
PHYSICAL REVIEW B VOLUME 48, NUMBER 9 1 SEPTEMBER 1993-I

Fluxon bunching in supercurrent-coupled Josephson junctions
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We investigate analytically and numerically the interaction between Huxons of different Josephson
junctions coupled through Cooper-pair tunneling. We find that the supercurrent interaction gives
rise to attraction between Huxons regardless of their polarity, although Buxons of different polarity
are found to interact with a binding energy of an order of magnitude larger than between unipolar
fiuxons. When bias current is applied to a system of two coupled junctions we can analytically
evaluate the range in the difference of the bias currents for which Buxons are bound. The differences
in interaction between Quxons of equal and opposite polarity are discussed. Numerical simulations
of coupled sine-Gordon equations agree very well with the analytical predictions.

Synchronization of nonlinear oscillations is an impor-
tant subject in physics and engineering since the collec-
tive motion may have essentially different features when
compared to motion of the individual oscillator. An ex-
ample is the emitted electromagnetic power from an array
of Josephson junctions. For small junctions this power
has been shown to follow the "superradiant" theory and
increase with the square of the number of participating
oscillators. 2 For junctions with spatial extension, the
emitted power has been shown to be able to exceed even
this limit ("hyperradiance") (Refs. 3—5) if the oscillators
are operated in their fluxon modes. It is therefore impor-
tant to understand the nature of the different interaction
mechanisms possible for these types of oscillators. In this
paper we will investigate how a coupling of the supercur-
rents in two junctions affects the motion of fluxons. This
type of coupling has previously been investigated numer-
ically as well as experimentally for a system of two smalL
Josephson junctions.

We consider the normalized Lagrangian density of two
coupled one-dimensional sine-Gordon (SG) systems of
the variables Pq and P2..

) [ 2(g,. t —g, ) —1+ cosg;]
i=1,2

1 —cos

Here x is the spatial dimension normalized to the Joseph-
son penetration depth, t is time normalized to the inverse
plasma frequency of the junctions, and P, is the phase dif-
ference between the two superconductors' defining junc-
tion i. The parameter L is the critical current of the
coupling, normalized to the critical current of each junc-
tion. From Eq. (1) we get the Geld equations for P, in
the form

—P; tt —sing; = csin )
j=1,2

(2)

where i = 1, 2. The energy of this system is given by

i=1 2

(+A 1 —cosi ) P;
~

dx.

Introducing the usual perturbations to the system, we
can write the coupled set of perturbed SG equations as

P; ~~ —P; tt —sin P; = A sin )
(4)

where o. is a dissipative constant representing tunneling
of quasiparticles, and g; is the normalized bias current
through junction i. Note that for o. = g, = 0 this sys-
tem has been studied previously. For simplicity here
we have chosen to represent the individual junctions with
identical physical parameters, i.e. , the Josephson lengths,
plasma frequencies, critical currents, and the damping
parameters are identical for the two junctions. We have
represented these parameter differences through the indi-
vidual bias currents, g;. This is obviously a reduction of
the true parameter space, but it allows us to make some
analytical considerations of the dynamics when the sym-
metry between the equations is broken by one parameter
only.

Using the adiabatic perturbation theory we will
study the kink soliton, which for the unperturbed sys-
tem [left-hand side of Eq. (4)] is given by
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P(') = 4 tan exp(o';p(u;) [x —(;(t)]},
where (, is the center of the kink, u; = (; is its velocity,
7(u;) = (1 —u,. )

I)'2 is the inverse Lorentz contraction,
and 0,. = +1 is the polarity.

The existence of bound states between fluxons of dif-
ferent systems can easily be confirmed from the following
considerations. Let us assume that o. = g; = 0 and that
the two fields are given by

4I = PI' +V,(s)

(t2 = 4»' +v,(s)

where u; = (; = 0, o = oicr2 .———1, and ~p~, ~v~ (( 1.
Following Refs. 11 and 12 we will write the dynamical
equations for the small deviations, p and v, in the form

(p —v)~~ —(p —v)iq ——(p, —v) cos g (8)

(p+ v) —(p + v)~~
——(p + v) cos P(') + 2b, (p + v) .

Looking for oscillating solutions we will substitute the
operator c)2/(9t ~ —w . The first of the above equations
then gives the "translation mode" frequency u = 0.
The second, Eq. (9), is easily found to give

frequency is then found from Eq. (11) in the following
way:

(') 'dx = —2a (') 'cos2 (') dx

y(o) + y(~) (14)

where P; is the solution to Eq. (4) far from the solitons,

sin(t); = I); —b, sin )
j=1,2

(15)

Here we have assumed that there are no spatial nor tem-
poral variations in the background fields. Separating the
energy into an unperturbed part, &(o), and an interac-
tion energy, 'R( ), in the form

m cu = —L for o=1.2= 2

15

From Eqs. (10) and (13) we see that bound states (w

0) exist for both unipolar and antipolar pairs of fiuxons,
although the antipolar state has a larger interaction force.

When the system is perturbed by the right-hand side
of Eq. (4) we will write the field containing one soliton
in the following way:

for o = —1 (10)

Changing the relative polarity of the kinks from being
opposite, o = —1, to being equal, o = 1, we obtain a
somewhat different situation,

()" —v) —()"—v)iq ——(p, —v) cos g

(p+ v)» —(p+ v)q& ——(p, + v) cos P '
+2K cos 2P(') (p + v), (12)

where P(') is the kink solution to the double sine-Gordon
equation defined by Eq. (4) for PI ——P2. We will,
however, use the kink profile of Eq. (5) since we only are
interested in an estimate of the bound state frequency to
lowest order in A. We now have the translation mode
frequency, ur = 0, given by Eq. (12) and the bound state

I

+ -g +1 —cos q dxq

)

1 —cos

we will consider 'R( ) to reflect all effects of the coupling,
and hence consider 'R( ) to be a function of the kink
velocities only. This is not exactly true, since the soliton
profiles change as a function of L. However, for a weak
interaction we will see that this is not important.

Inserting Eq. (14) into Eq. (17) and using the unper-
turbed soliton profiles Eq. (5), we can obtain the inter-
action energy in the following form:

Wi i = E
~

cos(i)s + Ps ) f(i —cos(i)s' + i)s' )]d +sic(i(sc+ t)s )
l

= A(cos(QI + Q2 )k~ + sin(QI + Qz )g~} i

where

cosh[by(u)] + 1 ( hp(u)
6+I ——8p u 1— 19

cosh[by(u)] —1 ( sinh[bp(u)] j '

cosh[by(u)] —1 ( bp(u)h I=8p 'u
cosh[By(u)] + 1 ( sinh[hp(u)])

'1+ .
'

g+g ——0,

I

be found. from the curvature of h~q for b = u = 0.
Following the procedure outlined in Ref. 12 we define

the momentum of system i as

(23)

which for the solution Eq. (5) gives
o2 —oi sinh[hp(u)/2]

cosh [hp(u)/2]
(22) ~,"= 8u, p(u, ). (24)

where b = (I —(2. In order to evaluate the integrals in
Eq. (18) we have assumed that ~ui~ = ~u2~ = ~u~. Note
that the frequencies given in Eqs. (10) and (13) can also

When only looking at localized solutions we may now
write the time derivative of the momentum in the follow-
ing way:
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P, = A,.
,~sin i+ 2 dx —o.P, —g, ; dx. 25

Inserting Eqs. (2) and (5) into Eq. (25) the following two
conditions for a bound state arise:

cxP = 7r(o'y'gy + 0 2'g2),

0 (i)A —R = 7I (0'y'gy —02rI2),
Ob

(28)

(29)

where P = P;. The first of these equations gives the
power balance velocity of the bound state. The second
gives the internal force between the two fluxons. Seeking
an estimate of the maximum difFerence in the bias cur-
rent, for which the bound state can exist, we find &om
Eqs. (15), (18), (21), and (22) that to first order in the
coupling parameter the asymmetric part, g, of the inter-
action energy has no importance. The maximum value of
the internal force is then numerically found to be given
by

t9

Ob
h+&1~~„=0.67792945 for ho 2.1438391' (u),

(30)

P1 + P2 ——o'(Pl + P2) —27l (0'1'gl + 0 2'g2), (26)
~ ~ fiX

Pg —P2 ———n(Pg —P2) —2~(0 gag —o 2r12) —2b, —'R' '.
t9b

(27)

Since the momentum of a system containing one soliton
is determined by its velocity only, Eq. (24), the condition
for a bound state can be written

bound state disappeared. In Fig. 1 we show the results of
such experiments. The error bars represent the last value
of the bias difference (lower point) where the bound state
existed and the first value (upper point) where the bound
state disappeared. The solid lines are the analytical pre-
dictions given by Eqs. (30)—(32). It is evident &om Fig.
1 that the agreement between the numerical experiments
and the analytical results is excellent for small values of
the average bias, (oqgq + 02g2)/2. However, for larger
values of the bias, we encounter some deviation for all
the tried parameter sets: 0, n = 0.1 and 4 = 0.01; x,
n = 0.05 and 4 = 0.01; +, o. = 0.1 and L = 0.02. In
general, we can only trust the analytical treatment for
small values of the perturbations, and hence we should
not be surprised to find some deviation for larger bias
currents. An interesting observation is to note that for
o = 1 [Fig. 1(a)] the sign change of the coupling seems
to agree with the numerical results. In order to under-

I ~~l I
f

T I I ~ I T T T I I'
I T T

0 ]&5—

n=0. 10, 6=0.01
x: a=0.05, 6=0.01
+: cx =0. 10, 6=0.02

—h q ~~~„4.930 904 30 for bo 1.031 958 2p (u),

(31)
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and the locking range in the bias current is then given
up to first order in 4:

—0.0 0.2 0.4 0.6 0, 8 1.0

(a,g, + a,g, )/2
(o) (o)~191 0292 cos(4'] + 42 ) ~~h-I--

= —(1 ——,(g, +I7) f —6 [ .„, (32)

1.0
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I I I I l~~ I I I I

'

I I T I

where the last equality is exact for gi ——g~. Here it is
interesting to note that the internal force, and therefore
the locking range in the bias current, is constant as a
function of the fluxon velocity. The only deviation &om
the constant comes &om the background field, which for
0 = 1 makes the interaction force change sign for gi +
g, = ~2.

Numerical simulations of the system has been per-
formed to understand the d.ynamical behavior and the
limitations to the perturbation results above. We
have imposed periodic boundary conditions on the sine-
Gordon systems in order to simulate an infinite system.
The numerical procedure for finding the locking range in
the bias current was as follows. The system was started
with one fluxon trapped in each system with identical
parameters. Then after a predefined transient time we
determined whether the bound state existed and, if so,
we increased the diBerence in bias so that the average bias
was unchanged. This procedure was repeated until the

0.4 —o: cx =0. 10, g = 0.01
x: o. =0.05, &=-0.01
+: ex=—0. 10, 6=0.02

ppI » » I i » i I »» I~~z li~
—0.0 0.2 0.4 0.6 0:8 1,0

(IT,q, +O ~r).)/2
FIG. 1. The locking range in the bias current as a function

of the average bias. The solid curve represents the analytical
prediction given by Eq. (32). The markers represent the re-
sults of the numerical simulations: 0, n = 0.1 and A = 0.01;
x, n = 0.05 and A = 0.01; +, n = 0.1 and A = 0.02.
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stand the origin of the deviation, we have calculated the
different components of Eq. (27) numerically. The term
—n(Pi —P2) has been calculated from Eq. (23) and the
internal force term has been calculated in the following
form:

As argued above, the perturbation theory has assumed
that the difference in momenta is zero for the bunched
state, since the perturbation expression for the momen-
tum of a fluxon is given by the velocity alone. However,
it is known that the true momentum also depends on
the bias current in a non trivial way, and we can there-
fore expect the difFerence in momentum of the two lines
to dier from zero. That is exactly what happens for

larger values of the bias current.
In Fig. 2 we have shown the internal force (+) and the

difference in momenta (x) calculated from the numeri-
cally evaluated wave profiles in case of o = 1. For low val-
ues of the bias currents, (oirli+o2r12)/2 = 0.1 [Fig. 2(a)],
we find that the difference in momenta (multiplied by
the dissipation) is vanishing compared to the interaction
force, and the predicted locking range is then in very good
agreement with the numerical results [Fig. 1(a)]. How-
ever, for increasing values of the bias current [Fig. 2(b)]
we find that the difFerence in momenta is not insignificant
compared to the internal force. Since the locking range
is determined by the sum of the two (0), the analytical
result based only on the internal force may now deviate
from the numerical results. This becomes even more evi-
dent when looking at Fig. 2(c), where we have shown the

(o', r), +o ~g~)/2=0. 1 (O. ,g, + cr2g~)/P, =0.3
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FIG. 2. The internal force (+) given by Eq. (33) and the difFerence in momenta times the dissipation (x) [
—a(P& —Pz)]

calculated from Eq. (23) as a function of the difFerence in the bias current, crirli —rr2rI& Both quantiti. es are calculated from
the numerically obtained wave profiles. The 0 is the sum of + and x. o = 1.
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force components for (c7irIi + o.2iI2)/2 = 0.9. Here we see
the peculiar situation that the internal force has changed
sign (repulsion) as predicted by the perturbation theory
Eq. (32). However, since the difFerence in the momenta
is now the dominating of the two contributions to the
locking range we still find an effective attraction between
the fluxons (0 negative).

Similar to this we can demonstrate that the deviation
for large bias values in Fig. 1(b) (o = —1) is due to an
increasing difference in the momenta as a function of the
average bias. Again, for low values, (oiqi+o2g2)/2 = 0.1
[Fig. 3(a)], we find almost exact zero for the momentum
difference, whereas for a large bias, (criili + cr2g2)/2 =
0.9 [Fig. 3(b)], we find a significant contribution from
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FIG. 4. The extreme of the internal force (+) given by Eq.
(33) as a function of the average in the bias current, (o i@i +
cr2q2)/2 Solid. lines are the analytical result given by Eq. (34)
and the & represents the obtained values from the numerical
experiments. o. = 0.1 and A = 0.02.

0 —0. 1

4'
@

~'.li

c,i.

0.5 1.0

( G
1 77 1 CJ g'C) P ),

the difference in momenta, resulting in a smaller locking
range than predicted.

It is interesting to observe that the deviation observed.
in Fig. 1 between the numerical results and the analytical
prediction is solely due to the assumption of Pq ——P2 for
the bound state. This becomes clear when looking at Fig.
4. Here we have shown the maximum interaction force
calculated from Eq. (33) as a function of the bias current.
The solid lines represent Eq. (33) when the analytical
value
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FIG. 3. The internal force (+) given by Eq. (33) and the

difference in momenta times the dissipation (x) [
—a(Pq —Pq) j

calculated from Eq. (23) as a function of the difFerence in the
bias current, crzgz —o.~g2. Both quantities are calculated from
the numerically obtained wave pro6les. The 0 is the sum of
+andx. a= —1.

is used. , and the squares represent the most extreme val-
ues found from the numerical experiments for 4 = 0.02
and n = 0.1 (see Figs. 1—3). The agreement is evidently
almost perfect for all bias values and hence we will con-
clude that the interaction force is very well represented
by the analytical expression.

We have investigated the interaction between solitons
of different sine-Gordon systems in the presence of a non-
linear coupling mechanism. For Josephson junctions this
interaction corresponds to a coupling in the supercurrent.
We have studied the condition for bound states between
magnetic Huxons for different values of the bias current
and the difference between the unipolar and antipolar
Huxon states has been discussed. Very good agreement
between the analytical and numerical results has been ob-
tained and the origin of the discrepancies has been stud-
ied in detail. For Josephson junctions it may not be ex-
perimentally possible to study the supercurrent coupling
isolated. Two different layouts of junctions that could
produce the supercurrent coupling have been published;
the adjacent geometry, s and the stacked geometryis (di-
agrams showing the geometries can be found in Refs. 3
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and 15). Both these geometries result in an inductive
coupling mechanism as well. It is therefore important to
consider all the diferent coupling mechanisms at once if
one will make direct comparisons to experiments. Since
the strengths of the diferent couplings depend on the
specific geometry of an experimental device, we have cho-

sen to investigate the coupling in the supercurrent sep-
arately from other types of interactions (inductive and
capacitive) .

This work was performed under the auspices of the US
Department of Energy.
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