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Hydrodynamic spinodal decomposition: Growth kinetics and scaling functions
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We examine the e6'ects of hydrodynamics on the late-stage kinetics in spinodal decomposition. From
computer simulations of a lattice Boltzmann scheme we observe, for critical quenches, that single-phase
domains grow asymptotically like t, with a=0.66 in two dimensions and a=1.0 in three dimensions,
both in excellent agreement with theoretical predictions.

The understanding of phase-segregation kinetics has
been enhanced over the last two decades by the develop-
ment of dynamic renormalization-group methods, an in-
crease in computer resources, and a host of experimental
results with which to compare. ' Despite this progress,
there remain many open questions, especially regarding
the growth of single-phase domains and the scaling prop-
erties of the correlation or structure functions. Since
phase segregation, either spinodal decomposition or nu-
cleation, is a highly nonlinear process, theories rely most-
ly on approximation schemes, and exact results have been
obtained only in certain limiting cases. Simulations
designed to address these issues typically require exten-
sive computational effort and have not, in our opinion,
provided conclusive answers to many of the most funda-
mental questions.

Phase segregating systems fall into two classes: those
with hydrodynamic interactions (fluids) and those
without (binary alloys, glasses). The latter class, has re-
ceived far more attention both by computer simulations
and by theory. ' Only recently have there been attempts
to carry out computer simulations of phase segregating
systems with hydrodynamic interactions. These include
molecular-dynamics (MD) simulations, direct numerical
simulation of time-dependent Ginzburg-Landau (TDGL)
equations, cell-dynamical systems (CDS) (Refs. 6 and 7),
and lattice gas (LG) (Refs. 8 and 9) and lattice Boltzmann
(LB) models. '

While MD simulations accurately represent the dy-
namics of real Quids, they are computationally demand-
ing and at present may not be able to access the late stage
(scaling) regime of spinodal decomposition. The TDGL
approach eliminates the exact Newtonian particle dy-
namics in favor of a stochastic evolution governed by a
coarse-grained phenomenological free energy functional.
One then solves the concomitant system of Langevin
equations which couple order parameter fluctuations to
hydrodynamic currents. This approach requires exten-
sive numerical computation and sacrifices both the
Navier-Stokes behavior of the Quid and the interface
phase dynamics. CDS methods further abstract the
phase segregation process by replacing the Langevin
equations with a much less numerically intensive dynami-
cal map for the order parameter. The hydrodynamics
they incorporate, however, have either been approximat-
ed by an Oseen tensor or by a coupling of the velocity

field to pressure and order parameter Quctuations.
LG and LB models, on the other hand, provide alter-

native computational environments with which to study
hydrodynamic phase segregation phenomena without the
introduction of ad hoc relations between the order pa-
rameter Quctuations and the Quid dynamics. What
makes these schemes so appealing is the natural way in
which they can simulate the Quid properties, the phase
segregation and the interface dynamics simultaneously.
One drawback in the model presented here is that Quc-
tuations only appear in the initial conditions. To make
LB models more realistic tools with which to analyze
phase transition kinetics probably involves the introduc-
tion of some type of thermal noise.

Several groups ' have used LG and LB models to
simulate phase segregation phenomena, but their work
focused primarily on the qualitative features and did not
address the details of dynamical scaling of the structure
function. " In this paper we focus on domain growth ki-
netics and scaling properties of the phase segregation
process. We present the results of large-scale numerical
simulations of one such immiscible LB model and make
quantitative comparisons with theory.

The LB method is a discrete, in space and time, micro-
scopic, kinetic equation description for the evolution of
the particle distribution function of a Quid. ' The
scheme described here is a modified version of the immis-
cible Quid model introduced by Gunstensen et al. ' In
this model the Quid has two components represented, for
example, by the colors red and blue. The microscopic dy-
namics of the particle distribution function consists of
four steps: (1) free streaming, (2) collision, (3) interface
perturbation, and (4) recoloring.

In free streaming the fiuid (both red and blue com-
ponents) moves to neighboring sites along the links of the
underlying lattice. During the collision step these densi-
ties then relax toward a local equilibrium state. In LB
schemes one is free to specify the local equilibrium state,
and the particular choice for this state is one which leads
to the Navier-Stokes equations in the long-wavelength
and low-frequency limit.

Let f;(x, t), f;"(x,t), and f, (x, t) be the distribution
functions for the total Quid, red (r) Iiuid and blue (b)
Quid, respectively, at site I and time t moving along the
link in the i direction. Here f, (x, t)=f;"(x,t)+f; (x, t),
where i =0, 1, . . . , N, and where N is the number of ve-

0163-1829/93/48(1)/634(4)/$06. 00 634 1993 The American Physical Society



HYDRODYNAMIC SPINODAL DECOMPOSITION: GROWTH. . . 635

&;=—(1/~)(f;—f q'), (2)

where r is the characteristic relaxation time, and f q' is
the local equilibrium distribution given in two dimensions
by

and

f0"' =p/7 pu'—
f'q'=++ +e u+ (e .u) —+u2

3 ~ 3

(3)

(4)

and in three dimensions by

f 'q' =p/8 —(p/3)u',

f (eq) —Q+ Q(e u)+ P—(e .u)2 Qu2
8 3 2 6

for e; along the lattice axes, and

+ p (e, .u)+ p (e;.u) — u
64 24 ' 16 ' 48

for e; along the links to the corners of the cube.
In the above equations p(x, t) =g; f;(x, t) and
pu(x, t)=g, f,.(x, t)e,. are the local density and momen-
tum, respectively.

The detailed forms of the coefficients in Eqs. (3)—(7) are
determined by the conservation of mass and momentum,
the constraints of Galilean invariance, and a velocity-
independent, isotropic pressure tensor. It can be shown'
that the macroscopics of (1)—(4) and (1), (2), and (5)—(7)
correspond to the incompressible Navier-Stokes equation
in two and three dimensions, respectively:

B,u+ (u V)u =( —1/p)VP+ vV u

V U=O,
where P is the pressure, and v is the kinematic viscosity.
In two dimensions v=(2~ —1)/8, and in three dimen-
sions v=(2r —1)/6.

Defining the local order parameter as g( x, t )

0[f;"(x,t) —f; (x, t)], and the local color gradient
Cr(x) by

Cr(x)= g e,. jP(x+e;)], (8)

locity states at each site. The i=0 state represents the
portion of the Quid at rest. The kinetic or "lattice
Boltzmann" equaton for f; is written

f, (x+e;, t +1)—f, (x, t) =II;(x, t)+Of(x, t),
where Q; is the term representing the rate of change of f;
due to collisions, and Q~ is the term representing the
color perturbation. The vectors e; are the velocity vec-
tors along the kinks of the lattice.

In this paper we use a triangular lattice (%=6) for
two-dimensional simulations with e; =

[ cos[2~(i —1)/6],
sin[2m(i —1)/6]], and a body-centered-cubic lattice
(%=14) in three dimensions with e;E(+1,0,0),
(0, +1,0), (0,0, +1), and (kl, kl, kl). For computation-
al eKciency, we have used the single time relaxation mod-
el' with the linear collision operator

we add the surface-tension inducing perturbation

Q~= A ioicos2(8, —8G )

to facilitate segregration and stabilize interfaces. Here 8;
is the angle of lattice direction i, and 8G =arctan(G~/G„)
is the angle of the local color gradient. The constant A
sets the surface tension o through o. —A ~p. Note that G
is perpendicular to red-blue interfaces and its magnitude
large there, while in a homogeneous (color) region it ap-
proaches zero. In the recoloring step we then maximize
the color fiux H =+~, (f;"—f;")e; in the direction of the
color gradient G by maximizing H.G. Recoloring con-
serves the individual color components and hence the
total density of the Quid. It has been shown' that
Laplace's law holds for this model.

For our simulations we perform critical quenches with

g P(x, t)=0. The largest systems we simulated were
(2048) in two dimensions and (128) in three dimensions.
Although we have investigated the domain growth and
scaling properties for a variety of lattice sizes and param-
eters, we report on the domain growth and dynamical
scaling properties for only one set of parameters in both
two and three dimensions. The results obtained with
smaller lattices and different parameters (surface tension
and initial fluctuations) are consistent with the data
presented here.

We initialize the lattice (in both two and three dimen-
sions) with (g(x) ) =0 and (u) =0 with small local fiuc-
tuations, where the angle brackets ( ) signify an average
over the lattice. The system then evolves according to
the dynamics outlined above. In two dimensions the sur-
face tension inducing parameter 3=0.01, and the aver-
age Quid density per site is p=2. 1, and in three dimen-
sions 3=0.001 and p =2.4. As the system evolves,
single-color domains form and grow while the total Quid
undergoes a Navier-Stokes evolution. In Fig. 1 we show
a "snapshot" [for a system of size (256) ] of a two-
dimensional system at time t= 1000.

One convenient way to characterize the growth kinet-

FIG. 1. Typical configuration for the two-dimensional model
at time t= 1000. The system size is (256), and the other param-
eters are as in the text. The black region represents sites with
positive order parameter.
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ics during the segregation process is through the order
parameter correlation function G (r, t) = ( g(r)f(0) )—(g) averaged over shells of radius r. One can then
define the domain size R (t) as the first zero of the func-
tion G(r, t). The Fourier transform of G is then the
structure factor S(k, t). As time evolves the structure
factor becomes j .ore sharply peaked, and its maximum
moves to smaller values of the wave number k. In a wide
variety of phase segregating systems S(k, t) has been ob-
served to follow the dynamic scaling relation at late
times
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where x =kR (t), d is the spatial dimension, and F (x) is
the structure factor.

In Fig. 2(a) we plot R (t) for the two-dimensional mod-
el. The data indicate that R(t)-t . This exponent is
in excellent agreement with the generally accepted
theoretical prediction of t (Ref. 2) and the numerical
simulations of Ferrel and Valls, which find R (t)-t,
where a=0.65 and a =0.69 for systems with and without
thermal modes, respectively.

FIG. 3. Scaled structure function F(x) for two dimensions at
various times: t=1000 (6); t=2000 ( ), and t=3000 (Q'). The
data are averaged over two independent runs.

In Fig. 3 we show the scaled structure factor F(x) for
our two-dimensional simulations. For x )2 we find thatF(x)-x, in reasonable agreement with Porod's law

which predicts that F(x)-x '"+" in this region. How-
ever, for x (1, we observe that F(x)-x . This is in

sharp contrast with the theoretical arguments of
Furukawa and Yeung' which predicts that F(x)-x .
Our findings for x «1 appear to corroborate other re-
cent numerical simulations of hydrodynamic spinodal
decomposition in two dimensions. Shinozaki and Oono
in their CDS model observe that F(x)-x . They conjec-
ture that this might be a result of finite-size efects cou-
pled to fluctuations of domain walls due to long-range hy-
drodynamic interactions.

In Fig. 2(b) we plot R (t) for our three-dimensional
model. Here we find that the domain growth is approxi-
mately linear in time with R (t)- t ' . This is in excellent
agreement with the theoretical predictions of Furukawa
and Siggia' and with the (TDGL) numerical simulations
of Ferrel and Valls and the CDS simulations of Koga and
Kawasaki. It disagrees, however, with recent MD simu-

lations of Ma et al. , who observe a domain growth
R (t) —t This latter .exponent may not refiect the
growth in the asymptotic time regime.

In Fig. 4 we plot F(x) for the three-dimensional model.
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FIG. 2. Time dependence of average domain size for (a) two-

dimensional and (b) three-dimensional systems. Both two- and

three-dimensional data are averaged over two independent runs.
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FIG. 4. Scaled structure function F(x) for three dimensions
at various times: t=1200 (6); t=2400 ( ), and t=3200 iQ).
The data are averaged over two independent runs.
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As in two dimensions we find good agreement with
Porod's law with F(x)-x for x )3. Again, though,
we find marked disagreement with the small x predictions
of F(x) which call for F(x)-x . In particular we find
that F(x)-x . This result is consistent with recent
light scattering data from spinodal decomposition of iso-
butyric acid and water' which also indicates a reduced
exponent ( =2), but differs from the results of Bates and
Wiltzius. '

We summarize by pointing out that the results of our
simulations tend to be consistent with existing theories of
domain growth in both two and three dimensions. There
is also good agreement with Porod's law in both of these
cases. However, we find a marked discrepancy with the
theoretical predictions of Yeung' and Furukawa for the
small x behavior of the scaled structure factor. More-
over, there seems to be a consistent deviation from these
theories among some recent numerical and some experi-
mental work. ' In light of these results, we believe that
the question of the small x behavior of the scaled struc-
ture factor is still open and that it is necessary to develop
a more complete theory of dynamical scaling which in-
cludes hydrodynamic interactions.

The current model simulates fiuids for deep (near zero
temperature) quenches. As a result, this precludes an

analysis of binary fluids near their critical points. To
study critical dynamics of binary fluids requires some no-
tion of temperature. An extension of the model described
here might include a stochastic term which mimics the
effects of thermal noise (Landau-Lifshitz fiuctuating hy-
drodynamics)' or a kinetic temperature as in Ref. 20
with which one can control the segregation process by a
local temperature. Without such a noise term it is unlike-
ly that this model can simulate off-critical quenches.

The model in this paper is ideally suited for the simula-
tion of hydrodynamic phase segregation in high Reynolds
number Rows. ' Moreover, the LB scheme can easily
simulate spinodal decomposition in systems with compli-
cated boundaries, stirring, and the effects of wettability.
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