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Time scales of the Aux creep in superconductors
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We have studied both theoretically and experimentally Aux-creep dynamics in superconductors. A
theoretical analysis of nonlinear Aux diffusion shows that the relaxation of the electric field proves to be
similar for different models of thermally activated Aux creep, whereas the long-time decay of the magnet-
ic moment M(t) can be essentially model dependent. A proposed scaling analysis indicates that the
short-time decay of M(t) in the subcritical region j &j, is universal and consists of two stages. The ini-

tial nonlogarithmic stage is due to a transient redistribution of magnetic Aux over the sample cross sec-
tion, the duration of this stage ~o being entirely determined by macroscopic quantities, such as sample
sizes, Aux creep rate M&(T, B)=dM/d lnt, and magnetic ramp rate B,=dB/dt. The second stage corre-
sponds to the approximately logarithmic relaxation M(t) =M, —M&ln(t/to), with to being a macroscop-
ic time constant that also depends on sample sizes, M&(T, B), and the voltage criterion E, at which the
critical current density j, is defined. We consider different models of Aux dynamics with nonlinear Aux-

creep-activation barriers U(j) and obtain explicit formulas for ro and to for the exponential V-I curve
and the vortex-glass model. We have also performed an experimental study of magnetic relaxation in
grain-oriented YBa2Cu307 in which the time constant ~o has been measured directly at different temper-
atures 4.2 K & T & 88 K, magnetic fields 0&B & 8 T, and ramp rates 5 pT/s &B, & 10 mT/s. We have
observed the inverse dependence of ~o upon B„with zo ranging from 1 s to 10 s and reaching 5000 s at
B,= 5 pT/s, B=6 T, and T=20 K. It is shown that, in accordance with our model, the dependences of
~0 upon T and B coincide with those for the Aux-creep rate M, ( T,B)=dM/d lnt measured on the loga-
rithmic stage of the Aux creep. We have also measured the dependences of the initial magnetic moment
M (0) on T, B, and B,. Manifestations of the obtained results in magnetic and relaxation measurements
on high-T, superconductors are discussed.

I. INTRODUCTION

Significant relaxation of irreversible magnetization
(fiux creep) in high-temperature superconductors (HTS) is
known to be a very important factor limiting the
current-carrying capacity of these materials. This can
manifest itself in a dependence of magnetization curves
on eddy electric fields induced by ac magnetic fields
H, ( t ), strong dependences of the critical current density

j,(T,B ) upon temperature T, magnetic induction B, and
the voltage criterion E, . As a result, j, vanishes above
the irreversibility field B,(T) which can be well below
the upper critical field B,2(T). In addition, macroscopic
electrodynamic properties of HTS become sensitive to the
highly nonlinear part of the current-voltage (I V) charac--
teristic in the subcritical region (j &j, ) determined by
microscopic mechanisms of Aux dynamics and pinning
(see, e.g. , Refs. 1 and 2, and references cited therein).
This situation differs from that of conventional low-T,
superconductors (LTS) which can be well described by
the universal Bean model, regardless of particular mecha-
nisms of resistivity at j &j,.

Under these conditions fIux-creep measurements be-
come a very useful tool for studying the microscopic
mechanisms of fIux dynamics and pinning in HTS. This

is due to the fast current relaxation in HTS, which en-
ables one to measure a significant portion of the decay of
initial magnetic moment M(0) within a limited experi-
mental time window t; & t & tf (typically, t; —1 —10 s, and

tf —10 —10 s) and thereby to reconstruct the I Vcurve-
deep within the subcritical region j &j„where the
electric field E(j ) can be written in the form

E =E, exp
U(j)

Here the flux-creep potential barrier, U(j ), is a nonlinear
function of j which vanishes at j=j„and E, is a voltage
criterion at which j, is defined, with E, being of the order
of a crossover electric field between the Aux-Aow and
Aux-creep regimes. For instance, the essentially nonloga-
rithmic relaxation observed in HTS about the irreversibil-
ity line has been interpreted in the literature in terms
of vortex-glass' and collective creep" ' models. In ad-
dition, HTS exhibit unusual behavior of the Aux-creep
parameters, in particular, nonmonotonic dependences of
the creep rate s( T,B ) = t) lnM/t) lnt on T and B.'

Flux creep occurs due to a finite resistivity at j &j,
caused by a thermally activated hopping of Auxons be-
tween neighboring pinning positions. This leads to a
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directional drift of magnetic flux under the action of the
Lorentz force, which is accompanied by a dissipation,
giving rise to a decay of induced magnetization currents.
Essential features of the flux creep have been clarified by
the Anderson-Kim model' which assumes a thermally
activated uncorrelated hopping of pointlike vortex bun-
dles in some effective pinning potential. In this model the
energy barrier U(j ) = Uo(1 —j/j, ) is linear, which gives
rise to the logarithmic decay of M(t ) at t &)to,

M(t ) =M —M ln
tp

(2)

observed in both LTS and HTS materials (see, e.g. , Refs.
1, 18, and 19). Here M, is the unrelaxed value of M given

by the Bean model, I& =kTM, /U„U, is an apparent
flux-creep activation energy, and tp is a time constant
which was originally ascribed to an inverse attempt fre-
quency of pinned fiuxons (usually to is assumed to be of
order 10 ' -10 ' s).

Although Eq. (2) was first obtained within the frame-
work of the simplified Anderson-Kim model, the loga-
rithmic dependence M(t) describes the initial stage of
magnetic relaxation in more elaborated flux-creep models
as well, for example, in vortex-glass' and collective
creep" models which consider a thermally activated
hopping of strongly interacting vortex lines in a random
pinning potential. Such a similarity of the observed
current relaxation for these qualitatively different models
takes place over the significant region of the phase dia-
gram well below the irreversibility line. Here the flux-
creep rate M, =dM/d lnt is small enough, therefore
M(t ) decays slowly within the experimental time window

t, & t & tf, and the local j (r) remains close to j, . On these
time scales, this enables one to expand the flux-creep ac-
tivation barrier U(j) in Eq. (1) in a power series in

Jc j~

and neglect higher-order terms in j,—j. This results in
the exponential E-j characteristic

J JcE =E, exp
J&

similar to that of the Anderson-Kim model in which

j,=j,kT/U, . Meanwhile, the above arguments do not
assume any particular mechanism of resistivity and are
based only on the thermally activated character of flux
dynamics at j &j, . In turn, Eq. (4) together with the
Maxwell equations give the logarithmic decay of j(t)
which can be interpreted in terms of a macroscopic non-
linear diffusion of magnetic Aux through the cross section
of a superconductor. ' '

Such a universality implies that the initial stage of the
flux creep can be described in terms of directly measured
macroscopic quantities, regardless of specific mechanisms
of flux dynamics and pinning. For instance, the value j&
in Eq. (4) is related to the observed fiux-creep rate
ji(T,B)=—Bj/Bint. By contrast, the parameters j, and

E, cannot be extracted separately from electromagnetic
measurements. ' Indeed, instead of j, and E, in Eq.
(4), one can take another pair j,' and E,' related to j, and

E, as follows:

j,'=j,—j, ln(E, /E,') .

Such a transformation does not change the E-j charac-
teristic (4), which implies that the parameters j, and E,
are not independent, since only the combination

j,—j, lnE, has physical relevance. In other words, Eq.
(5) links two critical current densities j, and j,' which are
defined at different voltage criteria E, and E,'. Once E, is
fixed (say, E, =1 pV/cm), the value j, can be extracted
from resistive or magnetization measurements, which al-
lows one to express Eq. (4) only via observed macroscopic
parameters.

Equation (2) becomes invalid at short times t & ro when
the initial stage of the flux creep can be described phe-
nomenologically as follows:

M(t)=M(0) —M, ln 1+
Tp

where M(0) is the initial value of M(t ) at t =0, and ro is
a time constant which determines a transient stage before
the beginning of the logarithmic relaxation of M ( t ).
Such a transient regime is due to specific features of flux-
creep measurements in which a superconductor is placed
in an external magnetic field B,(t) which is increased
with a constant ramp rate B,=dB, /dt until t =0 and
then kept fixed. This induces the initial electric field
E-B,r which then decays at t )0 owing to a finite resis-
tivity in the subcritical region j &j, . The sharp change
of external conditions at t =0 causes the transient regime
during the time 0 & t & ~p needed for a nonlinear diffusion
redistribution of magnetic flux over the sample cross sec-
tion. The conclusions about the macroscopic origin of
tp and 7 p as well as the dependence of ip on the initial
conditions have been made by several groups. ' '

Here the time constants ~p and tp which correspond to
the transient and the steady-state regimes of relaxation,
respectively, turn out to be qualitatively different, since
the value ~p, unlike tp, can be strongly affected by the
ramp rate B,.

Recently the time constant ~p has been extracted from
flux-creep measurements. ' The results of these ex-
periments indicate that ~p is indeed a macroscopic quan-
tity which proves to be inversely proportional to the
ramp rate B,. For instance, in grain-oriented
YBazCu307 „ the value of Tp ranges from 1 to 10 s when
changing B, from 10 to 10 T/s. Hence it follows
that at small B, the transient nonlogarithmic regime can
take a considerable time ro(B, ) which can even exceed
the time window t; &t &tf. At the same time, measure-
ments of tp performed by Sun et ah. ' on proton-
irradiated Y-Ba-Cu-O single crystals gave tp

—10
—10 s which is much smaller than ~p.

Therefore, the time constants 7p and tp can be ex-
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pressed in terms of directly measured macroscopic quan-
tities [sample sizes, fiux-creep rate j i (t,8 ), ramp rate 8„
voltage criterion E„etc.] without invoking such uncer-
tain microscopic parameters as an attempt frequency,
vortex bundle size, mean hopping distance, etc. This is
due to the fact that the initial stage of the Aux creep turns
out to be insensitive to specific mechanisms of Aux dy-
namics and can be described by Eqs. (2) and (6) in
different Aux-creep models. Such a universality is virtual-
ly due to a slow decay of M(t ) well below the irreversibil-
ity field 8, ( T ), unlike the situation at higher T and 8 for
which M(t) can substantially change in the time window
t; &t &tf. In the latter case the nonlinearity of U(j) at
larger deviations j, j(t—) manifests itself in a nonloga-
rithmic relaxation of M(t) which indeed has been ob-
served in HTS in long-time Aux-creep measure-

6 9724)31733734

A nonlogarithmic decay of M(t) can occur in short-
time Aux-creep measurements as well if a superconductor
is placed in pulse magnetic fields which cause the initial
eddy electric fields E(r ) -B,r much higher than E, . This
enables one to study the supercritical region of the I-V
curve j &j„and, in particular, to trace a crossover be-
tween the Aux-creep and Aux-Row regimes. ' For in-
stance, Huang et al. reported a nonlogarithmic relaxa-
tion in YBa2Cu307 on ms time scales observed with the
use of a pulse technique which gives 8, —10 —10 T/s.
In this case the induced electric fields E—10 —10
pV/cm are much larger than the conventional voltage
criterion E, =1 pV/cm forj,.

In this paper we focus on the subcritical region j &j,
and present theoretical and experimental studies of the
initial stages of the magnetic relaxation in the framework
of the approach which has been proposed in our previous
communication. The aim of this work is to demonstrate
the universality of the time constants to and ~0 and to
study their dependences on T, B, and B, by using reduced
ramp rates B,. The paper is organized as follows. In Sec.
II, we consider qualitative features of the nonlinear Aux
diffusion in superconductors, in particular, the case of the
exponential V-I curve (4) which pertains to the initial
stages of the Aux creep. It is shown that the time con-
stant ~0 can be calculated by a dimensional analysis and
proves to be similar for different Aux-creep models over a
wide region of the parameters. Explicit formulas which
describe the relaxation of M(t ) for the exponential E(j )

and the vortex-glass model are obtained. In Sec. III, we
present detailed experimental results of the fiux-creep
measurements done on grain-oriented YBa2Cu307 „at
difFerent sweep rates 10 &8, & 10 T/s, temperatures
4.2& T &77 K, and magnetic inductions 0&B, &8 T.
Our experimental data are fully consistent with both the
theoretical analysis given in the Sec. II and our previous
results. For instance, we have observed the inverse
dependence of ~o on B, with ~o reaching 5X10 s at
B,=SX10 T/s. Moreover, the dependences of the
time constant ro( T,B ) on T and 8 are shown to coincide
with those of M, (T,B). Section IV contains discussions
of the results obtained and their manifestations in resis-
tive and magnetic properties of HTS.

II. NONLINEAR FI UX DIFFUSION
IN SUPERCONDUCTORS

Flux creep in superconductors can be formulated in
terms of a nonlinear diffusion of magnetic Aux through a
sample. ' This process is described by the Maxwell equa-
tions

(7)

curlH =j (E)—,p
(8)

where the dependence j (E) is determined by particular
mechanisms of resistivity. We neglect here the effect of
anisotropy, assuming that j is always parallel to E (in lay-
ered HTS this corresponds to H parallel to the c axis
when magnetization currents liow in the nearly isotropic
ab plane). Furthermore, we confine ourselves to the field
region H, I «H «H, 2, where one can put 8 =poH. Ex-
pressing E via j=curlH by means of Eq. (1), one can get
a nonlinear equation for H, which describes the evolution
of vortex density. ' However, for our aims it is more
convenient to exclude H and present Eqs. (7) and (8) as a
single equation for E. We consider here a slab of thick-
ness 2a along the x axis and infinite in the yz plane with
the external magnetic field H, parallel to the z axis (Fig.
1). Let H, (t ) increase with a constant ramp rate H, until
t =0, and then remain fixed. This induces an initial eddy
electric field E(x ) =xB, which then decays at t )0 due to
the Aux creep. For that planar case the electric field
E=yE has only the y component, and Eqs. (7) and (8)
reduce to

a'E= (E)BE
2 (9)

g(E) =po Bj
(10)

a x

FIG. 1. Infinite plate of thickness 2a in a parallel magnetic
field H, . The solid and dashed curves show the electric field
profile E~(x, t) described by Eq. (21) and the initial distribution
E(~,O) =B,x, respectively.

Substituting Eq. (1) into Eq. (10), one can present the
function g (E ) in the form

Pok7 (j U'g(E)=-
E aj

The relaxation of E(x, t ) is described by the solution of
Eq. (9) which satisfies the initial condition E(x,0)=B,x
and the boundary conditions BE/Bx =BB,/Bt =0 at
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x =+a. As follows from Eqs. (9) and (10), the relaxation
of E(x, t ) is described by a diffusionlike nonlinear partial
differential equation which is analogous to the equation
for a nonlinear heat diffusion in a medium with the
"thermal conductivity" a= 1 and "heat capacity" g(E).
Nonlinear fiux dynamics described by Eq. (9) or a similar
equation for H(x, t) have been studied in the literature
for different fiux-creep models' ' ' ' (see also Ref.
39). For instance, there has been obtained some partial
analytical solution of Eq. (9) which describes a relaxation
of E(x,t). ' ' Vinokur, Feigelman, and Geshkenbein
have obtained exact solutions which describe a dynamics
of magnetic fIux penetration for the logarithmic potential
barrier U(j)=( Uo/kT) ln( j,Ij). Extensive numerical
studies of various dynamic regimes have been performed
by van der Beck et al. and Gough et aI.

Qualitative features of the fiux creep in different mod-
els can be obtained by a dimensional analysis. We con-
sider here three characteristic examples, namely, the ex-
ponential Ejcurve (4), power dependence E=E,(jI
j,), and the Ejcurve of the form

E(j )=E, exp[1 —(j,lj )~]UolkT

predicted by vortex-glass' and collective creep" ' mod-
els. Substituting these formulas for E(j ) into Eq. (11),we
obtain

where E,ff is a characteristic electric field in a sample.
Owing to the weak logarithmic dependence of j& on E,ff,
the exact value of E,ff in the time interval t,- & t & tf is not
that essential, especially at B «B, , where kT « Uo.
For instance, at the initial stage of the Aux creep, E,ff can
be estimated as a characteristic initial electric field
E -B a. '

eff e

Equation (9) and the corresponding boundary and ini-
tial conditions can be written in the following dimension-
less form:

e'(+1,8)=0, E(g, O) =g,
(16)

(17)

where the prime and overdot denote the differentiations
with respect to the dimensionless coordinate g=x /a and
time O=t I~, respectively, and e=E/B, a The. time con-
stant w is given by

poJ ia

B,
Since Eqs. (16) and (17) do not contain any characteristics
of the sample geometry and the initial conditions, the
electric field E(x, t) can be presented in the following
scaling form:

PoJ i
(12)

xE(x, t ) =aB,E a'w (19)

' 1/(1+m)

( )
POJc c

mE E

@OkTjc T Ecg(E)= 1+k ln
Uo E 0

—1 —1/P

(13)

(14)

for the exponential, power, and vortex glass E(j ), respec-
tively. Despite the differences of physical mechanisms
behind these models, the function g(E ) proves to be close
to 1/E dependence in all three cases, if one neglects slow-
ly varying logarithmic factors or takes account of the fact
that m ))1 well below the irreversibility line. There-
fore, these models lead to similar time evolutions of
E(x, t) which are close to that of the Anderson-Kim
scenario for the exponential E(j ). As follows from Eq.
(11) such a universality results from the thermally ac-
tivated Aux dynamics in the subcritical region j &j, and
takes place for any power dependence of the energy bar-
rier U(j) in Eq. (1). However, the time decays of j(x, t)
and M(t) are much more sensitive to the particular
dependence U(j) and turn out to be essentially different
in the above models.

Therefore, qualitative features of the time evolution of
E(x, t) are described by Eqs. (9) and (12), where j, is
some effective model-dependent parameter. For instance,
in the vortex-glass model the value j& can be found by
comparison of Eqs. (12) and (14), which yields

where E(g, 0) is a universal dimensionless function which
obeys Eqs. (16) and (17).

The exact solution of the nonlinear partial difFerential
equation (16) which satisfies conditions (17) is unknown,
although some analytical solutions have been considered
in the literature. For instance, there is a solution which
obeys both Eq. (16) and the boundary condition
E'(+a, t ) =0

poj&E(x, t ) = (2ax —x sgnx ),2(t+ro)
(21)

poj&E(x, t ) = (2ax —x sgnx ) .
2t

This solution is independent of the initial conditions and
thereby gives an exact long-time asymptotics of E(x, t ) at
t))~. Although Eq. (20) was first obtained within the
framework of the Anderson-Kim model, ' formula (20)
virtually has much wider range of applicability and de-
scribes with the logarithmic accuracy the time decay of
E(x, t) in any fiux-creep model with power activation
barrier U(j ). This enables one to calculate the relaxation
of M(t), including explicit calculations of the time con-
stants, which will be done in the next section.

Now we consider the transient stage (t(r) which
essentially depends upon the initial conditions. In this
case one can write another exact solution of Eq. (16),

krj, = 1+ ln
Uo 0 eff

—1 —1/P

(15)

which also obeys the boundary condition E'(x, O)=0,
but, unlike Eq. (20), does not contain the singularity at
t =0. Although Eq. (21) does not satisfy the initial condi-
tion E(x,O) =B,x, we employ Eq. (21) for a self-
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consistent calculation of the magnetic moment M(t), by
choosing the time constant ro such that Eq. (21) would
result in the exact initial value of M(t ) at t =0. The cal-
culation of ~p given below yields ~p=C~, where ~ is the
universal time constant (18), and C is a numerical
coefticient of the order of unity which depends upon the
sample geometry.

III. RELAXATION OF M( t )

A. Initial stage

1.2

10

0.8—

We first consider the initial stage of magnetic relaxa-
tion of the subcritical state (j (j, ) for which one can use
the I Vcurve -of form (4). Then M(t) is given by 0.6

0
M(t ) =—J xj (x, t)dx

2 g

E(x, t)
Jc+Jl ln x x

0 E (22)

ln &p lnt

FIG. 2. Time relaxation of M(t) described by Eq. (25). The
dashed lines show the asymptotics of M(lnt) for t ((~o and
t ))7o, respectively.

8ppj 1aaM(t)= j,+j, ln

2j1a
ln 1+

2 7 p

r()E,
3J1

(23)

Now we choose the time constant ro such that Eq. (23)
would give the correct initial value M(0) at t=0. The
quantity M(0) can be calculated from Eq. (22) with
E(x,O) =B,x, whence

Substitution of Eq. (21) into Eq. (22) and integration over
x yield follows from Eq. (25), the value of lnro is determined by

the intersection of two straight lines M(u )=M(0) and
M(u ) = [M(0)+M, lnro] —M, u, which are the short-
and long-time asyrnptotics of M( u ), respectively. It
should be emphasized that in the real-time scale formula
(25) does not give any plateau in M(t ) at short t, since the
plateau in M(lnt) actually results from a logarithmic
"compression" of the t axis upon the transformation
u = lnt. However, the plotting of M versus lnt is a con-
venient mathematical procedure which enables one to re-
veal the nonlogarithmic stage when analyzing experimen-
tal data (see below).

a2 aBe
M(0)= j +j, lnc 1 E

J1
2

(24) B. Long-time relaxation

By equation the expressions in the square brackets in Eqs.
(23) and (24), we can calculate ro and write M(t) in the
form

M(t ) =M(0) —M, ln 1+
7 p

8Ppj1a a 2

vp= . =0.657&, M1= j1 .
2

e

(25)

(26)

Here M(0) and ~ are determined by Eqs. (24) and (18), re-
spectively, and e =2.718. Therefore, this procedure gives
the interpolation formulas (24) —(26) which provide the
correct asymptotics of M(t) at t =0 and t ))ro. Equa-
tions similar to Eqs. (25) and (26) have also been obtained
in Refs. 12, 22, 24, and 26—32 with an accuracy to nu-
merical coefficients.

The function M(t) described by Eq. (25) is shown in
Fig. 2. Here the time constant ~p determines the duration
of the initial nonlogarithmic relaxation caused by the
transient diffusion redistribution of magnetic Aux over
the sample cross section after the stepwise change of B,
at t=0. If plotted as a function of the variable u =lnt,
the dependence M(u ) exhibits a plateau at small lnt. As

M,'=M, +M, ln —.
p

(27)

It is convenient to define M, by analogy to the Bean mod-
el, M, =a j, /2, ' where j, corresponds to the particular
voltage criterion E, . In this case Eqs. (24) —(26) allow one
to express the time constant tp only via observed parame-
ters a, j, , and E, as follows:

8a paJ1tp=
e E,

(28)

Therefore, unlike the time constant v.
p which is fixed

unambiguously by the initial conditions and the macro-
scopic parameters of a superconductor, the value tp

essentially depends on the voltage criterion E, and the

At t ))ro the value 8, in Eqs. (24)—(26) cancels, there-
by M(t) becomes independent of the initial conditions,
and formula (25) reduces to the well-known Anderson-
Kim result (2). Notice that the constants M, and to in

Eq. (2) can be chosen arbitrarily, provided that the ob-
served quantity M, +lntp remains constant. In other
words, instead of particular M, and tp, one can take
another pair M,' and t p such that



A. GUREVICH AND H. KUPFER

definition of M, . For this reason, there are many
different definitions of to in the literature (see, e.g., Refs.
12, 22, and 24—32, although they virtually give similar
descriptions of the observed relaxation of M(t). In any
case, however, the Aux-creep time constant to is deter-
mined by the macroscopic nonlinear Aux diffusion and
has nothing to do with the inverse microscopic "attempt"
frequency of pinned Auxons usually assumed to be of or-
der 10 ' —10 ' s. Indeed, taking, for example, the con-
ventional criterion E, =1 p, V/cm, we find for the sample
with a =0. 1 mm, j,=10 A/crn, ' that to-0.01 s.
Similar conclusion on the macroscopic origin of tD has
been made in Refs. 12, 22, and 24—32 within the frame-
work of different Aux-creep models. Another qualitative
estimation of to and E, could be done if one considers a
linear flux-flow part of E(j), for which E(j)=(j—j, )pf,
where pf is the Aux-Aow resistivity. The Aux-How re-
girne occurs at j—j, ))j&, since the parameter ji deter-
mines the smearing of the I-V curve due to the Aux creep
[see Eq. (4)]. Hence, it follows that the crossover electric
field E, -pf j, can essentially depend on T and B. Tak-
ing pf =p„B/B,2=0. 1 pQcm, with B/B,~=0.01 and
p„—10 pQcrn, the normal-state resistivity extrapolated
down to T-10 K, we obtain that E, —1 mV/cm, and
to-10 s. The difference between these two estimations
indicates that the value of to can be fairly sensitive to the
definition of to discussed above.

Formulas (25) and (26) are valid as long as the decay of
M(t) during the flux-creep measurements t; &t &tf is
small compared with M ( t; ), which enables one to use the
exponential approximation (4) of E(j ). However, the
long-time relaxation of M(t) becomes sensitive to the
particular form of the flux-creep barrier U(j) and gen-
erally is not described by Eqs. (25) and (26). For example,
in the vortex-glass model M(t ) at t ))ro can be presented
in the form'

M,M(r)=
[1+(kT/Uo)ln(tlt())]' ~

(29)

Here the values j, and to are given by Eqs. (15) and (28),
respectively. Notice that the interpolation formula (29)
was obtained with a logarithmic accuracy because of a
weak logarithmic dependence of j, on E,~ in Eqs. (15)
and (28). In other respects, the time constant to in the
vortex-glass model displays the same qualitative depen-
dence on the sample size and the voltage criterion E, as
that for the exponential E(j ) [see Eq. (28)]. This is essen-
tially due to the universality of the relaxation of E(t ) dis-
cussed above.

The term ln(E, /E, fr) in Eq. (15) brings an uncertain
numerical factor in to which is determined by a charac-
teristic change of electric fields during the Aux-creep
measurements t, &t &tf. Since E(.t) mostly decays as
1/r, the term ln(E, /E, fr) gives rise to a weak time depen-
dence of to in Eq. (29). The character of this dependence
can be estimated with a logarithmic accuracy by substi-
tuting E,~-poj, kTa /PUot which follows from Eqs. (15)
and (20) into Eq. (15). Hence,

8a ppJ kT
e E,PUO Uo

8poa j,kT

e pUOE,

(30)

(31)

Therefore, the time constant to in Eq. (29) actually loga-
rithmically decreases with t, which may affect the inter-
pretation of long-time Aux-creep experiments. For in-
stance, at t, = 10 s and tf ——10 —10 s we get
ln( tf /t; ) = 10—12. Hence, it follows that at
(kT/PUO) ln(tf/t; ) & 1 the value to can noticeably vary
within the time window t; & t & tf, since the exponent P
can be quite small in certain regions of T and B [for in-
stance, the collective creep model predicts that —,

' &P & —,
'

(Refs. 11 and 12).
Unlike to, the transient time constant ~0 essentially de-

pends upon B, and can be measured directly. For in-
stance, if a=1 mrn, and j,=2X10 A/cm, we obtain
from Eq. (26) that ro = 16 s at B,= 10 T/s, and
F0=1.6X10 s at B,=10 T/s. Therefore, the initial
nonlogarithmic stage of magnetic relaxation can take
considerable time, which may even exceed a time window
in flux-creep experiments. In addition, the value ~0( T,B )

depends on T and B, since ro(T, B ) is proportional to the
value j,(T,B) which determines the slope of the curves
M(lnr ) at t & r, .

IV. MEASUREMENTS OF THE INITIAL STAGE
OF THE FLUX CREEP

A. Experimental

In this section we present results of fiux-creep measure-
ments performed on grain-oriented YBa2Cu307 with
S%%uo of Ag. The samples prepared by a liquid-phase pro-
cessing technique have a plateletlike shape with typical
grain size about 1 cm in the ab plane and the thickness of
the grains along the c axis between 20 and 30 pm. The
specimen of thickness 0.5 mrn was cut with the c axis
parallel to the macroscopic slab surface of 3.3 X2.5 mm.
The magnetic field was parallel to the c axis such that the
screening magnetization currents Aow in the ab plane.
Such a geometry has been chosen in order to minimize
the effect of anisotropy on the stability of current
configurations. '

All measurements of M(t ) were performed by means of
a vibrating sample magnetometer (Oxford Instruments,
Model 3001). At a constant temperature, T, we apply a
sufficiently high initial field B, which then is reduced
with the desired sweep rate B, to the field B at which the
magnetic moment M(t ) is measured. The value B ranged
from 2 to 10 T which ensured the complete Aux penetra-
tion and full critical state in the sample. Since we were
interested in the relaxation of the irreversible magnetiza-
tion, the reversible part M, was subtracted from the
measured M(t ) by taking the mean value of two branches
of the magnetization curve which correspond to the in-
creasing and decreasing B,(t) (Fig. 3). In our measure-
ments no asymmetry of the relaxation was observed,
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section due to the abrupt change of B, at t=0. As the
value ~0 becomes larger than the integration time con-
stant of the amplifier t;, the curvature of M(lnt ) changes
the sign, giving rise to a quasiplateau in the relaxation
curves at small t &~0. However, as has been already
mentioned, such a plateau in M(lnt ) is just a manifesta-
tion of the transient nonlogarithmic stage which does not
imply any plateau in M(t ) dependence in the linear time
scale. Notice that in our experiments we have specially
chosen the reduced ramp rate B, in order to trace the ap-
pearance of the transient stage. Usually the value B, is
taken by several orders of magnitude larger than our
lowest B„which shifts this stage into the ms region.
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i & i I
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FIG. 3. An example of relaxation curves M(lnt) for two
branches of M which correspond to the increasing and decreas-
ing B,(t) (upper and lower curves, respectively) at 77 K and 3
T.
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which indicates that the influence of the surface barrier
is negligible. The time t; between the beginning of the
magnetic relaxation and the first measurement is deter-
mined by an integration constant of the signal amplifier
and was about 2 s.

B. Results
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We have measured the relaxation of M(t) for the ramp
rates B, ranging from 5 pT/s to 10 mT/s at different
temperatures 4.2 K & T & 80 K and magnetic fields
0(B (8 T. As an illustration, Figs. 4(a) and 4(b) show
typical relaxation curves M(lnt) for T=77 K, B =3 T
and T=20 K, B=6 T at different ramp rates B,. As seen
from Fig. 4(b), the character of M(lnt ) at lnt (100 essen-
tially depends upon B„whereas at large times the
infiuence of the initial conditions on M(t ) becomes much
less pronounced. For instance, at B,)0.2 mT/s the
curves M(lnt ) have a downward curvature, the relaxation
rate dM/d lnt increasing with B,. As B, decreases, the
curvature of M(lnt ) changes the sign at small lnt, which
gives rise to the developing of a plateau in M(lnt ) which
increases as B, decreases.

We suppose that these features of the observed M(lnt )

can be interpreted in terms of the nonlinear diffusion
motion of magnetic flux in which initial velocity is pro-
portional to the ramp rate B,. For instance, the faster in-
itial relaxation of M(lnt ) at higher B, shown in Fig. 4(b)
implies a larger differential resistivity dj /dE at the corre-
sponding electric fields E(0)-aB,. As B, decreases,
both E(0) and dj /dE decrease, thereby the relaxation
rate dM/d lnt slows down. Simultaneously, this results
in the increase of the transient time ~o needed for the be-
ginning of a steady-state flux creep after the diffusion
redistribution of the magnetic flux over the sample cross
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FIG. 4. Examples of the relaxation curves M(lnt ) for T=20
K, 8=6 T (a), and T=77 K, B=3 T (b). Solid curves in (a)
correspond to Eq. (6) with fit parameters M(0), M&, and 7 p at
various B,: 1 mT/s (0), 0.13 mT/s (V), 20 pT/s (0), and 5

pT/s {0).
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FIG. 5. Dependence of the time constant ~0 on 1/B, extract-
ed from the relaxation curves in Fig. 4. Inset in Fig. 4(a) shows
the data for higher B,. The lines give the best fits; their slopes
in Fig. 4(a) and the inset differ by =20%%uo.

As an illustration, we consider the case T=20 K and
8 =6 T in more detail. Shown in Fig. 4(a), the relaxation
curves M(lnt ) do display a plateau corresponding to the
transient nonlogarithmic stage, the plateau increasing as
8, decreases. As follows from Fig. 4(a), the observed
curves M(lnt) can be well described by Eq. (6) when
treating M(0), M„and 7 p as fit parameters. This
confirms the above analysis and enables one to extract the
quantities M(0), M, and ro from the fiux-creep measure-
ments and then to compare their dependencies on T, B,
and 8, to those given by the theoretical consideration.

We first examine the time constant ro( T,B,B, ) written

in the form which is convenient for direct comparison of
Eq. (26) with experimental data:

dM 1~o= G
d lnt

(32)

Here the factor G contains a11 parameters which charac-
terize the sample geometry, the value G being indepen-
dent of T, 8, and 8, . The second factor dM/d lnt is the
observed fiux-creep rate M&(T,B) in the regime of the
logarithmic relaxation. The function M, (T,B) essential-
ly depends on T and 8, ' ' and can be directly extracted
from the slope of the relaxation curves at t))~0. The
third term 1/8, results from the effect of initial condi-
tions which allow one to vary significantly the duration of
the transient stage upon changing the ramp rate 8, .
Therefore, Eq. (32) predicts the linear proportionality of
~0 to M, and the inverse dependence of ~o from B„which
has been confirmed by our Aux-creep measurements.

Figure 5 shows the dependence of 7p extracted from
the relaxation curves M(lnt ) versus the inverse ramp rate
1/8, . As follows from Fig. 5, the time constant ro(8, )

proves to be inversely proportional to 8, over the region
of 8, examined. We have observed, however, some devi-
ations from the inverse dependence ~o=C/8, . For in-
stance, at T=20 K and 8 =6 T the slope C at
5 & 8, & 100 pT/s turns out to be about 20% smaller than
the value of C at O. l &8, & 1.2 mT/s [Fig. 5(a)]. We be-
lieve that this may be due to nonexponential E(j) at
E, & E & E2, where E, z

=aB, /2 is a mean-induced elec-
tric field in the superconductor for the minimum and
maximum ramp rates (for our sample E, = 1.25 X 10
pV/cm at 8, =5 pT/s and Ez=2. 5X10 pV/cm at
8, =1 mT/s, respectively). In particular, for the vortex-
glass model this effect manifests itself in a weak logarith-
mic dependence of the parameter j& on B„or in a
nonzero value of 1/m for the power I Vcurve [see Eq. -

(13)]. Anyway, the time constant ro essentially increases
upon reducing 8, and can even exceed the time window
at small 8, . For instance, at 20 K and 6 T we have ob-
served the increase of ~o from 11 s at 8, = 1 mT/s to 5000
s at 8, =5 pT/s.

Shown in Fig. 6, are the temperature and field depen-
dences of 7O at fixed 8, =10 pT/s together with the
dependences of the relaxation rate dM/d lnt on T and 8
extracted from the slopes of the relaxation curves M(lnt )

at t ))~o. The time constant ~0 strongly depends both on
T and 8, the temperature dependence being nonmonoton-
ic. However, as seen from Fig. 6, the values ~o and
dM/d lnt exhibit remarkably similar dependencies on T
and 8, which implies that both quantities are indeed
proportional over the whole domains of T and 8 studied.
This result enables one to obtain the geometrical constant
G =0.2 T/emu and, using Eq. (32), to calculate ~0 for ar-
bitrary values of 8, . Therefore, the dependencies of 7O

upon B„T,and 8 predicted by Eq. (32) are in agreement
with our experimental data. Recently a similar behavior
of ro(T, B) was observed by Brawner, Ong, and Wang
who found that the temperature and field dependences of
io are close to those of the critical current density
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FI~. 6. The time constant wo(T, B) and the creep rate M&(T, B) plotted in the logarithmic scale vs T (a) and B (b), respectively.

The value I& is obtained from the slope of M(lnt ) at t ))~o at B,= 10 pT/s.

j,(T,B). However, as follows from our results, the time
constant ro( T,8 ) scales as the fiux-creep rate
j& ( T,B ) = —dj/d lnt on the logarithmic stage of magnet-
ic relaxation. The quantity j, is related to j, as follows:
j,(T,B ) =s( T,B )j,( T,B ), where s( T,B ) = —d lnM/
d lnt is a dimensionless Aux-creep rate. Figure 7 shows
an example of the field dependence of s(8) for our sam-
ple at 77 K (see also Refs. 13—16). Such a strong non-
monotonic behavior of s(8 ) can manifest itself in
different dependences of j, and j, upon T and B, which
should be taken into account when analyzing the time
constant ro( T,B ).

Another quantity which turns out to be dependent on
8, is the initial magnetic moment M(0). As follows from

0.18

0.16—

0.12—

Z c 0.10-

Eq. (24), the value M(0) logarithmically increases with
B, in the case of the exponential I-V curve which results
in the logarithmic relaxation at t))~o. Our measure-
ments have shown that such a regime does occur at low
T. For instance, Fig. 8(a) shows the linear dependence of
M(0) upon lnB, at T=20 K and 8 =6 T extracted from
the relaxation curves presented in Fig. 4. However, at
higher T and B the Aux-creep dynamics can be essentially
nonlogarithmic, especially about the irreversibility field
B,(T), where the dependence of M(0) on lnB, be-
comes nonlinear. An example of such a behavior at
T=77 K and 8 =3 T is presented in Fig. 8(b), where the
nonlinear dependence of M(0) on lnB, correlates with
the nonlogarithmic decay of M(t ) shown in the inset.

We have also measured the temperature dependence of
M(0) at a constant 8, =0.01 mT/s and 8 =2 T. The re-
sults shown in Fig. 9 indicate approximately exponential
dependence of M(t; ) on T below 60 K, where the mo-
ment M(t; ), taken as usual at t =10—100 s, only slightly
difFers from M(0). However, above 60 K, the value
M(t; ) becomes much smaller than M(0) due to a consid-
erable increase of the Aux-creep rate when approaching
the irreversibility line.

oo.oe-~)E
0.06—

0.02— T= 77K

'0 I

2

B (T)

FICz. 7. Dimensionless Aux-creep rate s=d lnM/d lnt as a
function of B at 77 K.

V. CGNCI, UMNG REMARKS

The above experimental and theoretical results indicate
that the initial stage of the Aux creep in the subcritical
state j &j, is universal and is determined by a nonlinear
Aux diffusion, regardless of particular microscopic mech-
anisms of resistivity. We have shown that there are two
characteristic time scales ~o and to of short- and long-
time magnetic relaxation, respectively. Both ~0 and to
are macroscopic quantities which can be expressed in
terms of directly measured parameters, such as a, j„j&,
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FIG. 8. Dependences of M(0) at T=20 K, B=6 (a) and
T=77 K, B=3 T (8b), respectively. The nonlinear dependence
of M(0) upon lnB, in Fig. 7(b) correlates with the nonloga-
rithmic relaxation of M(t ) shown in the inset.

pends upon the voltage criterion E, . As follows from our
data, the temperature and field dependences of ~p are en-
tirely determined by the observed creep rate M, (T,B ) in
the regime of the steady-state logarithmic Aux creep.

The features of magnetic relaxation discussed in this
paper result from the essential nonlinearity of the I-V
curves at j (j„and could be observed on both HTS and
LTS materials. However, in HTS they seem to be more
pronounced due to much stronger Aux creep, ' which, for
example, can manifest itself in a significant dependence of
magnetization curves upon the sweep rate. ' ' Here
the time constant 7 p determines the minimum time need-
ed for measurements of stationary magnetic or electric
characteristics of superconductors. In particular, in
our experiments the value ~p reached about 5000 s.
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