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Monte Carlo simulations are performed to examine superconductivity and charge-density-wave fluc-
tuations in the infinite-dimensional electron-phonon Holstein model. The electron-phonon system inter-
polates between an attractive, static, Falicov-Kimball model that always exhibits charge-density-wave
order and an attractive, instantaneous, Hubbard model that always superconducts as a function of pho-
non frequency. The maximum charge-density-wave transition temperature at half-filling is an order of
magnitude smaller than the efl'ective electronic bandwidth and is virtually independent of the phonon
frequency. The maximum superconducting transition temperature depends strongly on phonon frequen-

cy and is bounded from above by the maximum charge-density-wave transition temperature. The exact
solution is compared to both weak-coupling expansions and strong-coupling expansions. The e6'ective

phonon potential becomes anharmonic and develops a double-well structure that deepens as the
electron-phonon interaction increases.

I. INTRODUCTION

The interaction between fermionic degrees of freedom
(conduction electrons in a solid) and bosonic degrees of
freedom (harmonic phonons of a lattice) is known as the
electron-phonon problem and is still not fully understood
for all values of the parameters. Migdal' and Eliashberg
pioneered the study of the electron-phonon problem in
the limit where the phonon energy scale is much smaller
than the electronic energy scale. In this limit, vertex
corrections may be neglected (Migdal's theorem') and a
self-consistent theory can be constructed that describes
both superconductivity and charge-density-wave-Peierls
order. Migdal-Eliashberg theory (ME) predicts that the
transition temperature in the superconducting (SC) chan-
nel will increase without an upper bound as the
electron-phonon interaction strength increases. A
strong-coupling expansion, however, predicts that the
system has a transition temperature that vanishes as the
electron-phonon interaction strength increases and that
the charge-density-wave (CDW) channel is favored over
the SC channel. As a result, one would like to know if
there is a maximum transition temperature, what param-
eters set the scale for this transition temperature, and
what is the character of the ordered state? In order to
answer such questions one needs exact solutions and reli-
able approximation techniques that are unbiased toward
SC or CDW order.

Monte Carlo (MC) simulations allow one to bridge the
gap between weak-coupling and strong-coupling expan-
sions. Previous work has concentrated on one-
dimension where it was found that the system always
dimerized into a CDW-Peierls state at half-filling, and on

two dimensions where it was found that the CDW
state was unstable with respect to filling and the system
superconducted when doped sufficiently far away from
half-filling. Here we will explore the Holstein model' in
infinite dimensions.

In the Holstein' Hamiltonian chosen, the conduction
electrons interact with local phonon modes:
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where ct (c ) creates (destroys) an electron at site j with
spin cr, n. =c. c. is the electron number operator, and

xj (pi) is the phonon coordinate (momentum) at site j.
The hopping matrix elements span the nearest neighbors
of a hypercubic lattice in d dimensions and the rescaled
matrix element t* sets the energy scale (all energies are
measured in units of t*). The localized bosonic degree of
freedom has a mass M and a frequency 0 associated with
it; the combination ~=MA is the spring constant that
measures the stored energy per unit length squared in the
boson field. The electron-phonon coupling constant g is
an energy per unit length and determines the strength of
the electron-phonon interaction. A useful combination of
fundamental parameters is the bipolaron binding energy

(2)
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which determines the energy scale for the effective
electron-electron interaction mediated by the bosonic
field. Once the energy scale is set by t', there are three
additional parameters in the Holstein model: the
electron-phonon coupling strength g; the phonon mass
M; and the spring constant sc. Only two of these three pa-
rameters are free to vary. One can choose to set a length
scale by fixing the spring constant and then allow the
mass and coupling strength to vary. Instead, we have
chosen to fix the mass (M =1) and have selected

~
U and

Q as the free parameters. The limit Q —+ Oo is equivalent
to M~O and the limit 0—+0 is equivalent to M~~,
while the limits

~ U~ ~0 and
~

U~ ~~ are equivalent to
g ~0 and g ~~, respectively. The chemical potential is
denoted p and the particle-hole symmetric point (half-
filled band) corresponds to p = U.

The Holstein Hamiltonian describes the interaction of
fermionic degrees of freedom with bosonic degrees of
freedom that can be phonons, excitons, plasmons, etc. , so
that the frequency 0 is not necessarily much smaller than
the electronic energy scale t*. The Holstein model corre-
sponds to the following idealizations of electron-phonon
systems in real materials: (1) the electrons only hop be-
tween nearest neighbors in a single band; (2) the phonons
have no dispersion (Einstein modes); (3) the phonons are
harmonic; (4) the phonons do not modify the hopping in-
tegral. Assumptions (1) and (2) are the simplest and most
natural ones to make in the limit of large spatial
dimensions —the effect of hopping between next-nearest
neighbors frustrates the system and is more difficult to in-
corporate, while the bosonic density of states becomes
very sharply peaked at the maximum phonon frequency
as d ~ &p. Assumption (3) is easy to modify within a MC
framework, but is diScult to model using approximation
techniques. As will be seen below, the effective bosonic
potential becomes anharmonic (with a double-well struc-
ture) even when one starts with a harmonic potential.
Assumption (4) may also be modified. In this case one is
describing a different type of electron-phonon system
with a Harniltonian of the Su-Schrieffer-Heeger type, "
where the phonon coordinate couples to the electrons
through a dynamic hopping integral t*(x).

In this contribution the electron-phonon problem is ex-
amined in the limit of infinite spatial dimensions
(d ~ Do ). Section II describes how the system is mapped
onto a self-consistent (local) impurity problem in the limit
of infinite spatial dimension. Section II also includes a
discussion of the limits where the phonon energy scale is
much larger than the electronic energy scale (instantane-
ous limit), where the phonon energy scale is much smaller
than the electronic energy scale (static limit), and how the
Holstein model interpolates between these two. The
different approximation methods for both weak and
strong coupling are reviewed in Sec. III and compared
with the MC simulations. Conclusions are presented in
Sec. IV.

II. THE INFINITE-DIMENSIONAL LIMIT

In infinite dimensions (d~oo ) the hopping from one
lattice site to its nearest neighbor is scaled to zero [see

Eq. (1)). Naively one might expect that all of the physical
properties become local (and trivial) in this limit. How-
ever, the hopping integral is scaled to zero in such a
fashion that the free-electron kinetic energy remains
finite while the self-energy for the single-particle Green's
function and the irreducible vertex functions have no
momentum dependence and are functionals of the local
Green's function. ' ' The many-body problem is solved
by mapping it onto an auxiliary impurity problem' ' in
a time-dependent field (that mimics the hopping of an
electron onto a site at time r and off the site at a time r').
The action for the impurity problem is found by integrat-
ing out all of the degrees of freedom of the other lattice
sites in a path-integral formalism. ' The result is an
effective action

S|ff g f d rf d1 C~(1 )Go (1 r )C~(7 )
0 0

+ g f dr[gx(r) p]c (r—)c (r)P

+ M f —dr[A x (r)+x (r)],
2 0

(3)

where Go ' is the "bare" Green's function that contains
all of the dynamical information of the other sites of the
lattice. The interacting Green's function is determined
by

G„'—=G (i co„)=G o
' (i co„) X(i co„—), (4)

at each Matsubara frequency co„=(2n +1)m T. The self-
consistency relation that maps the impurity problem onto
the infinite-dimensional lattice equates the full Green s
function for the impurity problem with the local Green's
function for the lattice

G (ice„)= g"G(k,i co„)
k

i sgn[Im—(z)]V ~e ' erfc[ i sgn[Im—(z)]z] .

The dynamics of the (local) impurity problem is identi-
cal to the dynamics of the Anderson impurity mod-
el' ' ' and may be solved by using the quantum MC
algorithm of Hirsch and Fye' [this latter point is easiest
to see by integrating out the electronic degrees of free-
dom which enter quadratically in the efFective action (3)
and is identical to the numerical procedures used to solve
the infinite-dimensional Hubbard model' ]. It is im-
portant to note that since one does not a priori know the
bare Green's function Go in Eq. (3), one must iterate the

= g[ico„+p E(k) X(ico„——)]
k

F„[ico„+p —X(ico„)]—,
with F (z) the scaled complimentary error function of a
complex argument'

2

F„(z)= —f dy
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MC algorithm to determine a self-consistent solution for
the Green s function of the infinite-dimensional lattice.
The procedure' is to begin with a bare Green's function
Go ' (typically the noninteracting Green's function is
chosen for the starting point), use the quantum MC algo-
rithm to determine the self-energy X, calculate the lattice
Green's function from Eq. (5), and determine a new bare

Green's function from Eq. (4). This process is iterated
until convergence is reached (typically 7—9 iterations are
sufficient).

A variety of two-particle properties may also be calcu-
lated in the quantum MC approach since the irreduc-
ible vertex function is also local. The static susceptibility
for CDW order is given by

(q)= g e' ' " f rf dr'[(T, n~ (r)nk (r')) —(nj (r))(nk (r'.))]
R —Rk

0 0

=T gX (q, ice, ice„)=TgX „(q), (7)

at each ordering wave vector q. Dyson's equation for the two-particle Green's function becomes' '

(q)=X (q)5 „—T gX (q)I X „(q),
with I c„ the (local) irreducible vertex function in the CDW channel.

The noninteracting CDW susceptibility X„(q) in Eq. (8) is defined in terms of the single-particle Green's function

y„(q)= ——g G„(&)G„(&+q)
1

k

(8)

2
1 1 oo edy. F

)
— i co„+p —X„—y

i ~„+p —X„—X(q)y

+1—X (q)
(9)

and all of the wave-vector dependence is included in the
scalar' '

d

X(q):——g cosq, .

y„(X= —1)=— G„
7„(X=0)= —G„;

l con +P Xn
(10)

y„(X=1)=2[1 (ice„+p——X„)G„];

The mapping q~X(q) is a many-to-one mapping that
determines an equivalence class of wave vectors in the
Brillouin zone. "General" wave vectors are all mapped
to X =0 since cosq can be thought of as a random num-
ber between —1 and 1 for "general" points in the Bril-
louin zone. Furthermore, all possible values of X
(
—1 ~X + 1) can be labeled by a wave vector that lies on

the diagonal of the first Brillouin zone extending from the
zone center (X=1) to the zone corner (X=—1). There
are three values of X where the integral for X (X) in Eq.
(9) can be performed analytically': X = —1; X =0; and
X = 1. The results are

at these three special points.
The irreducible vertex function I „may be calculat-

ed in the quantum MC procedure by solving the local
equation

(local)= —G 5 „+Tg G I X „(local),

with the local CDW susceptibility defined by the follow-
ing two-particle Green's function

00

X[(T,ct(r~)c (r, )c .(rz)c (r, ))—(c (r4)c (r3))(c ~ (r2)c (r, ))] . (12)

A similar procedure is used for the singlet s-wave SC channel. The corresponding definitions are as follows: The
static susceptibility in the superconducting channel is defined to be



HOLSTEIN MODEL IN INFINITE DIMENSIONS 6305

(q)= —$ e '

deaf

dr'(, T c &(r)c &(r)c«(r')c„&(r'))sc T iq {R.—Rk) p p

R.—R 0 0j k

=TAX (q,ice, iso„)=TQ f „(q) (13)

for superconducting pairs that carry momentum q; Dyson's equation becomes

X".(q) =X.'(q»..—T y X '(q) I ".,&,".(q» (14)

with I „ the corresponding irreducible vertex function for the SC channel; the noninteracting pair-field susceptibility
becomes

p„'(q)= —g G„(&)G „,( —k+q)1

k

2
1 1 oo e

dy I'
+~ +I—X (q) —" i~, +P

iso „,+p —2 „ i
—X(q)y

+1—X (q)
(15)

with the special value

X„'(X=1)=G„/(iso „,+p —X „,)
for the SC pair that carries no net momentum; and finally
the irreducible vertex function is determined by solving
the local equation

„(local)=~G
~

5 „—Tg G
~

I ~X~„(local),

(16)

with the local SC susceptibility defined by the following
two-particle Green's function

P {w4
—

w3)
—iso {72 7])

„(local)= —T dr, . dr4e ' ' e

X ( T,c t (r4)c i (r3)c
&
(rz)c

& (r, ) ) .

(17)

The single- and two-particle Green's functions 6,
, and g are all calculated using quantum MC

methods. The imaginary-time interval from 0 to P is
discretized into L times slices of equal width b,r=PIL
and the grand-canonical MC scheme is used to evaluate
the relevant path integrals (using the quantum MC algo-
rithm of Hirsch and Fye ). Both local moves, in which
the phonon coordinate is shifted by a different amount at
each time slice, and global moves, in which the phonon
coordinate was shifted by a uniform amount for every
time slice, were incorporated in the MC algorithm. The
values of L used ranged from 20 to 160 with the largest
values of A~ reserved for the lowest temperatures. Calcu-
lation at half-filling were performed for values of 6~=0.2
and 0.4 and then scaled toward 6~~0 to try to remove
the lowest-order Trotter error which is estimated to be
proportional to hr . Calculations off of half-filling were
performed at the fixed value 6~=0.4 since lower temper-
atures were needed to find the SC instability (it was found
that the Trotter error for these values of A~ was similar

to the statistical error). No sign problem was found at
any filling.

It is instructive to compare the MC simulations to the
limiting behavior of the Holstein model. In particular,
the limits when the phonon frequency 0 is much larger
than or much smaller than the electronic energy scale t*
are examined. To begin, the bosonic degrees of freedom
in the effective action (3) are integrated out to produce a
purely electronic action with a time-dependent effective
electron-electron interaction. This effective electron-
electron interaction is expressed in terms of the bare pho-
non propagator

U,s(r) =g Do(r) . (18)

In the limit Q —+ ~, the phonon reacts instantaneously
to the electronic motion, and the effective electron-
electron interaction becomes nonretarded
Udr(r)~U5(r). In this case the Holstein model maps
onto an attractive Hubbard model with electron-
electron interaction strength U. The attractive Hubbard
model is known to be superconducting for all electronic
fillings. An additional SU(2) pseudospin symmetry ex-
ists at half-filling that requires CDW order to coexist
with SC order. This is the so-called supersolid phase.

In the static limit in which Q~O, the phonon coordi-
nate does not change in time and the effective electron-
electron interaction becomes constant U,s(r) ~U. The
conduction electrons interact with a localized (continu-
ous) degree of freedom that possesses no dynamics (and
enters only through annealed thermodynamic averages).
This many-body problem is identical to the system
described by the attractive Falicov-Kimball model
in the large S limit (a continuous number of static
configurations) with spin- —,

' conduction electrons. In the
large U limit the mapping simplifies to a two-state ver-
sion (spinless Falicov-Kimball model) which has already
been solved in the infinite-dimensional limit' ' (Aubry,
Abramovici, and Raimbault discuss the strong-coupling
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limit using rigorous perturbative arguments '). The de-
tails of the mapping onto the Falicov-Kimball model are
described in the Appendix. It is known that the Falicov-
Kimball model orders in a CDW state because the pho-
non field is static and does not support a superconducting
instability. '

The Holstein model interpolates between these two
limits as a function of the phonon frequency Q. There-
fore, we expect CDW order to be favored for small values
of 0 and electron concentrations near half-filling; SC or-
der should be favored for large values of 0 and away
from half-filling. The infinite-dimensional results for the
transition temperature to CDW order at half-filling for
the Hubbard model, ' ' for the Falicov-Kimball mod-
el' (see the Appendix for details), and for the Holstein
model at the intermediate value f),/r *=0.5 are compared
in Fig. 1. The horizontal axis measures the interaction
strength from U =0 to —~. The vertical axis plots the
transition temperature in units of t *. Note that the max-
imum CDW transition temperature is on the order of
0.1st* and appears to be virtually independent of the
phonon frequency, i.e., there is no enhancement of the
maximum CDW transition temperature for intermediate
values of the phonon frequency. The position of the peak
shifts from the point U/t*= —0.92 (Falicov-Kimball
model, Q~O), to the point U/t" = —1.56 (Holstein
model, 0,/t" =0.5), and finally to the point U/t*= —3.0
(Hubbard model, A —& ~ ). Furthermore, in the small

I
U

regime, the Falicov-Kimball model provides an upper

0.20

bound to the CDW transition temperature for the Hol-
stein model and the Hubbard model provides a lower
bound. This situation is reversed in the large

I UI limit
with the Falicov-Kimball model providing the lower
bound and the Hubbard model providing the upper
bound to the CDW transition temperature of the Hol-
stein model.

For a fixed value of U the transition temperature to the
commensurate CDW state (X = —1) at half-filling is ex-
pected to be the largest transition temperature (to either
CDW or SC order) as a function of electron filling be-
cause of the enhancement provided by Fermi surface
nesting (the hypercubic lattice in d dimensions is bipar-
tite). This implies that the maximum transition tempera-
ture for the electron-phonon system is determined solely
by the electronic bandwidth, is virtually independent of
phonon frequency, and occurs in the CDW channel.

As the system is doped away from half-filling one ex-
pects there to be a competition between commensurate
CDW order (at the "antiferromagnetic" point X = —1),
incommensurate CDW order (ordering at values of X in-
termediate between 1 and —1), phase separation of elec-
trons and holes (CDW ordering at the "ferromagnetic"
point X=1), and superconductivity. The MC simula-
tions only found evidence for ordering in the commensu-
rate CDW state (X = —1) and in the zero-momentum SC
paired state (X =1) for all values of the parameters test-
ed. The CDW-ordered state remains "locked" at the
"antiferromagnetic" point for a very wide range of dop-
ings away from half-filling. This behavior appears to be
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FIG. 1. Comparison of the transition temperature T, to the
commensurate charge-density-wave state (X = —1) for the Hol-
stein model at different phonon frequencies Q. The dashed line
is the Q —+ ~ limit (Hubbard model), the solid line is the Q~O
limit (Falicov-Kimball model), and the solid dots are the Monte
Carlo results from Q/t*=0. 5. The horizontal axis measures
the effective electron-electron interaction strength

I Ul from 0 to
and the vertical axis measures the transition temperature.

The dotted line is a linear interpolation that connects the transi-
tion temperature curves from weak-coupling and strong-
coupling expansions in the static limit (see the Appendix for de-
tails). The maximum T, is always on the order of 0. 15t* and
occurs at a value of U that shifts from —0.92t at low frequen-
cies to —3.0t* at high frequencies.

0.00 0.05 0.10 0.15

Ip,"I=I -ul
0.20 0.25

FIG. 2. Transition temperatures in the Holstein model for
0/t*=0. 5 as a function of the reduced chemical potential
Ip*l = lp —UI. The horizontal axis plots p* and the vertical
axis plots T, /t *. Three values of g are shown: g =0.4t * (dot-
ted line); g=0.5t* (dashed line); and g =0.625t* (solid line).
The solid dots represent commensurate CDW order at X = —1

and the open diamonds represent SC order with zero-
momentum pairs (X =1). The SC transition temperatures in-
creases to 0.03t* (g =0.5) and then rapidly decreases (the SC
transition temperature at g =0.625 is less than 0.01t* and may
be exponentially small).
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different from what was found in two dimensions
where the system rapidly changed from CDW order to
SC order as a function of doping. However, the effective
value of u It* in the two-dimensional work is on the
order of —0.7 which is in the weak-coupling regime
(g =0.4 in the present units). The transition from CDW
to SC is quite rapid with respect to doping in this regime
(see the next section). Figure 2 displays the results for
the transition temperature of the doped Holstein model
with 0/t*=0. 5 at three different values of the electron-
phonon coupling (g =0.4, 0.5, and 0.625). The solid dots
denote CDW order and the open diamonds denote SC or-
der. The transition temperature is plotted as a function
of the reduced chemical potential p*=p —U that mea-
sures the absolute shift of the chemical potential away
from the particle-hole symmetric point (p*=0). The SC
transition temperature is too low to be accurately deter-
mined at the largest coupling strength (g =0.625), how-
ever, once the chemical potential becomes large enough
there is no CDW instability and the SC susceptibility in-
creases as T is lowered which indicates a transition will
take place at a low enough temperature. An upper bound
for the SC transition temperature at g =0.625 is

T, (0.01t *, but exponentially small values cannot be
ruled out. Note that the calculations away from half-
filling were performed at a fixed value of b,r=0.4 while
those at half-filling were scaled to 6~~0. One can see
that the Trotter error at 6~=0.4 is similar to the statisti-
cal errors in these cases.

The electronic self-energy is determined by [see Fig.
3(a)]

X„= g—T QD„G
with the phonon propagator given by

1
DI =D(—ice') =-

CO( =27TlT
M(Q +co )+III

(20)

II~=2g TUNGI+„G„. (2l)

Here III ——II(icoI) is the phonon self-energy. The full
Green's function G is determined self-consistently from
the self-energy X and the bare Green's function Go by the
procedure outlined in Sec. II. The self-consistent solution
for the self-energy is iterated until the maximum devia-
tion for one element of the set {X„Jis less than one part
in 10 . The energy cutoff was set to include 256 positive
Matsubara frequencies.

In the unrenormalized ME approximation and the
CHF approximation the phonon self-energy Hi is
neglected. In what is called the renormalized ME ap-
proximation, III is approximated by [see Fig. 3(b)]

III. APPROXIMATION METHODS

In this section different approximation techniques for
both weak (~ U~((t*) and strong (~U~))t*) coupling
are reviewed and compared to the MC results to deter-
mine the regions of their validity. The approximation
techniques are applied directly to the impurity model.
The mapping onto the infinite-dimensional lattice em-
ploys the same iterative procedure used in the MC simu-
lations (see Sec. II for details).

The lowest-order weak-coupling expansions determine
the self-energy by a self-consistent perturbation theory.
The most common approximations are Migdal-
Eliashberg (ME) theory' or conserving Hartree-Fock
(CHF) theory. Both of these approximations will be de-
scribed below.

The ME theory neglects all vertex corrections [which
enter to order 0/t * and vanish in the static limit
(A~O)] and is expected to be inaccurate for large pho-
non frequencies. The CHF approximation is a conserv-
ing approximation in the sense of Baym and Kadanoff
in that the conservation laws for momentum, energy, and
particle number are preserved to all orders in the approx-
imation. Conserving approximations ' are derived by
beginning with an expression for the free energy in terms
of skeleton diagrams of the self-consistent Green's func-
tion G. The self-energy is determined by functional
differentiation of the free energy with respect to the
Green s function. Susceptibilities are calculated by add-
ing an external field and differentiating the corresponding
operator average with respect to the perturbing field in
the limit where the field approaches zero.

I-CDW

ISC

FIG. 3. Feynman diagrams for the Holstein model. Solid
lines denote electron propagators (bold lines are the full Green's
function G, light lines are the bare Green s function Go), wiggly
lines denote phonon propagators (double lines denote the full

phonon propagator, single lines denote the bare phonon propa-
gator). Dyson's equation for the electronic Green's function is
given in (a) and includes both Hartree and Fock terms (the Har-
tree terms are independent of frequency and can be absorbed
into a renormalized chemical potential p). The full phonon
propagator is renormalized as in (b) for the renormalized ME
theory (the factor of 2 arises from a sum over spins), but is equal
to the bare phonon propagator for both the unrenormalized ME
theory and the CHF theory. The CD%' susceptibility is
represented schematically in (c) with the irreducible vertex
function I given by Eqs. (22) or (23). The SC susceptibility
is represented schematically in (d) with the irreducible vertex
function I given by Eq. (24).
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I (ME)=2U, (22)

and is independent of frequency. In the CHF approxima-
tion the irreducible vertex function for the CDW chan-
nel becomes

Here the electron propagators are self-consistently calcu-
lated from Eqs. (19) and (20).

The susceptibilities for CDW and SC order are given
by Eq. (8) and Eq. (14), respectively [see Figs. 3(c) and
3(d) j. Both unrenormalized and renormalized ME
theories neglect vertex corrections. The irreducible ver-
tex function for the CDW channel becomes

(D0
cQ

CD

a
6)
CD
cQ

O

0.20

0.15—

0.10—

0.05—

I

I
I

I

I
I

l

M-E (unrenorm. )

M-E {renorm. )

Conserving H-F

Strong Coupling

I (CHF)=2g Do gD—

Q=U 2—
+ +~m —n

(23)
0.00

0.0 0.2
I

0.4 0.6
g/(t"+g)

0.8 1.0

including both direct and exchange contributions. The
irreducible vertex function for the SC channel becomes

2

Q MQ
(24)

for both ME theories and the CHF theory (note
II „=0for the unrenormalized ME theory and for the
CHF theory).

The ME approximation neglects the exchange dia-
grams in the CDW channel and will produce the wrong
behavior in the high-phonon-frequency limit (0—+~ ).
The CHF approximation, on the other hand, incorpo-
rates the exchange diagrams which produce an effective
interaction I that interpolates between the low-
frequency limit I ~2U and the high-frequency limitr' U.

As the transition temperature (to a CDW-ordered state
or a SC-ordered state) is approached from above, the sus-
ceptibility (in the relevant channel) diverges. Therefore,
one can determine the transition temperature by finding
the temperature where the scattering matrix (in the
relevant channel)

T „=Ty I (2&)

has unit eigenvalue.
The results for the three different approximation

schemes are compared to the MC results in Fig. 4 for an
intermediate value of the phonon frequency (I),/t *=0.5 ).
The transition temperature to the commensurate
(X = —1) CDW state at half-filling is plotted as a func-
tion of the electron-phonon coupling strength g. The un-
renormalized ME approximation is plotted as a dotted
line, the renormalized ME approximation as a solid line,
and the CHF approximation as a dashed line. One can
see that the CHF approximation is similar to the un-
renormalized ME approximation but has a more accurate
value of the effective electron-electron interaction. The
renormalized ME theory displays the correct qualitative
behavior of developing a peak in T, (g). However, the
equations become unstable to an iterative solution at a
value of g =0.67t*, and both the peak position and peak
height are underestimated.

FIG. 4. Comparison of the approximation methods with the
MC results for the commensurate CDW transition at half-filling
in the Holstein model with Q/t*=0. 5. The horizontal axis
plots the electron-phonon coupling strength from weak cou-
pling g~0 to strong coupling gazoo, and the vertical axis
records the transition temperature in units of t *. The unrenor-
malized Migdal-Eliashberg (ME) theory (dotted line), the renor-
malized ME theory (solid line), conserving Hartree-Fock (CHF)
approximation (dashed line), and strong-coupling theory
(chain-dashed line) are compared to the MC results (solid dots) ~

The CHF approximation is more accurate at small g because it
properly takes into account the contribution from exchange dia-
grams in I . The renormalized ME approximation displays
the correct qualitative behavior of developing a peak but the
equations become unstable as g increases.

These results suggest that a conserving Auctuation-
exchange approximation which renormalizes the pho-
non propagator and treats CDW and SC fluctuations on
the same footing may produce more accurate results.
The conserving Auctuation-exchange approximation is
more difficult to perform because one must self-
consistently solve an integral equation for the irreducible
vertex functions (that now depend on three Matsubara
frequencies).

In the opposite limit of strong coupling (
~

U~ ))t*), the
electrons interact so strongly that they pair into bipola-
rons and the Holstein Hamiltonian can be mapped onto
an anisotropic Heisenberg antiferromagnet in a uniform
external field. It is easiest to see this by performing a
canonical transformation of the Holstein model and re-
stricting the Hilbert space to consist of only empty sites
and paired sites. The technique is similar to the
Schrieffer-Wolff transformation as applied to the Hub-
bard model. The phonon can be "integrated out" by
calculating the effects (through second order) of the hop-
ping. The bipolar on fluctuates via virtual processes
where one electron hops onto a neighboring site and ei-
ther the remaining electron hops to the same neighboring
site (producing an effective hopp'ing of the bipolaron) or
the original electron hops back to the original site (pro-
ducing an eff'ective bipolaron-bipolaron interaction).
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One must take into account the Frank-Condon factors
for the overlap between harmonic-oscillator states that
are centered about diff'erent positions (the origin for the
harmonic oscillator when zero, one, or two electrons are
on a site is 0, —g/MQ, or —2g/MQ, respectively).
The end result is

+ g j (J+—Ji, +. J+Ji, ).+j(~
jk& 2

where the pseudospin operators J. are

J =( —1)Jc c J. =(J.+)

JJ'= ,'(n &+—n
&

—1),

J J ——1
j k 4

defined by

, (26)

(27)

and the factor (
—1)J is 1 for the A sublattice and ( —1)

for the B sublattice of the hypercubic lattice in d dimen-
sions. The transformed Hamiltonian is an anisotropic
(XXZ) Heisenberg antiferromagnet (spin —,') in an external
magnetic field [h =2(p —U) =2@"].

If it is assumed that the temperature is much smaller
than the phonon frequency Q, then the harmonic oscilla-
tor lies in its ground state when there are no electrons or
two electrons on a site. In this case, it is easy to deter-
mine the exchange parameters j~~(ji ) parallel (perpendic-
ular) to the z axis. The result is

where p, is the electron concentration, and the transition
temperature for the SC state is

(t, I—Vid
T, (SC)=

In[p, /(2 —p, )]
(31)

P(x) —=c exp[ —PV,s(x)], (32)

In the limit S—+ ~ the transition temperature to the SC
state approaches zero and the transition temperature to
the CDW state approaches p, (2—p, )/4~ U~ which is
identical to the behavior of a spinless Falicov-Kimball
model (in the strong-coupling limit) with U„z =2U.

The transition temperature from the strong-coupling
expansion is plotted as a chain-dashed line in Fig. 4. The
MC data agree extremely well with the strong-coupling
expansion for all points to the right of the peak in the
transition temperature curve. The strong-coupling ex-
pansion appears to be valid over a much wider range than
the weak-coupling expansion.

In order to shed some light on the transition from
weak to strong coupling the MC simulations were sam-
pled to determine a time-averaged effective phonon po-
tential. The probability P(x) that the phonon coordinate
x (r& ) lies in the interval from x to x +5x was calculated
for each time slice ~& and averaged over all time slices. If
all correlations along the ~ axis are ignored, an effective
phonon potential V,s.(x) can then be extracted from the
probability distribution

(
—S)n

d i Ui „~i (1+S)(2+S) . (n +S)

It'I', -2s 1+
" (S)"

d~ U~ „,(1+S)(2+S) . . (n +S)

(28)

(29)

T, (CDW)= 2p, (2 —p, )j~~d, (30)

where the polaron band-narrowing parameter S is defined
to be S=

I UI /&.
It is easy to establish that j~~ is always larger than j~

with equality occurring only in the limit S~O. Further-
more, in the limit S~~, j~~O exponentially fast and

j~~ ~

t*
( /2d

~
U~. Therefore, the system always orders in

the CDW phase if the phonon frequency is finite and the
electron-phonon coupling is large enough.

The correspondence between the magnetization of the
pseudospin operators and CDW or SC order is easily
made by examination of Eq. (27). When the staggered
magnetization orders along the z axis it signifies a CDW
ordered state at the commensurate (X = —1) point.
When the staggered magnetization orders along the x
axis it corresponds to SC (X =1). The external magnetic
field is twice the reduced chemical potential (zero field

corresponds to half-filling).
In infinite dimensions the mean-field theory for the

spin- —, anisotropic Heisenberg antiferromagnetic is ex-
act. The transition temperature to the CDW (X = —1)
state is

as a function of temperature (c is an overall normaliza-
tion constant). This effective phonon potential should
qualitatiuely describe the important physics in the Hol-
stein model.

When the electron-pho non coupling is weak, the
effective phonon potential is expected to be harmonic and
centered at the single-electron equilibrium coordinate
x& = —g/MQ . As the coupling increases, a double-well
structure should develop with minima located at the
equilibrium coordinates for zero (xo =0) and two
(x2 = —2g/MQ ) electrons. The effective potential
V ff(x

*
) is plotted versus the rescaled coordinate

x*=—MQ x/2g in Fig. 5 for four diff'erent values of the
electron-phonon coupling strength (g =0.325, 0.5, 0.625,
and 1.0) at a temperature T =

—,'. Note that the potential
V,s(x*) is symmetric about x*=0.5 at half-filling and
the normalization constant c in Eq. (32) has been chosen
so that V,s.(x *=0.5 ) =0.

In the case of weak coupling (g =0.325) one can see
the potential appears harmonic. The potential flattens
when U = t ' (g =0.5) and a double-well structure devel-
ops. The barrier height appears to grow linearly with g
as does the separation of the minima. The peak of the
T, (g) curve for the CDW transition (see Fig. 4) is reached
at the point where the barrier height is on the order of T,
(g =0.625). Beyond this point (g =1.0) the lattice dis-
placement coordinate becomes trapped in one of two
minima and T, decreases.

These results are qualitatively similar to those found by
Yu and Anderson ' in their work on the A15 com-
pounds. They differ in the dependence of the barrier
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FIG. 5. Effective phonon potential for the Holstein model at
half-filling with 0 jt *=0.5 and P=7. The horizontal axis mea-
sures the renormalized coordinate x*=—xMQ /2g and the
vertical axis measures V,& in units of t*. The effective potential
is plotted for four values of g: g =0.325 (dotted line); g =0.5

(dashed line); g =0.625 (solid line); and g =1.0 (chain-dashed
line). The effective phonon potential is symmetric about
x =0.5. Note that the effective phonon potential appears har-
monic for small g, becomes flat at g =0.5, and develops a
double-well structure that deepens as g increases. The peak of
the T, curve at half-filling (see Fig. 4) occurs when the barrier
height is on the order of T, .

height and the separation of the minima on the coupling
strength g (a linear dependence is found here while the
barrier height increases logarithmically and the separa-
tion of the minima saturates in Ref. 41).

Finally, the question of what is the phase diagram for
the Holstein model as a function of the phonon frequency
0 is addressed. It is known that as 0—+0 the ground
state is always a CDW, whereas in the limit A~ ~ the
ground state is always a SC. How does the electron-
phonon system change its behavior from a static CDW
ordered system to a SC? This question is partially
answered by calculating the phase diagram in the weak-
coupling approach (CHF) and in the strong-coupling ap-
proach and comparing the results to MC simulations.
Note that the weak-coupling approximation should be ac-
curate when the transition region occurs at small values
of

~
U~ and the strong-coupling approximation should be

accurate when the transition region occurs at large values
of

~
U~. The grand-canonical formalism with a fixed

chemical potential is used in order to compare the ap-
proximation methods to the MC results.

In the weak-coupling approach (CHF approximation),
the transition temperature for a CDW at an ordering vec-
tor characterized by the scalar X can be calculated for all
values of —1 ~ X ~ 1. Ordering at X = —1 corresponds
to the commensurate two-sublattice CDW (the "antifer-
romagnetic" point), ordering at —1 &X & 1 corresponds
(in general) to an incommensurate CDW, and ordering at

1.0

OI—
0.8—

CQ

0
0.6—

(D
O
0 04—
O
C0

0.2—
Q)
(D

CDW (X=-1)

cDW (x=o)

cDW (x=1)

sc (x=1)

Strong coupling

~ Monte Carlo CDW

0 Monte Carlo SC

0.0
0.0 0.2 0.4 0.6

g/(t"+g}
0.8 1.0

FIG. 6. Schematic zero-temperature "phase diagram" for the
Holstein model at 0/t*=0. 5. The electron-phonon coupling
strength is plotted on the horizontal axis and the electron con-
centration at T, is plotted on the vertical axis. The MC results
are depicted by solid dots (commensurate CDW order) and open
diamonds (SC order) at three values of g. The solid line is the
CHF approximation for p, at the critical chemical potential
where the system no longer orders in a CDW at X = —I. The
dotted (dashed) lines are the similar results for the CDW at
X =0 (X = I). The region between the solid and dashed line is
the region where the CHF approximation predicts incommensu-
rate CDW order. The chain-dashed line is the electron concen-
tration at the SC transition temperature at the critical chemical
potential where the system no longer has any CDW order. The
chain-dotted line is the strong-coupling expansion (p, is con-
tinuous at T, in the strong-coupling approximation). Note that
the CHF approximation is very accurate at g =0.4 but rapidly
loses accuracy as g increases (the MC simulation found no evi-
dence for incommensurate CDW order). Note also that the
strong-coupling approximation deteriorates very rapidly as g
decreases below 0.75.

X =1 corresponds to phase separation of the electrons
and the holes (the "ferromagnetic" point). The transition
temperature for the SC phase can also be calculated. The
SC transition temperature is always a maximum for the
state composed of zero-momentum pairs (X =1). The
transition temperatures are calculated for a fixed value of
the reduced chemical potential p* and the critical chemi-
cal potential is determined where the CDW transitions
disappears. It turns out that the transition temperature
has a discontinuous jump

[T,(CDW)QT, (SC) ]

at this critical chemical potential in the CHF approxima-
tion. This implies that the electron concentration at T,
will also be discontinuous in the CHF approximation at
the boundary between CDW and SC order. The
schematic "phase diagram" that plots p, (T, ) versus the
coupling strength g is presented in Fig. 6 for the phonon
frequency 0/t*=0. 5. This "phase diagram" is the sim-
plest approximation to a zero-temperature phase diagram
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that can be made within a formalism that is restricted to
the homogeneous (high-temperature) phase. It should
represent the zero-temperature phase diagram if the tem-
perature dependence of the electron concentration can be
neglected from T =0 to T, . The solid line represents

p, ( T, ) at the critical chemical potential where the transi-
tion to the commensurate CDW at X=—1 disappears.
The dotted line (dashed line) is the corresponding elec-
tron concentration for the critical CDW transition at
X =0 (X =1). (The region between the solid line and the
dashed line is the region where the CDW orders at an in-
commensurate wave vector. ) The chain-dashed line
represents the p, (T, ) for the zero-momentum SC state at
the critical chemical potential (where the last CDW insta-
bility disappears). It is expected that the phase boundary
separating CDW and SC order will not be discontinuous
in a canonical formalism (where the chemical potential is
adjusted as a function of temperature to keep the electron
concentration at a fixed value) and will lie between the SC
line and the lowest CDW line in Fig. 6. The CHF ap-
proximation becomes inaccurate for large values of g.

The results from a MC simulation are presented as
closed dots and open diamonds in Fig. 6 for three values
of g (g =0.4, 0.5, and 0.625). The closed dots represent
transitions to a CDW state at X = —1 and the open dia-
monds represent transitions to the SC state. The CHF
approximation appears to be quite accurate for the small-
est value of g. The MC data showed no evidence for any
incommensurate CDW order or for phase separation.

Note that the maximum SC transition temperature
found in the CHF approximation was on the order of
0.03t" (at g =0.67) which is a factor of 5 smaller than
the maximum CDW transition temperature and agrees
with the maximum temperature seen in the MC simula-
tions (at g =0.5). This implies that the maximum SC
transition temperature is very strongly dependent on the
phonon frequency, and is significantly smaller than
0. 15t* in the small-phonon-frequency limit.

A strong-coupling expansion does not display any
discontinuity in the electron concentration at T, . The
transition line from CDW to SC is found by equating the
two transition temperatures in Eqs. (30) and (31). The
critical electron concentration p, (T, ) is then easily deter-
mined as a function of g. The result for the strong-
coupling expansion is given by the chain-dotted line in
Fig. 6. One can see that it does not agree with the CHF
approximation or the MC data. At first, it might appear
surprising that the strong-coupling expansion is so accu-
rate for the CDW properties at half-filling (see Fig. 4) but
appears to describe the SC properties quite poorly. This
paradox is resolved by realizing that the transition region
from CDW to SC behavior is occurring at small to
moderate values of g and low electron densities, where
the strong-coupling expansion is not expected to be very
accurate (the strong-coupling expansion predicts a transi-
tion from CDW to SC behavior occurs at S= 1 which is
outside of the strong-coupling regime for 0/t* =0.5).

Et is clear that the transition from CDW order to SC
order occurs when the electron-electron interaction
strength

~ U~ is the same order of magnitude as the pho-
non frequency Q. The phase boundary is a nearly verti-

cal line in the p, -g plane. A weak-coupling approxima-
tion is expected to be much more accurate than a strong-
coupling approximation in determining the position of
this phase boundary when the phonon frequency is small-
er than the electronic energy scale. The opposite should
occur when the phonon frequency is larger than the elec-
tronic energy scale. If incommensurate CDW order ex-
ists, it is present in only a very restricted range of phase
space; the MC simulations found no evidence for incom-
mensurate behavior at any filling or interaction strength.
Finally, it should be noted that the work in two dimen-
sions appears to agree quite well with the infinite-
dimensional work. The two-dimensional work is in the
weak-coupling regime (g =0.4) where the transition from
CDW to SC order occurs quite rapidly as a function of
doping. No evidence for incommensurate CDW order
was found in the two-dimensional work either.

IV. CONCLUSIONS

The electron-phonon problem (Holstein model) has
been examined in the limit of large spatial dimensions.
The Holstein model always has CDW solutions in the
static limit Q~O and always has SC solutions in the in-
stantaneous limit Q~~. Away from half-filling, the
transition from CDW behavior to SC behavior occurs
when

~
U is on the order of 0 with SC occurring for the

smaller values of
~ U~ and CDW occurring for the larger

values of
~
U~. The maximum CDW transition tempera-

ture is determined by the electronic energy scale, and is
virtually independent of the phonon frequency. Its mag-
nitude is on the order of 0. 15t* and the maximum occurs
at half-filling when the polaron binding energy

~
U~ is on

the order of the bandwidth t *. The maximum SC transi-
tion temperature, on the other hand, is very strongly
dependent upon the phonon frequency. In the case con-
sidered here (Alt*=0.5), the maximum SC transition
temperature appears to be an order of magnitude smaller
than the maximum CDW transition temperature
T, (SC) &0.03t* and is expected to be lower for smaller
phonon frequencies. The maximum SC transition tem-
perature is always less than the maximum CDW transi-
tion temperature.

The effective phonon potential develops a double-well
structure as the electron-phonon coupling is increased.
The maximum CDW transition temperature occurs when
T, is on the order of the barrier height of the double well.
The weak-coupling regime corresponds to the case where
the effective phonon potential has a single well and is har-
monic (~ U~ &&t*) and the strong-coupling regime corre-
sponds to the case where the double-well structure has
fully developed and it is difficult to tunnel from one mini-
ma to the other via thermal excitations (~ U~ ))t*). Ac-
curate approximation techniques must be equally well
suited for a single-well and a double-well phonon poten-
tial in order to describe the region near the maximum T, .
Neither the conserving Hartree-Fock approximation nor
the lowest-order bipolaron theories can achieve this goal.

What is the applicability of these results to finite-
dimensional systems and real materials? The infinite-
dimensional results appear to agree reasonably well with
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previous results in two dimensions (when all energy
units are rescaled to units of t *) which shows promise
that expansions in powers of 1/d may converge rapidly.
The electron-phonon problem does seem to show an
overwhelming propensity towards CDW behavior (espe-
cially at small phonon frequencies), yet most real materi-
als display SC rather than CDW. There are several
reasons for this: First, the effective electron-electron in-
teraction strength

~ U~ tends to be small in real materials
which implies one is probably on the SC side of the
CDW-SC phase boundary. Second, many lattice struc-
tures are frustrated. The frustration will reduce the effect
of Fermi-surface nesting and reduce the CDW suscepti-
bility accordingly. Frustration is not expected to have as
deleterious an effect on SC. Finally, repulsive Coulomb
interactions (which have been neglected in this model)
will suppress CDW ordering more than SC ordering be-
cause the Coulomb interaction is renormalized (logarith-
mically) due to retardation effects in the SC but is not re-
normalized for the CDW. It is possible that this last
effect can be avoided in a more general model of the Su-
Schrieffer-Heeger type" where the CDW forms on the
bonds and can avoid the on-site Coulomb repulsion.

Further work should include an investigation of how
well the conserving Auctuation-exchange approximation
works for the Holstein model, a MC simulation of the
effects of Coulomb interactions on the electron-phonon
system, and an investigation of higher-order strong-
coupling expansions.
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APPENDIX

The details of the mapping of the Holstein model onto
a Falicov-Kimball model in the static limit are given
here. In the limit where the phonon frequency ap-
proaches zero (Q~O), the phonon coordinate x (r) does
not change in time and becomes independent of ~. The
partition function is then easily determined using the
same techniques that were used in solving the spinless
Falicov-Kimball model. ' There are only two differences.
First, two species of conduction electrons must be includ-
ed (one for spin up and one for spin down), and second,
the static phonon field can assume a continuum of values
rather than the two values allowed in the spinless
Falicov-Kimball model. The result is

Z= dx exp —
—,
' MQ x — gx —p

where the definition

1 co ~ +p gx A ~

l COn

2

(A 1)

Go '(r r')—:L3,5(—r ~')+A(z z')—
is used and A,„ is the Fourier transform of A.(~). This is
the partition function of a Falicov-Kimball model with
spin- —,

' conduction electrons that interact with S—+ ~ lo-
calized electrons (that can have a continuous distribution
of static configurations). The Falicov-Kimbal model has
a constraint, since the chemical potential for the static
electrons is not free to vary in Eq. (Al).

In the low-temperature limit, the integral for the parti-
tion function can be evaluated by steepest descents. One
must recall that the self-consistency condition on the
Green's functions produces an implicit x dependence to
the time-dependent atomic field A,(w). The method of
steepest descents states that the integral will be dominat-
ed by the regions where the exponent is slowly varying.
Differentiating the exponent and setting it to zero yields

CO 1+gA~
gx=U 1+2T

LCO„+P gX A,„
1 (gx —

ALL) 1= U 1 —cothP(gx —p)+ —coth +2T g . +gA, '„
2 2 L CO„+P, gX A,„LCO„+LLL gX

(A2)

In general, there are three solutions to the steepest des-
cents condition (A2): one near gx =0, one near gx = U,
and one near gx =2U. The solution near gx = U is a
maximum and can be neglected. If the two solutions near
gx =0 and 2 U are well separated ( ~

U~ —+ ~ ), then the
steepest descents approximation to the integral consists
of the sum of the integrands evaluated at these two values

of gx; the system looks like a spinless Falicov-Kimball
model with the effective interaction set by the differ-
ence in energies for the two roots to Eq. (34)
( U„~=gx z

—gx 0 ). As the two solutions begin to
coalesce towards gx = U, the simple steepest descents ap-
proximation wi11 fail and one needs to try more elaborate
approximation techniques that take into account the in-
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terference effects between the two roots.
The particle-hole symmetric case of half-filling corre-

sponds to the choice p= U. In this case the two roots
corresponding to minima in Eq. (A2) are symmetrically
displaced [gxo=yU, gx2=(2 —y)U] and one finds the
renormalized Falicov-Kimball interaction satisfies

U
UF~ =2(1—y) U—:

a U
(A3)

and the static electrons are also "half-filled"
((gxj)=0.5). Since the mapping that determines the
Falicov-Kimball interaction strength is one to one, the
renormalization factor a can be viewed as a function of U
or of UFK. It is simpler numerically to proceed by calcu-
lating properties of the spinless Falicov-Kimball model
for a given value of U„K and then determine the corre-
sponding value of U for the Holstein model at the end by
calculating the renormalization factor a. One finds that
in the limit as UFz ~—~ that the renormalization fac-
tor becomes constant a —+0.5 in a agreement with the
strong-coupling expansion of Sec. III. In the limit as
UFK ~0, the renormalization factor diverges

a~0.578/UFK. This latter case is unphysical and illus-
trates the breakdown of the simple steepest descents ap-
proximation to the integral in Eq. (Al). The transition
temperatures calculated by mapping the Holstein model
to the spinless Falicov-Kimball model appear to be accu-
rate for values of U ranging from —~ to —0.7.

At small values of
~

U~ one can use ordinary conserving
Hartree-Fock perturbation theory (in the Q~O limit) to
determine the transition temperature to the commensu-
rate CD%' at half-filling. The perturbation theory pre-
dicts that the transition temperature has an exponential
dependence on 1/U in the small U~ limit. The conserv-
ing Hartree-Fock calculation appears to be accurate for
values of U ranging from 0 to —0.425.

The two approximation techniques (map to spinless
Falicov-Kimball model and conserving Hartree-Fock)
are joined together in Fig. 1 by a linear interpolation
for the transition temperature in the "gap" region—0.7& U & —0.425. The resulting curve for the transi-
tion temperature to the commensurate CDW (at X = —1)
in Fig. 1 is probably an accurate approximation to the
true transition temperature curve that would be deter-
mined by solving the self-consistent problem based upon
the full partition function in Eq. (Al).
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