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In this paper, a three-dimensional neutron-depolarization analysis of the vortex distribution in
sintered YBa2Cu307 g is described. In the experiment, the sample is zero-field cooled after which,
at 4.2 K, a magnetic-field pulse with a width of 500 ps and a peak value of 0.7 T is applied. Af-
ter this pulse the remanent field in the sample is of the order of 0.01 T and shows no measurable
time decay within 24 h. By heating the sample and measuring the depolarization matrix with
the three-dimensional method, the remanent 6eld and the average Bux distribution trapped in the
ceramic superconductor are determined from one and the same measurement. The results show a
distribution of Aux that is not homogeneous, and Qux lines that are bundled and bent at low temper-
atures together with a nonlinear decay of remanent magnetization as a function of temperature. At
temperatures close to T, the distribution becomes homogeneous and the temperature dependence
linear.

I. INTRODUCTION

Since the discovery of superconductivity, many studies
have been performed on the distribution of Qux vortices
in type-II superconductors. Most of the methods used are
surface or thin-61m methods, rather than bulk studies.
However, several neutron-scattering techniques are very
suitable for bulk investigations. Very recently a small-
angle neutron-scattering (SANS) experiment on a high-
T single crystal was performed, showing evidence for
a square and a hexagonal Aux lattice. For these short-
range correlations, SANS is a very suitable method, but
for larger-scale correlations of Aux or Aux distributions,
neutron depolarization is more appropriate.

Neutron depolarization has successfully been used to
investigate conventional type-II superconductors, but
only a limited number of experimental results on the
high-T, superconductors are published. Most of these
published results are discussed and interpreted in a qual-
itative way.

In the neutron-depolarization experiments presented
in this paper, the analysis is done in three dimensions,
which enables us to follow the precession and the short-
ening of the polarization vector of the neutron beam due
to the remanent magnetization inside the high-T super-
conductor YBa2Cu307 p. This analysis is called three-
dimensional neutron depolarization (3DND).

3DND, described in 1973, appeared to be an easy and
accurate method of determining simultaneously the cor-
relation length of local magnetic structures and the mag-
nitude and direction of an average magnetization in bulk
samples, statically ' as well as dynamically. ' The
measurable range of the correlation length starts at 10
nm and goes up to millimeters.

Here, only a brief description of the 3DND setup and
theory will be given. An extended description is given in

Refs. 8 and 9. The neutron source used in the experi-
ments is the 2-MW swimming pool type reactor (HOR)
at the Interfaculty Reactor Institute (IRI) in Delft, the
Netherlands. The neutron beam coming &om this source
is spin polarized by a magnetized Cu2MnAl crystal and
can be oR'ered at a magnetically shielded sample posi-
tion with a polarization direction in either the 2;, y, or z
direction. The directions are defined as the beam, hori-
zontal, and vertical directions, respectively. After trans-
mission through a sample with a certain magnetic struc-
ture, the polarization of the beam can be analyzed in the
same three directions. The quality of the polarizing and
analyzing systems are described by a matrix P and Q,
respectively. When all possible combinations of polar-
izing and analyzing directions are taken, a 3 x 3 matrix
D is measured. The elements of this matrix are given
by

I,~Dm '~
——1—

I, i, j =x, y, z.

with p the gyromagnetic ration of the neutron (p = 1.83x
10s s ~ T ~). When the neutron beam passes through a
sample containing a certain magnetic structure, Eq. (2)
can be solved, leading to the following polarization vector
pf at the analyzing position:

Pf = Dgpo) (3)

where the matrix Dz is equivalent to the measured ma-

Here I;z is the measured intensity and I, the intensity of
the fully depolarized beam, called the "shim intensity. "

When a polarized neutron beam is passing through a
time-dependent magnetic induction B(t), the change of
the polarization vector p in time can be written as

dp(t) = ~ h (t) B(t)j,
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R = U+ Ssing+ S (1 —cosP); (4)

trix. In D~, two efFects are combined, the Larmor pre-
cession around the mean magnetic induction and the de-
polarization caused by local fluctuations in this average
induction over the beam cross section.

For the purpose of the calculation, the sample is di-
vided into K small parts, each representative for the
whole sample. The precession in each part is small and
can be separated from the depolarization. Both the ro-
tation of the polarization vector and the depolarization
can be described with a matrix. The rotation matrix will
be denoted by B, with B given by

of one sample part. The quantity t is the total transmis-
sion length and n; (t = x, y, z) are the projections of the
unit vector of the magnetic induction on the x, y, and z
axes, respectively. U is the unit matrix.

In order to be able to make a description of the depo-
larization, one must realize what is really measured in a
3DND experiment. In Ref. 9, a clear description is given
of the derivation of the elements of the depolarization
matrix. To derive an expression for these elements, one
needs to calculate the averages over all neutron paths of
the line integral along the transmission direction of the
square of the local fluctuations in the average induction.
In reciprocal space this boils down to

where 8~'
n, ~

= AB, (q) AB~ (q) d q,
Iypzp

&)2 = &) y) z)

Here P = cAL(B) is the rotation angle of the polarization
vector around the average induction (B) where A is the
neutron wavelength, c = ~& with m the neutron mass, h
Planck's constant, and L = t/N the transmission length

I

where K is the reciprocal yz plane and yp and zp are the
dimensions of the neutron diaphragm in the correspond-
ing directions.

The depolarization in a part with transmission length
L will be denoted by the matrix

( 1 —o, (nzz + nyv) ao!~y
1 —a(n„+ n )

ao!yz 1 —G(nz, z + niiii) )
(6)

where the constant a is defined by a = c A L.
By combining Eqs. (4) and (6), a model matrix can

be derived which simulates the change of the polariza-
tion vector of the beam while the neutrons are traveling
through the whole sample. The derived matrix

3&A

D, = C i e( ~" ) Q(R D~R)~PdA
—3&A

describes an average of the theoretical model of the
depolarization matrix over the wavelength distribution.
This distribution is approximated by a Gaussian with a
width LA = 0.014 nm and a central wavelength Ap ——

0.16 + 0.01 nm which are determined from a calibration
experiment with empty beam. The quantity C is the
normalization of the integral. D, is the matrix that will
be adapted to the measured matrix D by changing the
parameters in Eqs. (4) and (6).

In order to solve this complicated nine-parameter,
nine-equation problem, a least-squares method is used.
In this procedure, the statistical errors are used to nor-
malize the di8'erence between calculated and measured
matrix elements. In this case the least-squares function
is defined by

(Dt, ij —Dm, ij ) Iz

(1 —D U. ) (2 —D,~).

larization vector; the next six represent the depolariza-
tion (shortening of the polarization vector).

II. DEPOLARIZATION
IN SINTERED SUPERCONDUCTORS

When a sintered high-T, superconductor is placed in
a magnetic field, two diferent situations can be distin-
guished: one where the grain size d is larger than the
penetration depth Ag in the grain and the other where d is
smaller than Ag. In the first case, the field can only pen-
etrate into the weak Josephson links between the grains.
According to Ref. 4, in this situation the efl'ective pene-
tration depth A, tr can be written as A, tr = QAgA~, with
A~ the Josephson penetration depth. In the second case,
the ceramic superconductor can be approached as a con-
ventional type-II superconductor.

For the sample that is used in the experiments, it is
reasonable to assume that the second case is valid (see
the next section). In this case, with the flux assumed to
be aligned along the z direction, the Fourier transform of
the magnetic Field can be written as (see Ref. 4)

)
40~(q. )

(2vr) 2 ~, - 1 + A2 q2 '

Minimizing I" gives the following set of parameters: (B ),
(B„),(B,), n n„„, n „n „, n „n„.The first three
parameters represent the rotation (precession) of the po-

where r, points to one vortex position in the two-
dimensional vortex lattice, A g is the penetration depth,
b(q ) is the Dirac 8 function, and Po is one flux quantum
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defined as Po ——h/2e = 2.07x 10 s Wb, with h Planck's
constant and e the electron charge.

In this particular case only the z component of B is
nonzero. Therefore it can be seen from Eq. (5) that only
n, is relevant. In order to calculate o, one has to sub-
stitute Eq. (9) in Eq. (5) and subtract the contribution
of (B) in the integral:

e Qv(v' &j)- =
4~Ly, ~ - (] + P2 q2) 2 "q~

i2

a.

C.

e.&

iz

To obtain this equation,

dq, b(q, )b( —q, ) =—
2'

(B)&o

16A,g
(12)

A similar derivation can be made for the case that
the beam direction is along the direction of the magnetic
induction. In this case, only o; contributes and it is
not necessary to split the sample in small parts. The
expression that is obtained in this situation is given by

is used. The sum in Eq. (10) can be split into a part
where i = j and into a part where i g j. The first part is
equal to the total number of flux lines in the cross section
of the sample perpendicular to the field direction, which
equals (B)Lyp/Pp. In the case where the fiux density
is low (the distance between vortices is much larger than
the penetration depth), the interactions between vortices
are weak. Therefore it is allowed to assume that the flux
is randomly but homogeneously distributed throughout
the sample and that every y distance between vortices
is equally probable. For this reason, in the second part
where i g j, the sum over i and j may be written as

separate integrals by substituting &, jdy, f dy~ for(a)'I, '
0

the sum. From this integral one obtains, for i g j,
27r(B)2L2yob(q„)/P2o. Substituting this result in Eq. (10)
and integrating over q& leads to the following expression
for o.

FIG. 1. Experimental setup of the sintered YBa2Cu307
sample in the liquid-He cryostat. In the experiment x is the
beam direction. Explanation of the letters in the picture: (a),
holder and heater; (b), magnetic short circuit; (c), copper
coil; (d), neutron diaphragm; (e), sample; (f), Ge tempera-
ture-dependent resistor.

form clusters up to 100 pm. In Fig. 1 the experimental
conditions of the sample are shown. Around the sam-
ple, a coil is wound which enables one to apply a Geld in
the z direction. This direction is defined to be along the
longest side of the sample. The sample is clamped in a
magnetic short circuit to prevent flux, emerging from the
sample, to affect the polarization of the beam outside the
sample. The short circuit also simulates infinitely long
flux lines because demagnetization fields are prevented.
On the holder supporting the sample and short circuit, a
heating wire is wound and a Ge resistor is mounted as a
temperature sensor.

After cooling the sample in zero Geld, a magnetic field
has to be brought into the sample. This is done with the
copper coil that is wound around the sample. Because
of heating by the coil, the upper Geld limit at 4.2 K is
about 0.05 T. In order to apply Gelds of considerable
magnitude, the field is pulsed. The pulse that is used
had a width of 500 ps and a peak value of 0.7 T. This
field pulsing, however, presents another problem, namely,
the high dB/dt, which is about 0.7 kT/s. This quick
field input could be faster than certain relaxation times,
leading to special flux distributions being captured.

(B)tPp
A~~

87t.h,~
2 IV. RESULTS AND DISCUSSION

If all the N small sample parts are put together, one
obtains for the total depolarization matrix D~ = (DI )~
If N is large enough and DI is diagonal as in the above
case, one may replace the ofF-diagonal elements by 0 and
in the diagonal elements one may replace L by t [see Eq.
(6)j

III. EXPERIMENT

The experiments are performed on a sintered
YBa2Cu30 sample of size 5.35 x 20.55 x 11.0 mm pro-
duced at the University of Twente by D. H. A. Blank by
a citrate synthesis method. Samples prepared by this
method have a grain size between 1 and 10 pm, which can

With the values of A ~ in the literature, it is possible to
make an estimate of the depolarization by the vortices. In
Ref. 14, A,g is given as measured in different experiments;
at 4.2 K, A g 200 nm.

The results show that the remanent induction (B) =
0.01 T at 4.2 K. In the setup described before, the trans-
mission length l = 5.36 mm. Substituting these values in
Eqs. (6) and (12) leads, with the magnetization per-
pendicular to the beam direction, to a depolarization
(= 1 —

i i

) of 0.018%%u(').

For the case where the beam direction is parallel to the
magnetization, it follows from Eq. (13) that o tA &.
This dependence of the average line integral of the field
fluctuation on the penetration depth does lead to a con-
siderable depolarization, but a couple of practical prob-



THREE-DIMENSIONAL NEUTRON-DEPOLARIZATION. . . 6423

lems such as beam divergence and alignment of the beam
with the flux lines are not included in the calculation.
Therefore the result in Eq. (13) represents an ideal situ-
ation that will be difBcult to realize.

With the described instrument, the minimum depolar-
ization that can be measured is about 0.5%, and so in
the perpendicular field experiment no measurable depo-
larization by the vortices themselves is expected.

In Fig. 2, the depolarization matrix, as it is measured,
is shown as a function of temperature. The calculated
matrix is also drawn as a line through the points. It can
be seen that the theoretical model describes the measured
matrix very well.

The magnetization components Gtted with the model
are plotted against temperature in Fig. 3. This magne-
tization shows no measurable time dependence within 24
h, which is not consistent with magnetization measure-
ments on the same sample. However, these magnetiza-
tion measurements show a higher initial remanence and
a relaxation to an almost stationary level which is larger
than the remanence in our measurements. Furthermore,
other ND experiments on a similar sample also show an
absence of time relaxation.

At low temperatures the remanent field decays faster
than linear, probably caused by the fact that it is con-
centrated at the edge. Also, in the depolarization pa-
rameters, it appears that the flux lines are concentrated
locally (as will be shown later). Above 40 K the decay is
linear for reasons that will be explained later.

At low temperatures, besides a field in the applied di-
rection, also field components appear in the perpendicu-
lar direction. These field components show that the flux
lines are no longer straight, but are curved or meandering
in bundles through the sample. Evidence that the flux
is no longer straight also appears in the other calculated
parameters.

In Fig. 4, o,
~~

= o. and o.'~ = o.'~~ + o.'» are plotted
against temperature (the nondiagonal elements of DI are
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FIG. 3. Remanent magnetic field as a function of temper-
ature, after zero-field cooling and a field pulse at 4.2 K.

0 within the statistical errors). Because of the large pre-
cession angle around the z axis, it is no longer possible
to distinguish the fluctuations of the induction in the x
direction &om those in the y direction; therefore, the con-
tribution of both directions is summed. By taking a look
at the temperature dependence of n~ in Fig. 4(a), one
can see that at low temperatures there is a contribution
larger than zero. Because o.~ can only contribute if there
are local fluctuations perpendicular to the applied Geld,
one must conclude that the trapped flux lines are bent.
Furthermore, this bending must take place in bundles
for arguments discussed before. One can think of such a
bundle of flux lines bending around one pinning center
when they try to move into the sample in the applied
pulse. After the pulse they are captured in this bent
situation. With the assumption that the perpendicular
fluctuation of the remanent field is in the order of the av-
erage magnetization and with the knowledge that o.~ is
equivalent to the average of the square of the Geld fluctu-
ation times a characteristic length, one can calculate an
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FIG. 2. Measured matrix (squares) and the theoretically
calculated fit (drawn line) as a function of temperature.
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FIG. 4. Average of the squared field fluctuations perpen-
dicular (a) and parallel (b) to the applied field, plotted as a
function of temperature.
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order of magnitude for the characteristic length. At 4.2 K
this length is roughly 60 pm, decreasing rapidly to zero
at 20 K. This length is of the same order of magnitude
as the clusters that can be formed during preparation of
the sample, but is one order of magnitude larger than the
grain size. Between the clusters it is possible that some
small holes exist, which are pinning the flux in bundles.

As argued before, the fact that at low temperatures) 0, which corresponds to a depolarization accord-
ing to Eq. (6), cannot be accounted for by the vortices
themselves. Hence, it can be concluded that the Hux is
not homogeneously distributed.

When the temperature is raised after the field input,
two processes take place. The first is thermal excita-
tion; heating the sample "pushes" the vortices out of the
pinning centers, allowing them more &eedom to move.
The second process is expansion of the vortices with in-
creasing temperature. This expansion is caused by the
fact that the closer the temperature is to T„ the longer
the penetration depth becomes. Because the penetra--
tion depth is directly related. to the diameter of the vor-
tices, the intervortex repulsion will act over a wider range
around the vortex core.

As soon as the field pulse ends, the vortices are cap-
tured in their present position and shape, leading to a
distribution of bent Hux lines that is not homogeneous.
When the temperature is raised, the vortices are excited
out of the pin potentials and try to stretch to lower their
volume and hence their field energy. At a temperature
of 20 K, the pinning forces are no longer strong enough
to keep the vortices bent, and so they all align. This
alignment is seen in Fig. 4(a) as n~ going to zero. This
means that field Huctuations are no longer present in the
direction perpendicular to the applied field.

In the next temperature range between 20 K and 40 K,
o.

~~

decreases linearly to zero [Fig. 4(b)]. This is caused
by the intervortex repulsion. As stated before, the vor-
tices obtain more freedom of movement with increasing
temperature. This &eedom allows them to choose a po-
sition with as little repulsion by neighboring vortices as
possible, leading to a more homogeneous distribution of
Hux in the sample.

Above 40 K some remanent field is still present (Fig. 3),
but no depolarization or Geld fluctuation is measured
(Fig. 4). This means that there is a homogeneously dis-
tributed Hux lattice present in the sample. The linear
decay of the remanent field is caused by the expansion of
the flux lines and lattice, resulting in a lower flux den-
sity. At the transition temperature T the remanent field
disappears. This linear dependence of (B) = neo, with
n the density of vortices, leads to the conclusion that
(B) (1 —T/T, ). The lattice spacing is equal to 1 over
the square root of the density. So the lattice spacing b is
related to temperature in the following way:

Tl
&c)

In a similar experiment to that described above but
with a constant Geld of 2 kG applied for 2 h after zero-
field cooling, the results were quite different. Because

a superconducting coil was used in this experiment, no
data could be obtained below the T,=9.2 K of the coil
wire, for reasons of depolarization by a remanent field in
the coil. The temperature dependence of the remanent
field after switching off the applied field is linear over
the whole range &om 9.2 K up to 100 K. Also over this
range, no measurable depolarization is observed. From
the latter remark it must be concluded that the field is
homogeneously distributed. Again this indicates that the
lattice spacing depends on the temperature as given in
Eq. (14). Apparently with a pulsed field applied, the
Geld inside the superconductor has no time to relax and
is therefore captured in a chaotic situation. In the dc
experiment the flux can relax while the field is still on,
resulting in a homogeneous distribution being captured
after the applied field is switched off.

V. CONCLUSIONS

In the described neutron-depolarization experiment on
the flux distribution in sintered YBa2Cu30, some re-
markable effects are observed. Prom constant-field and
pulsed-Beld experiments a clear influence of the method
of field input can be seen on the distribution. After a
pulsed-field input, the flux lines are bent in bundles and
are not homogeneously distributed. After dc input of
Geld a homogeneous distribution is observed. Both situ-
ations do not change in time.

With 3DND it is possible to measure the magnetiza-
tion and the average local Hux distribution throughout
the sample as a function of the temperature at the same
time. After pulsed input of Geld, the temperature de-
pendence of the magnetization shows a nonlinear decay
at low temperatures, changing to a linear dependence at
40 K where also the flux distribution becomes homoge-
neous. The fast decay at low temperatures is probably
caused by a high flux density close to the sample edge.

In the temperature dependence of the distribution,
three temperature areas can be observed. In the first
area, between 4.2 K and 20 K, the flux is bent in bundles
with a size of the same order of magnitude as the clus-
ter size in the sample. With increasing temperature, the
flux is stretching and is relaxed to a completely aligned
distribution at 20 K. In the second area, between 20 K
and 40 K, a relaxation to a homogeneous distribution is
observed. At temperatures higher than 40 K, no depo-
larization is measured, leading to the conclusion that the
distribution is homogenous up to T . The linear decay
with temperature of remanent magnetization above 40 K
leads to a temperature dependence of the lattice spacing
according to Eq. (14).
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