/2 .
(A4)

These solutions should be matched at the boundaries be-
tween superconducting and normal layers using the con-
tinuity of A(ki, z) and d A(ki, z)/dz, which gives the fol-
lowing relation

COSh+S =C] Cs +Ck 5) Ss

The eigenvector (b ) corresponding to the solution which

exponentially decreases for n ~ ao is given by

an +1

b. +i

an
=S

b (A5) b
cosh(a )+ 1

sinh(a) (A7)

The 2 2 matrix 5 is given by

(c; cksi )esS=
sks; (c;+cks;)e,

where the following notations were used:

,"=—,'[(k, /ki) (ki/k, )], ,' =;„'„"(kid;), ,'=;„'„"(k,d, ),

e, =exp(k, d, /2). The eigenvalues of the matrix 5, r+,
and r, can be written as follows:

Here

Sk Si
sinh(a):—

sinh ys

and s is an arbitrary vector. The vector potential in the
superconducting layers with n )0 can now be represented
by (A4) with

r+ =exp(+ps)

with

(A6) an
exp( ngs) . — (A8)



6546 A. E. KOSHELEV AND P. H. KES 48

The vector potential for the superconducting layer with
n=0 can be written as

k, d,
a = — cosh0 2

k, d,—exp(a )sinh
(k, A,, )

(A10)

A=(k, k, ) 4+aocosh(k, z) . (A9) Using the Eqs. (A4) and (A8) —(A10) we obtain the aver-
age vector potential for a11 superconducting layers:

To obtain the constant vector ao we should match this ex-
pression with the exponentially decreasing solution for
n~ ~ which gives with

A„= Aoexp( —~nays), (A 1 1)

sinh(k, d, )
—exp(a)(cosh(k, d, )

—1)
Ao= 1—

(k, A,, ) k, d,

The latter expression can be used to obtain the vector potential induced by an arbitrary London vector @„:
A„(ki)= g G( kin —n')@„(ki),

n'

with

exp( —
~
n

~ ys) sinh(k, d, ) —exp(a )[cosh(k, d, ) —1]
G(ki, n)= 1—

(k, A,, )

Performing the discrete Fourier transform over n, Eq. (A12) can be rewritten as

A(k) =@(k)G(k),
with

1 sinh(ys) sinh(k, d, ) —exp(a)[cosh(k, d, )
—1]G(k)= 1—

cosh(ys) —cos( k, s) k, d,

From Eqs. (A3) and (A13) it follows that the energy of an arbitrary vortex configuration is given by

d kE = ', I ", ~e(k) ~'[G(k) —1] .
8m', (2~)

(A12)

(A13)

(A14)

(A15)

The elastic energy of the vortex lattice is determined by the interaction energy between the pancakes E;„,(ri, n). Sub-
stituting into Eq. (A15) the London vector induced by two pancake vortices, namely

N(k) =i@os (1+expikr),
k

we obtain

d k
E;„,(ri, n) =

3 E;„,(k)expikr,
(2n. )

(A16)

s 4o
E;„,(k)= [G(k) —1] . (A17)

Following the standard scheme [see, e.g. , (Ref. 17)] we derive the elastic energy for the vortex lattice

1 d kE„=—f 3
8' p(k)u (k)uii( —k),

2 (2')
with dynamic matrix W &(k) given by

(A18)

W p(k) = B
d+o

2

g [E;„,(ki+Q, k, )(ki +Q )(kip+Qp) —E;„,(Q, O)Q Qp] .
Q

(A19)

Here u (k) is the elastic displacement, Q are the reciprocal-lattice vectors and the integration over k is performed over
the first Brillouin zone of the lattice. With the use of Eq. (A17) the dynamic matrix takes the form
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B2 (k~ + )(k~p+ p)8' p(k) = g [G (k~+Q, k, ) —1] —[G (Q, O) —1]
X'(k +Q)' ' X'Q'

(A20)

The pinning properties are determined by shear deformations u, (k~, k, ), e.g. , a twist of a vortex bundle. The shear ener-

gy E,'&' describing such deformations is obtained from (A20) by dropping the Q=O term. In the limit A.KO))1,
k~ ((ICo (Ko =+4mB/@o), this energy can be represented as

d kE,')'= —f 3 [C~„(k,)k, +C66k~]~u, (k)~
2 (2n)

with k, = (2/s) sin(sk, /2).
The shear modulus C66 and the tilt modulus C44 are determined by the following expressions:

B4O

(8nA, )

(A21)

(A22)

C44(k, )k,'=, g [G(Q, O) —G(Q, k, )] .
Smk, Q

Substituting in the latter equation the expression for G (k) (A14) we finally obtain

B2 2 sinh(ys) sinh(Q, d, ) —exp(a)[cosh(Q, d, ) —1]
C~4(k, ) = 1—

[cosh(ys) —1][cosh(ys) cos—(k,s)] I+g~g~ Q, d,

(A23)

(A24)

The sum is performed over reciprocal vectors Q of the
triangular vortex lattice,

Q =go+(m, +mz/2) +3m&/4

with Qo =2n (2B/&340 )
' ~ . The parameters Q„y, and

a are defined by the relations

Q, =QQ +A,

coshys =coshgd, coshg, d,

+ — + sinhQd;sinhg, d, ,
1 s

2 Q Q,

E (u)= —f d rg —A, (z„)j„1

+ fd'r
B2

1 + 1

8~a'„
(A26)

j„(r~)=go[r~ —u(z„)],

Here A& and B,=V X A& are the oscillating components
of the vector potential and the magnetic field,

X '=(f')A. '

f (r~) being the equilibrium order parameter normalized
to its value at B=O. The 2D current density in the nth
layer is given by

Q, g sinhgd;
sinha =— +

2 Q Q, sinhys
j(r )= csf'(r, ) e,

VP —A
4m',

jo(rj ) being the equilibrium 2D current density,

(A27)

2. Region S close to H, &

&E„«(u)=E (u) —E (0), (A25)

As follows from the result (A24) of the preceding sec-
tion, the tilt modulus does not depend on the transversal
wave vector in contrast to the case of a 3D superconduc-
tor. ' It means that in order to estimate the tilt modulus
it is sufficient to calculate the energy change 5E„«(u) un-
der homogeneous tilt deformation u(z„). This simplifies
the problem because in this case only the magnetic part
E of the energy changes. For the case a ((s which will
be considered in this section this change can be represent-
ed as

which can be expressed as a Fourier series

jo(r~) = g j&exp(iQr~) .
Q

Variation of the Eq. (A26) with respect to A, leads to the
following equation:

b, A, —
A,,~ A, = — g j„(r~)5(z —z„) .

n

The solution is given by

A, (r) = g exp[ —V Q'+~.~'lz —z. I

27T)Q

n, q c+Q +k,~
+iQ(r~ u„)] . —(A29)
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Substituting this expression into the Eq. (A25) and ex-
panding with respect to

u(z„)= f (dk, /2m )u( k, )exp(ik, z„),
we obtain the following expression for the tilt energy val-
id in the whole region of 8 under the conditions
s «Qo «A, ,s and

(82)

The maximum possible value of y~, y „, is realized
when at distances of the order of the coherence length g
the energy variations are of the order of the vortex core
condensation energy e, =s@ol(4vrA, ), i.e.,

(83)
dk, C4~(k, )

5E„„(u)=f lu(k, )l

with

2~1 jg I'
C~4(k, ) =44 ~ 2 2(k 2+@2)

(A30)

(A31)
4pS

japc
(84)

The value of y can be estimated from the maximum
value of the critical current j,p which occurs at small
temperatures and magnetic fields

2

This expression is quite general and can be used in the
whole range H„«B &H, 2. Near H, 2 the 2D current
density is given by

CS '4p
jo(r~)= n, XVf (r~) .

(4vrk. )' (A32)

Fourier transform off (r~) can be found in the review'

f'(ri) = &f'& g expt:ik(Q) —(CQ)'/4+iQr~1.
Q

Using Eqs. (A32) and (A33) we obtain

(1—b)cs 4&OQ
exp l:

—(kQ)'/4 j,(4' l)P„.
(A33)

(A34)

APPENDIX 8: PARAMETERS CHARACTERIZING
STRENGTH OF DISORDER

Vortex lines in layered superconductors are composed
of weakly interacting pancake vortices located in super-
conducting layers. Imperfections in the crystalline lattice
generate a random contribution to the energy of a single
pancake vortex 5e, (r). The statistical properties of this
random potential are described by the correlation func-
tion

b =B/H, 2, Bz =1.16. With very good accuracy one can
keep in the sum over Q in Eq. (A31) only the six terms
corresponding to the minimum reciprocal-lattice vector
Q0=4m. /(+3a). In the case sQO « 1 this gives Eq. (8).

In the magnetically coupled system there is a typical
value of y, y p, above which the interaction with the
random potential becomes stronger than the interaction
between the pancake vortices composing a vortex line.
This value is determined by the condition U —U„~, and
marks the crossover between regimes 1 and 2 discussed in
Sec. III:

2
@or~s r g

(4~)'X' X4
(85)

The theory of collective pinning uses the mean-square
value of the random force 8'which determines the typi-
cal value of the random force F„acting on a volume V of
the vortex lattice by F„=+WV. In the limit B «H, z
the parameter 8 is connected with the parameter y by
the relation

V~P

S
(86)

Here n, =B/@p is the density of vortices.
To obtain the field dependence of the critical current it

is necessary to know the field dependence of the parame-
ter W in the whole field range B ~H, 2. For disorder of
the "random transition temperature"-type (5T, pin-
ning ) the parameter W vanishes as (1 b) as B a—p-
proaches H,2 (b =B/H, z).'The natural interpolation for
W(b) is

(5e, (r)5e, (r') ) =y„r f (r r') . —(81) W= Web(1 b)— (87)
The function f (r) decreases over distances r-r and is
normalized by the condition f d rf (r) = 1, e.g. ,

f (r) =(1/mr& )exp[ —(r/r ) ]. The mean-square random
force y gives a natural measure of the strength of disor-
der in the 2D planes. The typical pinning energy U is
connected with y by the relation

~o= y
277 S

(88)

This kind of interpolation has been used in studies of col-
lective pinning. The field independent parameter 8'p is
connected with y by the relation
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