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Nonlinear surface impedance for YBa2Cu307 thin films:
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We present measurements of the surface impedance as a function of frequency (1—17 GHz),
temperature (4.2—91 K), and peak rf magnetic field (0 & H, r & 500 Oe) for high-quality epitaxial
YBa2Cu&O& thin films using a stripline-resonator technique. The lowest surface resistance at 1.5
GHz was 15 pO at 77 K and 3 pO at 4.3 K. The results for the low- and intermediate-field regions
(H, r & 50 Oe at 77 K) are explained by a coupled-grain model, which treats the film as a network
of superconducting grains connected by grain boundaries acting as resistively shunted 3osephson
junctions. Quantitative agreement has been obtained between the model and the measurements.
The effective junction critical current density, grain size, and shunt resistance are used in the model
to characterize the 6lms. The high-field region may be explained by Qux penetration into the grains
but is not modeled in detail here.

I. INTRODUCTION

Microwave measurements of the surface impedance
Z, = B, + jX„where R, is the surface resistance and
X, the surface reactance, provide one of the most useful
probes of the superconducting state. The surface resis-
tance B, results from microwave power losses and can be
related to the normal carrier density, whereas X, reveals
information about the superconducting electron density.
Z, is a material parameter and is defined as the ratio of
the electric field at the surface to the surface current den-
sity of a semi-infinite half-space homogeneous conductor.

This paper is concerned with measurements and mod-
eling of Z, as a function of temperature, frequency, and rf
magnetic field of high-quality YBa2Cu307 thin films
in order to provide insight into the mechanisms of su-
perconductivity and to better understand the microwave
properties when the fi.lms are applied to practical devices.

The surface resistance A, in epitaxial thin films
of high-temperature superconductors deviates consider-
ably from the predicted BCS exponential drop at low
temperature below the superconducting transition tem-
perature T . The difference between the measured R,
and that calculated from the BCS theory is defined as the
residual surface resistance, which is in part the subject

of this paper. All superconductors show a finite resid-
ual surface resistance which dominates the intrinsic BCS
value at sufficiently low temperatures. In the oxide high-
T materials, however, the residual surface resistance is
dominant up to t = T/T = 0.9. As will be discussed be-
low, our analysis and measurements are consistent with
the residual surface resistance being an extrinsic effect,
resulting from defects in the material.

The nonlinearity in Z„ i.e., the dependence of Z, on
the microwave current I,f, in the oxide superconductors
has been observed by a number of workers in both bulk
and thin film materials. Nonlinear effects provide a
means to study the pair-breaking process, vortex cre-
ation, and vortex motion. A better understanding of
the nonlinearity can also help high-T film makers char-
acterize and improve their films. The strong power de-
pendence of Z, in high-temperature superconductors in-
variably affects possible applications of these materials.
Decreases in the resonant Q or increases in device loss
have a negative impact on device performance. More-
over, a nonlinear impedance leads to such nonlinear ef-
fects as intermodulation distortion and harmonic genera-
tion. Microwave frequency 1/f noise may also be related
to nonlinear conduction processes.

In this paper we attempt to model the linear (in the
limit of zero rf field) surface impedance as well as the
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nonlinear efFects in one self-consistent model. The linear
residual surface resistance has also been an important
subject for study in high-T, materials, and a number
of authors have proposed models to explain it. The
nonlinear e8'ects have also been measured by a variety
of workers. ' ' Little work, however, has been done to
date to model the nonlinear eKects in epitaxial films. The
epitaxial films reported here show similar behavior from
sample to sample and. therefore can be modeled in a con-
sistent manner.

A preliminary report of our experimental results dis-
cussed the possibility that the Ginzburg-Landau (GL)
theory could be used to explain them. It was shown
that the functional dependence of R, (T) on rf power was
consistent with the GL theory. Lam et al. have also
shown that the GL theory can be used to fit the change
in the resonant frequencies. Further eÃorts to calculate
quantitatively the power dependence of R, (T) using the
GL theory have shown that the power-induced change in
R, (T) deduced from our measurements is too large to be
explained by the GL theory with a reasonable value of
the thermodynamic critical field H . In addition, even
with an extremely low H, (( 0.1 T at 0 K), the GL the-
ory fails to simultaneously fit the power dependences of
both R, and the resonant frequencies with the same pa-
rameters. As will be seen later, the coupled-grain model
developed in this paper agrees quantitatively with our
measurements and can fit simultaneously both R, and
the resonant frequencies with the same parameters.

The coupled-grain model presented here is based on
the film being composed of a network of superconduct-
ing grains connected by grain-boundary weak links acting
as resistively shunted Josephson junctions. The grains
are modeled as having intrinsic properties which can be
calculated from the BCS and the Ginzburg-Landau the-
ories. The properties of the grain boundaries are ex-
trinsic to those of the grains. The residual R, and the
nonlinear part of R, are related to the properties of the
grain boundaries which dominate over those of the grains
for temperatures T/T, ( 0.9. The magnetic penetration
depth A contains information on both the grains (i.e. , the
energy gap) and the grain boundaries (i.e., the junction
critical current density and the shunt resistance). Phys-
ically, the grain boundaries determine the resistance be-
cause they are in series with the very small intrinsic re-
sistance of the grains at low temperature. The grains,
however, determine much of the inductance of the film
(and hence the current distribution), since they consti-
tute most of the volume of the material. This simple
physical picture explains why the measured penetration
depth is close to its intrinsic value, while the surface re-
sistance is orders of magnitude larger than its intrinsic
value at low temperatures.

This paper is organized as follows: Section II describes
our experimental techniques and defines the parameters
to be used later. Section III presents our data on R, and
A in both the linear and nonlinear regimes. Section IV
develops a coupled-grain model to explain the data. In
Sec. V, reasonable parameters are substituted into the
model and the results are then compared with the mea-
surements. Section VI is the summary.

II. EXPERIMENTAL TECHNIQUES
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FIG. 1. Stripline resonator.

A stripline resonator technique was used to measure
the surface impedance of YBa2Cu307 thin films. The
experimental method and device fabrication have been
described previously. Figure 1 shows the cross section
and the top view of the resonator. At resonance, the in-
duced rf current forms sinusoidal standing waves of wave-
length 2l/n along the length l of the conductors (z direc-
tion) where n = 1, 2, . . . is the mode number.

In this study, several YBa2Cu307 films have been
measured. Some characterization parameters for four
films with the lowest zero rf field surface resistance and
the weakest rf field dependence are tabulated in Ta-
ble I. The superconducting transition temperatures T
were determined from rf measurements, and the critical
current densities J for films deposited under the same
conditions were obtained by dc transport measurements.
The zero-temperature penetration depth A(0 K) was esti-
mated from the temperature dependence of the resonant
frequencies.

The films were deposited by oK-axis in situ sputtering
onto LaA103 substrates. They have high superconduct-
ing transition temperatures (between 86 and 90 K), nar-
row transition widths (less than 0.5 K), and dc critical
current densities that exceed 10 A/cm at 4.2 K and
10 A/cm at 77 K. The low-field surface resistance is
comparable to that of other high-quality films reported
in the literature.

To measure the nonlinear surface impedance Z, (H,g),
where H, g is the peak surface magnetic field generated
by the rf current, H, p is varied by changing the input
power to the resonator and measuring Q and the resonant
frequency fp as a function of power level. R, and X, are
derived from Q and fp, respectively, and H, r is calculated
from I,p as described later. Here L, = jw poA where
ur = 27r f, f is the frequency, and pp the permeability of
free space.

At low power, the resonant curve is Lorentzian in
shape, and Q is given by fp/8 fp, where li fp is the 3-dB
bandwidth. As the power is increased, the resonant curve
deviates from the Lorentzian line shape. When the res-
onant curve gets distorted, the calculation of Q by the
3-dB bandwidth criterion becomes invalid. An equiva-
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TABLE I. Parameters of the YBa2Cu307 films measured.

!

Thickness d (p,m)

T, (K) !

A(0 K) (pm)
J, (4.3 K) (A/cm')!

Film 1 Film 2 Film 3 Film 4

0.3
86.4
0.17

& 10'

0.3
89.5
0.22

& 10'

0.3
89.6
0.27

& 10'

0.3
90.0
0.20

& 10'

Ip —— r„(1—r„)8Q,P
n7t Zp

where r„ is the voltage insertion ratio, related to the
insertion loss IL by IL = —20 ln r„, Q, is the unloaded Q
of the stripline resonator which can be calculated from
the measured loaded Q and the IL, P is the incident
power, n is the resonant mode number, and Zp is the
characteristic impedance of the stripline. The current
as a function of the position z along the length of the
stripline is

n7r z
Iqg(z) t) = Ip slI1

l
cos(u)t),

where l is the length of the resonator center line and
u = 27r f with f being the frequency. Though derived as-

lent circuit can be used to show that Q is proportional
to the insertion loss at the peak of the resonant curve.
In practice, however, the Q values measured by the 3-
dB points and by the insertion loss at the resonant peak
are found to differ by less than 10%. Consequently, we
used the 3-dB bandwidth criterion to calculate Q in this
paper. The resonant frequency for the non-Lorentzian
resonant curve is still at the peak of the curve, where
the total reactance of the circuit is zero. The shape of
the non-Lorentzian curves, which is typical of a nonlinear
oscillator, has been modeled quantitatively by Oates et
al. , whose results are in excellent agreement with the
experimental data.

As is the case for any transmission-line geometry, in the
cross-sectional xy plane of the superconducting stripline,
the rf current density peaks at the surfaces, edges, and
corners. For the superconducting Y-Ba-Cu-0 stripline
in the frequency range that was considered in this work
(1 ( f ( 17 GHz), the Meissner effect dominates over
the classical skin-depth effect in determining the depth
of the rf field penetration. At 77 K and 1 GHz, by taking
the normal resistivity p to be 50 @Oem, the skin depth
is estimated to be 11.4 pm, which is much larger than
the effective magnetic penetration depth (A 0.2 pm).
The scale of the rf current peaks in the cross-sectional
xy plane of Fig. 1 is hence determined by A (except at
temperatures very close to T, which are not considered
here, where A exceeds the skin depth).

From the input power and insertion loss, we can cal-
culate the rf current in the standing waves at resonance.
As derived in Ref. 18 for the limit of zero rf current (the
linear case), the peak current Ip at the maxima of the
standing wave is given by

suming a linear circuit, Eqs. (1) and (2) will be used
to calculate the current at high rf power because, as
presented in Sec. III, the measurements show that the
changes in the total inductance of the transmission line
are small, even at the highest rf power levels considered
in this paper. Therefore, the total current and the cur-
rent distribution remain, to a good approximation, un-
changed at high power, since they are determined by the
inductance.

In the limit of zero rf field, A(T) has been evaluated s ~4

from the temperature dependence of the resonant fre-
quencies, assuming the two-fluid model temperature de-
pendence A(T) = A(0)/gl —(T/T )4 with T and A(0)
the fitting parameters. The values for A(0) determined
this way (see Table I) are comparable to values found by
others '.' The calculated A(0) is sensitive to both T,
and the assumed temperature dependence of A(T), and
hence can have a systematic error of up to 20%.

Similarly, in the limit of zero rf field, B„defined as
the real part of the ratio of the surface electric field to
the surface current density for a semi-infinite half-space
conductor, can be obtained from Q„ the unloaded Q,
by

R. = I'[A(T)/d] f/Q,
where I'[A(T)/d] is the geometrical factor for a stripline of
film thickness d and effective London penetration depth
A(T). Given a (uniform) effective complex resistivity p,
the surface resistance B, is related to p by

B, = Re(Z, ) = Re[(j~ppp)'~ ].

Throughout this paper we present the surface impedance
data as a function of H, g, defined as the peak rf field
at the edges of the center conductor of the stripline
and at the peaks of the standing-wave maxima at res-
onance. The field H, g can be calculated from the current
distribution after using Eq. (1) to obtain the peak cur-
rent Ip. In the limit of zero rf field, H, g is proportional to
Ip, and the proportionality constant is a function of the
geometry and A(T). At finite rf field, the proportionality
constant becomes dependent also on I,g. For the low-
and intermediate-field regions (the vortex-free regions),
we can use the zero-field value for the proportionality
constant since the power dependence of this constant is
weak. For the high-field region, which is not discussed
in detail in this paper, our estimate yields only an upper
limit to the true H, g.

For rf fields at which nonlinear effects become observ-
able, the power dependence of the geometrical factor I' in
Eq. (3) must be taken into account. Furthermore, Eq. (4)
no longer holds, since the bulk resistivity p becomes spa-
tially nonuniform. Nevertheless, we define an effective
surface resistance as

B, —:I'[A(T)/d] f/Q„
which reduces to Eq. (4) if p is spatially uniform. (In the
low- and intermediate-field regimes considered in this pa-
per, p is in fact fairly uniform, as we shall see in Sec. IV.)
This is the definition for B, that we use throughout the
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A(T, H r)—:P[fp(T, H, r)], (6)

where I' [fo(T, H, r)] is the function mapping the
temperature-dependent fo(T, 0) into A(T, 0) in the zero-
field limit. Recall that fo denotes the resonant fre-
quency (of a certain mode n) of the resonator, whereas
f denotes the frequency. The field-induced change
AA(T, H, r) can be calculated using

AA(T, H, r) 2L 4 fp(T, H, r)
AdL/dA fp

(7)

where L is the total inductance of the stripline resonator,
and dL/dA is its derivative with respect to A.

III. EXPERIMENTAL RESULTS

A. Zero rf Beld limit

paper. Note l [A(T)/d] here is the geometrical factor
in the zero-field limit (assumed to be independent of rf
power).

Analogously, the effective London penetration depth
A, which is inversely proportional to the superconducting
carrier density, becomes spatially nonuniform for nonzero
rf Belds. We define, however, an effective A as follows:

T, instead of decreasing exponentially to zero for T + 0
as predicted by the BCS calculations. The high values
of R, (T ~ 0) for high-temperature superconductors are
probably nonintrinsic since these values vary from sample
to sample (Fig. 2) and sometimes even within the same
samples over time.

The small local maxima in the R, (t) curves around the
reduced temperature t —0.6 are less prominent for res-
onator 1 than for the other two. Other workers ' have
observed similar peaks in B„although the temperature
at which these peaks occur and the values of their heights
appear sample dependent. The significance of the peaks
is not yet well understood.

B. rf Beld dependence

All the rf field dependence data presented in this sec-
tion come from resonator 1. Equivalent measurements
on resonators 2 and 3 show similar behavior. Figure 3
shows a typical set of values for the measured B, and A

as functions of H, p. The solid lines are least-squares fits
of the data to the functions

R, = R, (0)[1+bRH r]

and

We define the zero-Beld. limit for H, g as the value of
H, r below which R, (H, r) is essentially independent of
H, g. For all of the striplines reported here, H, g & 0.5
Oe satisfies this definition. Experimentally, we find that
the behavior of B, is dominated by the residual surface
resistance at low temperature (T/T, ( 0.9) and the BCS
theory does not apply. Figure 2 shows the zero field B,
vs the reduced temperature t = T/T, for resonators 1
(circles), 2 (asterisks), and 4 (triangles). At 1.5 GHz,
the lowest B, value is 15 pO at 77 K and 3 pO at 4.3
K. These films show the typical B, vs T behavior. As
observed also by others, ' B, drops sharply near T but
then levels off to become nearly independent of T at low

10—2

A = A(0) [1+b„H,',],
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respectively, for H, g ( H„, where b~ and bp are fit-
ting constants. We define H„ to be the field below
which both curves exhibit quadratic dependences on H,p.
This quadratic behavior is explained by the coupled-grain
model introduced in Sec. IV. We determine H„by the fol-
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FIG. 2. Zero field R, for resonator 1 (circles), 2 (asterisks),
and 4 (triangles) as a function of the reduced temperature
t = T/T, . See Table I for the parameters of the films.

Hrt (oe)
FIG. 3. A typical set of data for the surface resistance

R, (circles) and the penetration depth A (squares) vs H, r
These data are for T = 77.4 K and fo ——1.5 GHz. The
dashed line separates the vortex-free (left) region from the
vortex-penetration (right) region. The circles refer to the
left-hand scale and the squares to the right-hand scale. The
solid lines are the best least-squares Gts to the quadratic func-
tions R, = R, (0) [1 + b~H r] and A = A(0) [1 + bpH r] for the
circles and squares, respectively, where R, (0) and A(0) denote
the zero-6eld values, and bR and bq are fitting constants.
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lowing procedure. First, we plot B, as a function of H, &.

In the low- and intermediate-field regions, the data fol-
low a straight line since B, varies quadratically with H,g.

Second, we fit a straight line through this low and inter-
mediate region. The field point above which the data
deviate by more than some threshhold value is defined
to be H„. In Fig. 3, the threshhold value is 5 x 10 0
at 77.4 K and 1.5 GHz, giving H„= 50 Oe. The pa-
rameters bR and bi [in Eqs. (8) and (9)j are important
for comparisons with the coupled-grain model discussed
in Sec. I I/' of this paper. We have found that b~ and bp

do not depend very strongly on the exact choice of the
value of H„. For example, for the case of the data shown
in Fig. 3, bR and 6~ vary by less than 5% for values of

„smaller than 50 Oe. This insensitivity of b~ and bp

to the choice of Hz is typical of the data at all temper-
atures and frequencies. Thus, as will be seen later ourseen a er, our
conclusions are not at all dependent on the value of H„.
Above Hz, B, increases faster than Hrf'

Figure 4 presents the unloaded Q vs H, r for resonator
1 at 77.4 K for the two lowest resonant modes n = 1 at
1.5 GHz and n = 2 at 3.1 GHz. From the figure we)

see that for the low- and intermediate-field regions, Q is
approximately proportional to 1/f as would be expected
for R, oc f (Refs. 13 and 18) since Q oc f/R, At hig.h
field ~He (,i )) 50 Oe), the curves merge, indicating that
the Q's become independent of f or that R, oc f Thus.
the field H„= 50 Oe in Fig. 4 signifies a shift in the
frequency dependence of R, from R, oc f to R, oc f
Losses proportional to f are characteristic of quasipar-
ticle conduction losses (see Sec. IV), while losses propor-
tional to f are consistent with hysteresis losses due to
vortex penetration. Consequently, we conclude that Hz
specifies the vortex-penetration rf field (called H;i in Ref.
2) above which magnetic vortices penetrate the bulk of
the sample to cause hysteresis losses.

For the rest of this paper, we focus on the region H, ~ (
H„. Analysis of the high-field region will be given in a
subsequent publication.

Figure 5 presents a detailed set of B, vs H, g data at
different temperatures for fo ——1.5 GHz. A least-squares

0.3
~ fp = 1.5 GHz

0
82.3 K

0.2
V

o ~ 77.4 K

65.6 K 46.S K
0

V ~
0.1 — e

80 160 240 320 400 480

Hrf (Oe)

FIG. 5. R, vs H, f at fo = 1.5 GHz for resonator 1 at
di~ifferent temperatures. The solid lines are quadratic fits to
the data for H, g ( H„.

AA = bpH, q

is shown for H, r ( H„. The functional behavior of A(H, r)
is similar to that of R, (H, r). The fractional change in A,
however, is very small compared with that of B,. For

quadratic fit to Eq. (8) is shown at each temperature in
each of the intermediate rf Beld regions. All curves show
similar qualitative behavior. Each curve shows that at
high fields where H, f ) Hz, the increase in B, is faster
than H, &. The vortex-penetration field Hz decreases with
increasing T. For the sake of clarity, the H„value at each
temperature is not explicitly indicated.

Figure 6 shows AA/A vs H, r for the same temperatures
as shown in Fig. 5 except that there is no curve at 4.2 K
since the change in A induced by the rf power was smaller
than the experimental uncertainties. A least-squares fit
of the data to the quadratic form
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80 1OO 0
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FIG. 4. Q vs H, r for the first two modes (fo ——1.5 GHz
and 3.0 GHz) of resonator 1 at 77 K. The curves merge at
high H, f, showing that the frequency dependence of Q and
therefore R, change at high power levels.

FIG. 6. A/A vs II,i at fo = 1.5 GHz fo'r resonator 1 at
different temperatures. The solid lines are quadratic fits to
the data for H, q ( H„.



48 NONLINEAR SURFACE IMPEDANCE FOR YBa2Cu307 — THIN. . . 6405

2.0 x 10

1.5

1.0

V 84.3 K

82.3 K

I I

fp = 1.5 GHz
3, however, Hz is independent of frequency. We are cur-
rently investigating these results for Hz( fo) to determine
the correct relation between H„and fp. (The coupled-
grain model to be presented in Sec. IV is unaffected by
the frequency dependence of H„).

IV. MODELING

0.5
77.4 K

A. Introduction

0
40 80 120

~~ («)
160 200

FIG. 7. Afp/fp vs H i' at fp: 1.5 GHz for resoilator 1 at
the same temperatures as Fig. 6. The solid lines are quadratic
6ts to the data.

example, (AA/A) —0.01 « (AR, /R, )
—1.0 at 79.0 K,

1.5 GHz, and H, g ——50 Oe for resonator 1.
Remember that the expression for the effective A at

finite rf power in this paper is only an alternative ex-
pression of the resonant frequency of the stripline as de-
fined in Eq. (6). Figure 7 plots the resonant frequencies
fp as functions of rf field for the same set of tempera-
tures as in Figs. 5 and 6. These resonant frequencies
were used to calculate the corresponding effective A in
Fig. 6. The solid curves are quadratic fits to the form
fp ——fp(0)(1 —byH, &) where fp(0) is the zero-field reso-
nant frequency (of that particular mode n) and by is the
Gt ting constant.

Figure 8 plots B, vs H, g at T = 79.0 K for several
resonant frequencies n = 1, 2, 3, and 5 for resonator l.
Mode 4 coincides with and is distorted by a resonant fre-
quency of the package, and hence is not shown here. The
fit ting procedure is the same as that used in fit ting the
data in Fig. 5. The vortex-penetration Beld II„ in Fig. 8
decreases with increasing frequency. For resonators 2 and

Various models have been proposed to explain the non-
BCS behavior of B,(T) of the high-temperature super-
conductors. The coupled-grain model by Hylton et al. '

is among the simplest of these models, and it allows for
a natural introduction of the rf Beld dependence. Hylton
et a/. , who considered only the low-Geld Z„modeled the
superconductor as a network of superconducting grains
coupled via Josephson junctions. The model, however,
fails to account quantitatively for the temperature de-
pendence of B, at low temperature (t = T/T, & 0.8).s
Attanasio et al. extended the coupled-grain model to
take into account the field-dependent effects from the
grain boundaries.

In this paper, we further developed the coupled-grain
concept to simultaneously describe B, and A as functions
of temperature, frequency, and rf field amplitude. The
model accounts for contributions from both the grains
and the grain boundaries, resulting in the equivalent cir-
cuit for the intra- and intergranular admittances shown in
Fig. 9. In the following subsections we derive expressions
for the effective complex resistivity of the Y-Ba-Cu-0
films. The material is assumed to be composed of identi-
cal superconducting grains coupled together by identical
intergranular regions, which function as Josephson junc-
tions.

B. EEFective complex resistivity

Intragv anular v esistieity

I S t S ) l I

0.6—

7.7 6Hz

0

4.6 GHz

V

T=790K

04
K

0.2

oo0
oo0
1.5 GHz

0 '

0 50

Hrt (oe)
100 150

FIG. 8. R, vs H, & at T = 79.0 K for various frequencies for
resonator 1. The solid lines are quadratic H, &

its to the data.

For the Y-Ba-Cu-0 grains, we apply the anisotropic
Ginzburg-Landau (GL) equations with the transport
(rf or dc) current density J(r, r) in the ab plane where
7 stands for time. We assume isotropy in the ab plane.
The frequencies considered in this paper (( 17 GHz) are
low enough that the Meissner effect dominates over the
classical skin-depth effect and hence the rf current can be
treated in the same way as a dc current. Furthermore,
that these frequencies are much smaller than E~(T)/5 )
1 THz satisfies the condition for the applicability of the
GL equations. Since only the transport currents in the
ab plane are considered, the results here are identical
to those obtained from solving the usual isotropic GL
equations.

Considering the case in which H, g is small enough that
the order parameter 4' varies slowly in space (on the order
of the intragranular penetration depth A~, which is much
larger than the coherence length), we can set V'i' = 0
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and

p& 2 = Cd»A (T, J) (14)

with

A (T, J) = A (0 K)[1+bp(T) J (r, ~)] . (15)

Note from Eq. (13) that os q and hence ps q go to zero as
T ~ 0 (see Ref. 26).

2. Inter granular v eaiativity

Ggg

VvVW.
aQq

vWW

(b)

'hhhH'

Qg q

FIG. 9. (a) Two grains of effective grain size a are coupled
by a grain boundary which acts as a shunted Josephson junc-
tion. One of the two grains and a grain boundary constitute
a unit in the coupled-grain model. (b) The equivalent circuit
of the unit in (a) with os, z and os, 2 the real and imaginary
parts of the conductivity of the grain, and o.z & and o J,2 the
real and imaginary parts of the grain boundary averaged over
the grain size. Note that the shunt resistance Rz is inversely
proportional to o g q and the Josephson junction is represented
as purely inductive for low rf currents (much less than the ef-
fective critical current of the junction).

a'»Az~(T)h ( J'(r, ~) )
2e J,(T)R~ E J2(T) (16)

and

The intergranular resistivity is derived assuming the
grains are connected by resistively shunted Josephson
junctions of efFective critical current density J . For
J (( J„at the frequencies considered here, the induc-
tive impedance dominates the resistive impedance (see
Fig. 9). The real and imaginary parts of the effective re
sistivity pJ ——p1 z +jpg 2, averaged over the cubic grains
of size a, are derived in Refs. 8 and 22 and rewritten
keeping only the lowest-order terms in J ((( J,),

J'(r, r) )
P~.2 = ~»&~(T)

I
1+ 2J2T )

(17)

and V' 4 = 0. If we rescale the dimensions so that the
anisotropic GL equations become isotropic and use the
Coulomb gauge V' - A = 0 in the new coordinates, the
superconducting electron density n, as a function of cur-
rent density can be shown to be

(T, J) oc n, (T, J) = n, (T, O)[1 —bp(T) J (r, w)],

(ll)
where bp(T) = A (T)/2H, (T), and H, and As are the
zero-current thermodynamic critical field and intragran-
ular London penetration depth, respectively. At the cur-
rent densities considered in the low- and intermediate-
field regimes, bp(T) J2(r, w) 0.01, assuming H, (0 K) of
the order of 1 T (Ref. 24) and As(0 K) = 0.15 pm.
Therefore, the shift in n, or A can be treated as a
perturbation. If we use the temperature dependences
As oc 1/(1 —t ) ~ and H, oc (1 —t ) from the two-fiuid
model, then

A2(0 K)
bp(T) =

2H'(0 K) (1 —t')(1 —t')'
Assuming that the real part og q of the intragranular con-
ductivity og = o.

g q
—j0 g 2 is much smaller than the

imaginary part o.
g 2, we get the usual two-ftuid model

resistivity pg = pg q + jpg 2, where

Og1
pg, 1 0

where the effective continuum penetration depth AJ is
defined as

X,(T, J) =i
(2eaJ (T)» Jz(T) )

Rg is the (temperature-independent) shunt resistance of
the Josephson junctions and the junction cross-sectional
area A = a or ad for grain size a smaller or larger than
film thickness d, respectively. The effective continuum
penetration depth A J should not be confused with the
Josephson penetration depth which considers the details
of the penetration in the junction region even though
the two resemble each other in form (in the limit of
zero rf power J ~ 0). The explicit power dependences
in Eqs. (16) and (17) arise from the power dependence
of the inductance of the Josephson junction. We have
dealt explicitly with the nonuniform current distribution
J(r, r), which is assumed to be the same as that for a su-
perconducting stripline with no grain boundaries. (This
assumption is valid since our films are in the large-grain
and strong-coupling regime, 27 as we see in Sec. V.) Conse-
quently, our results, which are derived for short junctions,
can be generalized easily to long junctions by integrat-
ing over the whole junction area, assuming a uniform J,
across each junction.
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8. Total resistivity

The total effective complex resistivity p = p1+ jp2 is
the sum of the intra- and intergranular resistivities, pg
and pp, respectively, where

P1 = Pg, 1 + PJ, 1

where A = A + A J [see Eq. (21)]. Equation (30) in the
limit of zero rf Beld is similar in form to that derived
by Hylton et al. , except that p1 here includes both the
intra- and intergranular contributions [see Eq. (19)].

D. rf field dependence

and

p2 pg, 2 + p1, 2 ~00~ (T~ J)~

with

A (T, J) = A (T, J) + A~(T, J).
From Eq. (16), we obtain

(21)

We estimate the power dependence of Q and the res-
onant frequency fo (of some mode n) for H, r ( Hz.
Since the center conductor is much narrower and its peak
current density is at least 2 orders of magnitude larger
than that in the ground planes, ' the contribution to
the surface impedance from the ground planes is more
than an order of magnitude smaller and hence will be
neglected. The power loss P of the stripline resonator,
averaged over one cycle, is given by

with

p, (f, T, J) = pg(f, T, O)(1+ bg J ), (22) P=
1/ fp

py(fo, T, J)J (r, ~)dxdy,
0 A

where

bp
——bpg+ bp J

2[1 7L (T 0)/2]bo(T) p y(f, T 0)
[1 —n. (T, O)) p, (f, T, O)

(23)

(24)

where A is the cross-sectional area of the center conduc-
tor and J(r, w) is the current density flowing in the z
direction (along the stripline of length l) as calculated in
Ref. 14. From Eq. (2),

is the intragranular contribution and
n7r

J(r, 7) = Jo(x, y) sin z cos((dpr)
l

(32)

1 pg, (f, T, O)

J2(T) pg(f, T, O)
(25)

p2 oc A'(T, J) = A'(T)(1+ bg J'), (26)

with

is the intergranular contribution. From Eqs. (14) and
(17), we write

where j& Jp(x y)dx dy = Io and (up = 27' fo. We have as-
sumed that the current distribution remains una8'ected
by a change in the rf power. This assumption is good in
the low- and intermediate-field regimes (H, r ( Hz) since
the change in A, which determines the current distribu-
tion, is small relative to A as discussed above in Sec. III B.
Substituting Eq. (22) into Eq. (31) and integrating over
7 and z, we obtain

bq ——bag+6 (27) P(Ip) = P(0)
i
1+ GIO i,

( 9b

16

where where

A'(T)
g g ——2bp(T) (28)

j~ Je dx dy

j~ Jo2dx dy(j Jpdx dy)2
(34)

is the intragranular contribution and

1 A2~(T)

J'( ) '( )
(29)

l
P(0) =—

4 pg (fp, T, 0)Jo dx dy.

is the intergranular contribution.

C. Zero rf field limit

The surface impedance Z, can be calculated from the
formula for the surface impedance of a good conductor
Z, = (jwpsp) ~, where p is the total effective resistivity
derived above. Since p2 » p1,28

The factor G in Eq. (34) is determined by the cross-
sectional current distribution which depends on the ge-
ometry of the transmission line.

The total stored. energy E averaged over one cycle in
the stripline resonator can be expressed through the in-
ductive part of the circuit: E = E + EI„where E is
the stored magnetic energy and EI, the stored supercur-
rent kinetic energy (giving rise to the kinetic inductance).
More speciBcally,

Z, =B,+ jX, = —+ j(upoA,
P1
2A

(30) po~H(r, &)~ dr (36)
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and

(1/fp) o
ppA (T, J)J (r, r )dx dy,

(37)

fo(Hrf) = fo(0)(1 —byH, g), (38)

in which the quadratic coefficient bf, that depends on T,
is given by

Afo 1 (Lq(H, f = 0)l &9bwl
by = — 2C=-

foIo 2 (L(Hr =0) ) (16) (39)

where Afp = fp(Hrf) —fp(0) and C = C(T) is the pro-
portionality constant between Ip and H, &

in the limit
Ip ——0 i.e. Ip2 = CH2f.

Similarly, we can write

~E(H, f = 0) t' 9bp

P(H, f = 0) q 16 (4o)

Since R, oc 1/Q, we obtain an expression for the
quadratic coefficient bR(T) [defined in Eq. (8)]:

where V is the total volume of the stripline resonator and
H(r, r) the rf magnetic field. The total inductance L,
the magnetic inductance L, and the kinetic inductance
LI, of the resonator can be obtained from 4 LIp ——E,
4I ~Ip ——E~, and —LI,Ip ——EA. , respectively. Since the
current distribution is basically unaltered by a change in
the rf power as discussed before, increasing the rf power,
or equivalently the rf Beld, produces little change in L
Consequently, we can attribute all of the power depen-
dence of L to Li, . (Direct numerical calculations of the
kinetic inductance and the internal and external induc-
tances confirmed the domination in power dependence
of the kinetic inductance. ) Since 4 fp/fp —— AL/2—L,
from Eq. (37), after a few simple integrations, we get

the magnitude of A is dominated by the grains. The
field dependence of A, however, is dominated by the grain
boundaries.

There are three fitting parameters, J,(T), a, and Rg,
that need to be determined in the coupled-grain model.
Since the power dependence of R, (T) and X,(T) are most
sensitive to J,(T) and a, respectively, we will start by
comparing the calculated b~(T) and by(T) with the mea-
surements. The extracted values of J,(T) and a will then
be used in estimating the zero field R, (T) using Rg as a
fitting parameter.

A. rf field dependence

The rf field dependence of R, and A in the low- and
intermediate-field range is characterized by the quadratic
coefficients bR(T) and by(T) defined in Eqs. (8) and (38),
respectively. To estimate bR(T) and by(T) from Eqs. (41)
and (39), respectively, we calculate the geometrical factor
G(T) from Eq. (34), the proportionality constant C(T) in
Io ——CH, z, and the ratio Li, (H, r = 0, T)/L(H, r = 0, T),
using the current distributions derived numerically by
Sheen e,t al.

1. Sur face resistance

1
P Pi~ (42)

throughout the entire temperature range below T .
Hence, from Eq. (41), we get

For the junction critical current density J,(0 K) be-
tween los and lor A/cm, the power dependence of
R, (or the unloaded Q) from the grain boundaries is
much larger than that from the grains, i.e. , bp g (( bp J,
assuming H, (0 K) of the order of 1 T (Ref. 24) and
As = 0.15 pm (Ref. 25) as before. From Eqs. (23) and
(25), we can write

R, (H, r ——0)Ip 16

where AR, = R.(H, f) —R, (0).

(41)
9b, ,

16

V. COMPARISON BETWEEN MODEL AND
EXPERIMENT

The real part pg i of the intragranular resistivity ap-
proaches zero exponentially for t & 0.7 in both the BCS
theory and the two-fluid model [Eq. (13)]. In contrast,
the imaginary part pg 2 oc A approaches a Bnite value
at T = 0. Consequently, we expect the introduction of
the grain boundaries to produce a large increase in R,
but only a relatively small shift in X, . In fact, the in-
tergranular contribution to A, becomes significant only
when there are enough "bad" grain boundaries (of low
junction critical currents), or more quantitatively, when
A J + Ag ~ We will see below that R, and its Beld depen-
d.ence are dominated by the grain boundaries, whereas

Figure 10 plots b~ derived from the data used in Fig. 5 as
a function of temperature. The solid line is the calculated
bR from Eq. (43) using a = 3.5 pm (as derived in the
next subsection), As(T) = As(0)/gl —(T/T, )4, and the
Ambegaokar form for the junction critical current density

J (T) = J (O)
' tanh (44)

where J,(0) = rr Es (0)/2e AR, and R is the
quasiparticle-tunneling resistance (different from the
shunt resistance Rg of the weak link). The critical cur-
rent density J (0) is a fitting parameter [to bR(T)]. (In-
stead of J, we could have equally picked R to be the
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FIG. 10. Temperature dependence of the quadratic coefB-
cient bR. The solid line is calculated from the coupled-grain
model using the first set of values from Table II. The dashed
lines are produced by the remaining four sets of values from
the same table.

FIG. 11. Frequency dependence of AR, /H, f. The solid
line is the best least-squares fit of the data to C~f with Cn
a fitting parameter.

fitting parameter since J oc R .) The energy gap Es(T)
is assumed to follow the BCS temperature dependence
and 2E&(0)/k~T, = 4.3 as used by Sridhar et al. to
fit their R, (T) data. As seen in Fig. 10, the agreement
of the temperature dependence between the calculated
curve (solid line) and the measurements is good over
the entire temperature range. Furthermore, the value of
J,(0) 4.0 x 10 A/cm obtained is comparable to the
transport critical current densities J, (0) of the samples
(see Table I).

The dashed lines in Fig. 10 are estimates of bR with
slight variations of a and J,(0) to show the sensitivity
of the calculations to these two fitting parameters (see
Table II). The shunt resistance RJ has been modified
correspondingly to yield the same zero field R, (T). Note
that Rg affects only the zero field R, (T) (and not b~ or
by), and bR is far more sensitive to J, than to a.

Figure 11 shows AR, /H, &
= [R,(H,r) —R, (0)]/H, f ——

R, (0)bR as a function of frequency. Since b~ is indepen-
dent of f [Eq. (43)] and R, (0) oc f (Ref. 18), AR, /H, &

is proportional to J This quadr. atic dependence on f is

TABLE II. Fitting parameters from the coupled-grain
model for the YBa2Cu307 films discussed in the text. Sets
2 through 5 for film 1 are chosen to give the same zero field
R, (T).

observed experimentally in Fig. 11, where the solid line
(through the origin) is the best least-squares quadratic
fit to C~f The fit. ting parameter CJr agrees within the
experimental error with the calculation using the best
calculated b~ and the experimentally determined value
of R, (H, f = 0).

2. Effective penetration depth

106=

DATA

Jc(OK) = 4.0 x 10
3Px106A/ 2

--—--—-50 x 10
--- --- --4 0 x 106
———4.0 x 106

A/cm, a = 3.5 Ijm &
2

10-8 =

With H, (0 K) of the order of 1 T (Ref. 24), we find
from Eqs. (18), (28), and (29) that bi, J(T) )) bi s(T)
even though AJ(T) ( Ag(T). In other words, the effec-
tive penetration depth A is determined by the grains but
its power dependence is governed by the grain bound-
aries. Figure 12 presents the measured bf as a function
of T. The solid line is the calculated by from Eq. (39)

Film (set)
~~

1 (1)

1 (4)
1 (S)

Best set.

J.(0 K) (A/cm )/

40x10
3.0 x 10
5.0 x 10
4.O x 1O

40xlo
3.4 x 10

2.1 x 10

a (pm) (

3 ' 5

3.5
3.5
1.O
6.o

3.0

3.o

Rg (mQ)

0.09
0.16
0.06
3.60
0.02

0.01

1P
—10

0

fp =1 5GHz

30 60
TEMPERATURE (K)

90

FIG. 12. Temperature dependence of the quadratic coefB-
cient bf. The solid line is calculated from the coupled-grain
model using the first set of values from Table II. The dashed
lines are produced by the remaining four sets of values from
the same table.
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using the value J,(0) = 4.0 x 10s A/cm2 obtained above,
and a as an adjustable parameter whose value a = 3.5 pm
(also used previously) gives a close fit to the data. The
agreement between the calculated by(T) and the mea-
surements is good. The effective grain size a is much
larger than the average grain sizes [typically less than 1
pm (Refs. 21, 30, and 31)] probably because it denotes
the average distance between only the grain boundaries
with low critical current densities which are important in
determining the power dependence of A.

The dashed curves in Fig. 12, which are calculated &om
the remaining four sets of parameters in Table II, are also
presented to show the sensitivity of the calculated by to
variations of the corresponding fitting parameters a and
J . It can be seen that by is nearly equally sensitive to
variations of both J,(0 K) and a.

Figure 13 plots 4 fo/H, &
—— [fo(Io) —fo(0)]/H, &

fo(0)by vs frequency. From the model, 4fo/H~& oc f
for the frequency range considered in this paper (fo ( 17
GHz), since by is independent of f [Eqs. (29) and (39)].
This linear dependence of the calculated 6 fo/H~& on f is
consistent with the measurement as seen by the straight
line fit in Fig. 13 (solid line) to Cy f, where the fitting
parameter Cy agrees within the experimental error with
the calculation using the best calculated by and the ex-
perimentally determined fo (H, i = 0) .

B. Zero rf field limit

The surface resistance R, falls rapidly below T, in both
the two-Quid model and the BCS theory. The dashed
curve in Fig. 14 shows a BCS calculation for B, as a
function of the reduced temperature t (Ref. 32) with
2Eg(0 K)/k~T, = 4.3, coherence length (o ——3.1 nm,
and mean &ee path lo ——7.0 nm as in Ref. 29, and
Ag(0 K) = 0.15 pm as before. Above t = 0.9, the R,
values derived &om our data drop more rapidly than
predicted by the BCS model. This sharp superconduct-
ing transition has been observed also in Y-Ba-Cu-0 sin-

1.2 x 10

0
z

ee't

0.8

Q4

2 3
fp (GHz)

FIG. 13. Frequency dependence of 6fo/H, &
The solid line.

is the best least-squares fit of the data to Cy f with Cy a
6tting parameter.
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FIG. 14. Zero field R, for resonator 1 (circles). The dashed
line is a BCS calculation with A(T = 0, H, i = 0) = 0.15 pm,
2Eg(0 K)/ksT = 4.3, coherence length (0 ——3.1 nm, and
mean free path lo ——7.0 nm. The solid line is a calculation
from the coupled-grain model as discussed in the text.

gle crystals. The behavior of B, at low temperature is
clearly non-BCS. By the coupled-grain model considered
here, the high residual value for B, below t = 0.9 must
come &om the grain boundaries. From Eq. (30), neglect-
ing pz i and letting pi ——pJ i for t ~ 0.9 where pg i can be
estimated from Eq. (16), we obtain the following relation
for R, in the H, g

—+ 0 limit:

R(f TO)=
2&(T, O)

C. Vortex-penetration field H„

Figure 15 shows Hz vs T for resonator 1 at 1.5
GHz. The long-dashed. curve is the best least-squares fit

By using the J,(T) and a derived in Sec. VA (set 1 for
film 1 in Table II), a least-squares fit of Eq. (45) to the R,
data gives Rg = 0.09 mO. The fit (solid line in Fig. 14)
looks reasonable especially at low temperature (t ( 0.3),
though improvements to the fit close to T can be made
if we introduce a temperature dependence to the effective
BJ.

The value of RJ obtained here is about 3 orders of
magnitude smaller than that measured by Gross et al.
and Chaudhari et al. on fabricated grain-boundary sin-
gle junctions. The difI'erence in RJ may be due to two
factors: the critical current densities of the fabricated
grain boundaries in Refs. 33 and 34 are an order of mag-
nitude smaller than those for our films, and our effective
grain size a is large. From Eq. (45), the fitting parameter
RJ goes as RJ J keeping everything else constant.
Our larger critical current densities, therefore, should ac-
count for most of the difI'erence between our value of
RJ and those measured from fabricated grain-boundary
junctions. ' Moreover, since the fitting parameter RJ
also goes as Rg a [Eq. (45)] keeping everything else
constant, our large effective grain size a should account
for the rest of the difference.
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FIG. 15. Vortex-penetration field H„(T) vs temperature
for resonator 1 at 1.5 GHz. The long-dashed line is the best
fit to H„(0 K)[1—(T/T, ) ] with H„(0 K) a fitting parameter.
The solid line is the best fit to the function H„= C~ J,(T)
where J,(T) is given by Eq. (44) and CH is a fitting param-
eter. The short-dashed line is the best fit to the function
H„= H„(0 K)[l —(T/T, ) ] as suggested in Ref. 3.

(weighted by the error) to the two-fluid model functional
form for the dc lower critical field Hz(0 K) [1 —(T/T, ) ]
where H„(0 K) is a fitting constant. The fit becomes very
poor below about 60 K, where the experimental points
also have larger error bars because of the gradual devia-
tion of B, from a quadratic dependence of B, on H, p at
low temperatures. Because vortices first enter the grain
boundaries (where superconductivity is weakened) rather
than the grains, H„ is more likely to reHect the lower
critical field H ~ J of the grain boundaries. Since H i J
is directly proportional to J,(T), ' the temperature
dependence of H i J should follow approximately that of
the J of a Josephson junction. The solid line in Fig. 15 is
the best least-squares flt to H„= CH J,(T) where J,(T)
is given by Eq. (44) and the proportionality constant CH
is a fitting parameter relating H, i J(T) to J,(T). The
results in Fig. 15 show that the fit of the experimen-
tal points to the Ambegaokar critical current function is
slightly better than that to the two-Huid model but still
well outside the experimental error.

If we use the functional form suggested in Ref. 3,
H„= H„(0 K) [1—(T/T, ) ] with H„(0 K) as a fltting pa-
rameter, the flt becomes excellent (short-dashed curve in
Fig. 15). This functional form for the vortex-penetration
field, however, is not well justified theoretically.

VI. SUMMARY

We have presented a detailed characterization of
Z, (T, f, H, t) for high-quality films of YBa2CusOy de-
posited in sitn on LaA10~ by o8'-axis sputtering. For
small H, g, we find that for reduced temperature t ( 0.5,
the real part of Z„ i.e. , R„difFers from the BCS the-
ory by orders of magnitude. With an appropriate set of
characteristic parameters J, a, and BJ we have

simultaneously accounted for the behavior of the zero
field B, and the rf Geld dependence of both B, and A as
functions of temperature and frequency, using a coupled-
grain model in which the superconductor is modeled as
a network of superconducting grains of intrinsic proper-
ties connected by weak-link Josephson junctions whose
properties are extrinsic to the fundamental material and
depend on film deposition and sample preparation.

It is interesting to note that the fractional power-
induced change in B, is more than 100 times larger than
the fractional change in A. This is explained by the
coupled-grain model in a simple way. The resistance is
dominated by the properties of the weak-link Josephson
junctions, which show a strong dependence on rf mag-
netic Geld. The zero-field inductance is dominated by
the intrinsic properties of the grains, which have weak
dependencies on the rf Beld. As the rf field is increased,
the intergranular inductance increases much more rapidly
than the intragranular inductance. The change in the
intergranular inductance, however, is moderated by the
large zero-field intragranular inductance.

The Beld H„signifies the onset of vortex penetration
into the grain boundaries. The behavior of B, and A in
the high-field region H, p ) H„has not yet been modeled
in detail. This will be the subject of further investigation.
We have identified the field H& as the field at which the
penetration of vortices becomes important. As discussed
earlier, there is a change in the frequency dependence
of the surface resistance above Hz. In the limit of zero
rf field, R, is proportional to f2, as would be expected
for losses dominated by quasiparticles. For larger fields,
B, becomes proportional to f, which is consistent with
hysteresis losses resulting from Hux penetration.

Work is currently under way to describe the rf field
dependence in the region where rf vortices are present.
We also plan to study the frequency dependence of H„
since our measurements on H„(f) to date are inconclu-
sive with regard to the frequency dependence. The data
of Fig. 6 indicate that Hz decreases with frequency; how-
ever, other samples have shown that H„can be inde-
pendent of f (see Fig. 7). The vortex-penetration field
H„(T) is not described well by either the BCS or the
Ambegaokar expression. This will also be investigated
further.
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