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We study the t-J model in one dimension by numerically projecting the true ground state from
a Luttinger-liquid trial wave function. We find the model exhibits Luttinger-liquid behavior for
most of the phase diagram in which interaction strength and density are varied. However, at small
densities and high interaction strengths a new phase with a gap to spin excitations and enhanced
superconducting correlations is found. We show this phase is a Luther-Emery liquid and study its
correlation functions.

The t Jmod-el was proposed to describe the dynamics
of holes doped into a Mott insulating state. i s Even in
one dimension, determining the complete phase diagram
for this apparently simple model has proven to be quite
formidable, and the ground-state structure turns out to
be far richer than initially suspected. In this paper we
combine a variational approach with an exact ground-
state projection method to study the properties of this
model.

The Hamiltonian for the t-J model in one dimension
can be written in the subspace of no doubly occupied
sites as

Luttinger-liquid ground state for most of its uniform den-
sity phase diagram, and in this region the ground state
is well described by the trial state. At small densities,
however, we find a third phase separating the Luttinger-
liquid and phase-separated states. This phase behaves as
a Luther-Emery liquid, exhibiting a gap to spin excita-
tions and enhanced superconducting correlations.

In previous work we studied the ground state with a
Luttinger-liquid trial state written in the subspace of no
doubly occupied sites as a Jastrow-Slater wave function

(2)

K = —t ) (circ&+i~ + c~+i~c'~)

+ J) (S; S,+i —4n, n, +i).

The model has been solved exactly only for J ~ 0,
where it is equivalent to the U -+ oo Hubbard model,
and J = 2t. 's In both cases the ground state at ar-
bitrary density belongs to a broad class of interacting
Fermi systems known as Luttinger liquids, which exhibit
power-law decay of correlation functions with exponents
characterized by a single parameter. s s Additionally, for
very large J/t the attractive Heisenberg interaction term
in (1) dominates the kinetic energy and the model phase
separates.

To obtain. the rest of the phase diagram of the t-J
model, several numerical approaches have been used. For
example, Ogata et aLs have exactly diagonalized this
Hamiltonian on a 16-site ring and find the model be-
haves as a Luttinger liquid for all values of J/t below
a critical value at which phase separation occurs. They
hypothesized that a third phase of bound singlet pairs
may separate the other phases at very lovr density but
vrere unable to resolve this phase with such small system
sizes.

In this paper we employ a Luttinger-liquid variational
wave function to approximate the ground state of the
one-dimensional t-J model o and then use a numeri-
cal projection technique to extract the true ground state
from this trial state. With these methods, we can accu-
rately investigate much larger systems than attainable by
previous techniques. We confirm that the t-Jmodel has a

where S(r;) = Det[e'"&"*] is a Slater determinant of
single-particle plane wave states and d,s = sin[sr(r, —
r~) /L] for a system of size L. The Jastrow factor
Q,&s ]d,s I" in (2) modulates the wave function by the dis-
tance between all pairs of particles raised to the power v,
taken as a single variational parameter. Positive values of
v induce a smooth correlation hole between all particles,
while negative values provide an attractive correlation
competing with the Pauli repulsion. For v ( —1/2 this
attraction overcomes the statistical repulsion, and phase
separation occurs. The long-range nature of this Jastrow
factor generates the Luttinger-liquid behavior of the wave
function. is 4 This wave function has been considered in
two dimensions where it also exhibits an algebraic singu-
larity at the Fermi surface.

Applying (2) to the t Jmodel one fin-ds the optimum
value of the variational parameter v varies continuously
with interaction strength and density over most of the
phase diagram prior to the critical J/t for phase sepa-
ration. However, at small densities we found a third re-
gion separating the Luttinger-liquid and phase-separated
states where the optimized parameter is pinned at the
critical state v = —1/2. At this point the many-body
system in the trial subspace has infinite compressibility,
which physically cannot extend for a range of interaction
strengths. One concludes that the true ground state here
likely lies far from our variational subspace. We would
like a systematic way of both checking the accuracy of
the trial state vrhere vre think it is doing vrell and deter-
mining the e~act ground state in this third region.

In this work, we start vrith the optimized trial
state (2) and project it onto the exact ground state
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numerically. i" ~o A series of increasingly accurate ap-
proxirnants to the ground state is generated by lp)
(H —W)"l4 ), where H is the Hamiltonian and W is
a numerical constant. These states approach the true
ground state for large p provided lEo —Wl ) lE, —Wl
for all excited states E, . For the t-Jmodel with J ) 0 we
may choose W = 0. In principle this method can be used
to project any trial state not orthogonal to the ground
state, but good initial states give faster convergence and
smaller statistical errors.

To evaluate ground-state expectation values of an ar-
bitrary operator, we calculate

(» lolp) (e lH"OH" le. )
(&-IH'"I&-)

and take the large p limit. For suFiciently large powers,
the scaling of (3) is dominated by the contribution from
the erst excited state overlapping the trial state. Thus
we can write

(E„) = Ep + b exp( —2hp) + . (4)

with exp( —4) = lEi —Wl/lEp —Wl. An operator not
commuting with the Hamiltonian has an additional cross
term:

(0„)= Oo+ 6i exp( —Ap) + 62 exp( —26@)+ . (5)

We use the convergence of the energy (4) to fix 6, and
then use (5) to determine the ground-state values of the
rest of the observables.

Traditionally (3) has been calculated using a hybrid
of two numerical techniques. First the trial wave func-
tion 4 is sampled with variational Monte Carlo to give
an ensemble of initial configurations ln). s Then for
each lo;) the product Hi' is sampled stochastically using a
method similar to the Neumann-Ulam matrix method. 23

The products are sandwiched to evaluate (H"OH") and
the normalization (H "). This approach throws away
much information, specifically the details of the interme-
diate states in the evaluation of each H~.

We developed a much more efficient algorithm for eval-
uating (3) by combining the two operations. In usual
variational Monte Carlo a new configuration lP) is cho-
sen from a previous configuration ln) with probability

P
&

——min 1,vMc (6)

the distribution for a configuration ln) approaches
/z . This method of generating new initial configu-

After many transitions, this leads to a distribution of con-
figurations proportional to l@ l

. If new configurations
are instead chosen with the probability

1 4p
P~~p = Hp~

Z~

with
@p)

zn =) Hpai
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FIG. 1. The phase diagram of the t-J model as deter-
mined in this paper. The Luther-Emery state is the region
labeled "Spin Gap. " The dashed line indicates K~ = 1,
the Fermi-liquid phase. Below this line the Luttinger liq-
uid has dominant antiferromagnetic correlations, while above
this line singlet pair correlations decay with the smallest ex-
ponent. The phase separation boundary is determined by the
divergence of n(k ~ 0), the lower Luther-Emery boundary
by the behavior of S(k —+ 0), and the Fermi-liquid line by
S(k ~ 2k+). All systems contained at least 100 sites and ten
electrons and holes, so phase boundaries cannot extend to the
extreme densities. The dotted lines are extrapolations.

rations is the same used to evaluate the products H", so
the calculation of the initial states ln) and the series of
new states lp) = H" ln) can be combined.

The algorithm improves on the traditional approach in
two ways. When evaluating a diagonal expectation value,
such as (n(r)n(0)) or (S,(r)S, (0)), our method evalu-
ates a new (@plH"OH" l4' ) at every step of the random
walk, so calculations of different powers p require the
same amount of time. Additionally, for any expectation
value, an arbitrary number of difFerent values of p may
be calculated in parallel. The only disadvantage of our
approach is that ergodicity is violated as J —+ 0, and the
old method must be used in this limit. Both methods
offer an improvement to Green's function Monte Carlo
in that exact correlation functions can be calculated.
Since statistical errors grow with increasing p, we gener-
ally chose the maximum power to be ten times the system
size.

The phase diagram of the t-J model determined by
our projection technique is shown in Fig. 1. We see that
three distinct phases occur. For small J/t, the ground
state is a Luttinger liquid with spin correlations domi-
nating the long-range behavior. Increasing J suppresses
these correlations, and the ground state passes through
the Fermi-liquid point of the Luttinger-liquid spectrum
at the dashed line. Above this line the Luttinger liquid
has dominant singlet pairing correlations, and for very
large J/t the ground state is phase separated. s i22s
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As will be reported in detail elsewhere, in the Luttinger-
liquid regime the trial state (2) approximates the exact
ground state very well.

In this work we see clear evidence of a new Luther-
Emery-liquid phase (labeled "Spin Gap" in Fig. 1) sepa-
rating the Luttinger-liquid and phase-separated states at
small densities. 2r's Unlike all Luttinger states, this new
phase exhibits short-range spin correlations, and thus a
gap to spin excitations, while both charge and singlet
pair correlations decay algebraically. Physically one can
view the Luther-Emery liquid as a translationally invari-
ant coherent quantum fiuid of bound singlet pairs. The
pairs are correlated and can be treated at a simple level
as an interacting fiuid of hard-core bosons.

Luther-Emery states have been observed in diluted
spin models that exhibit gaps in the saturated state, such
as the t Jmode-l with Ising anisotropy2s or the next-
nearest-neighbor t Jmod-el. 2s Additionally this phase is
present in the t-J Vmod-el at quarter fillingM. This work
provides the clearest evidence to date of the spontaneous
formation of a Luther-Emery state by doping a gapless
parent state.

A sample spin correlation function in the Luther-
Emery phase is plotted in Fig. (2) with the correlation
function obtained from the unprojected trial state shown
for comparison. The variational function exhibits the lin-
ear behavior at small wave vectors characteristic of Lut-
tinger liquids, while the exact function is quadratic at
small k and analytic at all wave vectors, consistent with
exponentially decaying spatial correlations. We calculate
the boundary between the Luttinger and Luther-Emery
states by the crossover from linear to quadratic behavior
at small wavy vectors.

More definitive evidence of Luther-Emery behavior can
be seen in the superconducting correlation function plot-
ted in Fig. 3. The exponents of the correlation functions
in both Luttinger and Luther-Emery liquids that decay
with power laws can be characterized by a single param-
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FIG. 3. The singlet pair correlation function at J/t = 2.8
and density n = 6. The k = 0 cusp is greatly enhanced in
the exact ground state. The system contains ten electrons on
60 sites.

eter Kp & 0. ' The nonoscillatory part of singlet pair
correlation function decays as

(bt(r)b(0)) Ix r ",
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where b(r) = ~(ct tc„+~g —c„~c„~qt). For Luttinger

liquids AL, = 1+K while Luther-Emery liquids have

ALE=K
In Fig. 3, b(k) diverges logarithmically with system size

as k -+ 0 in our trial wave function, which represents the
strongest divergence possible in a Luttinger-liquid state.
However, the true ground state in this region apparently
exhibits a much stronger cusp. ~s
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FIG. 2. The spin-spin correlation function for J/t = 2.8
and density n = 6. The optimized variational wave function
has linear behavior at small wave vectors while the exact spin
correlation turns on quadratically in k. The system contains
20 electrons on a 120-site lattice.

FIG. 4. The scaling of the exponent of the k = 0 supercon-
ducting cusp with interaction strength at density n = s. The
transition from Luttinger to Luther-Emery-liquid states oc-
curs at J/t 2.3 and the system phase separates at J/t 2.9.
Luttinger liquids require A & 1, and noninteracting hard-core
bosons have A = ~.
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Using a finite-size scaling analysis of the divergence in
b(k ~ 0) in the projected state, we can determine the
value of this exponent A.zs A plot of A showing the tran-
sition &om Luttinger to Luther-Emery-liquid behavior
at density 6 = 1/6 is shown in Fig. 4. In the Luttinger
regime, A is bound from below by 1, but this bound is
clearly violated as the Luther-Emery state is entered. A
continuous variation of A with J as found in these data
would imply a discontinuous jump in K~.

It is interesting to note that noninteracting hard-core
bosons have A = 1/2, so our singlet pairs have residual
repulsive interactions for J & 2.65 in the Luther-Emery
state, while at higher J the hard core-nature of the pairs
competes with an effective attractive interaction. ss The
attraction from the Heisenberg term in (1) in this regime
is strong enough to bind singlet pairs but still insufficient
to cause macroscopic phase separation.

Chen and Lee proposed a variational state for this
region by Gutzwiller projecting a sea of noninteracting
bound singlet pairs. sa Their wave function corresponds
to a K~ = oo Luther-Emery state, the critical point of the
verge of phase separation which exhibits a macroscopic
superfiuid density. Their calculations of the boundaries

of the spin-gap regime agree remarkably well with ours
except at the boundary to phase separation, which they
find occurs at higher J/t. One may speculate that a
potentially more accurate trial state could be generated
by correlating the pairs with a Jastrow factor similar to
(2). This state would exhibit generalized Luther-Emery
behavior with arbitrary K~.

In summary, we have investigated the ground-state
properties of the t-J model in one dimension using a nu-
merical technique to project the exact ground state from
a variational Luttinger-liquid trial state. We find the
model has a surprisingly rich phase diagram. At lower
interaction strengths the variational wave function accu-
rately describes the Luttinger-liquid phase, and at very
large J/t the model phase separates. However, one finds
these phases are separated at low density by a Luther-
Emery quantum dimer liquid phase with short-range spin
correlations and enhanced superconducting correlations.
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