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Expressions for the fluctuation components of frequency- and wave-vector-dependent transverse and
longitudinal dielectric functions are obtained for a normal massive isotropic metal near T,. The charac-
teristic radius of nonlocality of the fluctuation response is shown to be of the order of the temperature-
dependent superconducting coherence length £(7). Certain consequences of the nonlocal nature of the
static-fluctuation diamagnetic response above and below T, are discussed. Frequency and wave-vector
dependences of the fluctuation electromagnetic response are found to determine the characteristic value
of the differential cross section for small-angle magnetic neutron scattering near T,. This value appears
to be 10°~10° times greater in high-temperature superconductors than in low-temperature superconduc-

tors with large zero-temperature coherence lengths.

I. INTRODUCTION

The contribution to the electromagnetic response, orig-
inating from superconducting fluctuations, is of impor-
tance near the superconducting transition temperature
T,. The appropriate contribution to the conductivity and
diamagnetic response! > has a marked temperature
dependence and can be extracted from experimental ob-
servations (see, e.g., Ref. 6). Usually considerations near
T, are restricted to the case of the local dependence on
the applied electromagnetic field. However, nonlocality
(spatial dispersion) appears to be essential for a range of
problems, as we will show below. The objective of this
work is to obtain the spatial dispersion of the fluctuation
electromagnetic response near T, and to examine some of
the effects resulting from this nonlocality. More familiar
temporal (frequency) dispersion of the response will also
be considered. Fluctuation effects are more noticeable in
high-temperature superconductors (HTSC), than in low-
temperature ones due to a greater magnitude of Ginzburg
number.” This fact can benefit experimental observation
of discussed effects.

In Sec. II, we derive the general expressions for the
fluctuation parts of the transverse and longitudinal elec-
tromagnetic response above T, with characteristic fre-
quencies ) << T, and wave vectors Q <<&; !, where &, is
the  zero-temperature coherence length. Both
Aslamazov-Larkin and Maki-Thompson terms are dis-
cussed in this context. The spatial dispersion of the
Aslamazov-Larkin term is shown to be characterized by a
large scale £(T), whereas much smaller scales &,/ are
characteristic for the Maki-Thompson term (where [ is
the mean free path). So the nonlocality of the latter term
can be ignored. The large macroscopic value of a radius
of superconducting correlations £(T') near T, means that
the nonlocality of the Aslamazov-Larkin term is of im-
portance even for a macroscopically varying field.
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The static limit of fluctuation response near T, is dis-
cussed in detail in Sec. III. The fluctuation diamagnetic
response in homogeneous metal and near the vacuum-
metal boundary is considered in Sec. III A. The relation
of the fluctuation current to magnetic field is found to be
governed exactly by the phenomenological Pippard ker-
nel, which was proposed by Pippard to describe the rela-
tion between the superconducting current and vector po-
tential A. The profile of fluctuation magnetization near
the vacuum-metal boundary for the parallel magnetic
field is substantially modified at distances less than or of
the order &(T') from the boundary. The problem of di-
amagnetic response in a slab geometry is studied in Sec.
III B. The magnetization in a slab with width d S &(T') in
a parallel field is essentially suppressed, as compared to
the magnetization in the interior of a thick sample. Fluc-
tuation corrections to the penetration depth below T, are
obtained in Sec. III C. The fluctuation correction to the
penetration depth without an account of nonlocality was
considered earlier in Ref. 8. The nonlocality of the fluc-
tuation response turns out to be more important for the
type-I superconductors than for the type-II ones.

Magnetic neutron scattering on the superconducting
fluctuations above T, is examined in Sec. IV. The ob-
tained temperature dependence of the corresponding
cross section describes the original growth of this cross
section approaching T, and its subsequent saturation (the
appearance of the plateau) due to the joint influence of
spatial and frequency dispersion of the fluctuation
response. The conditions are found under which either
frequency or spatial dispersion dominates in forming the
plateau. Recent experiment on HTSC,’ where a plateau
of such type was observed is discussed. In this case it is
shown that the spatial dispersion of the fluctuation
response is to be taken account of.

Finally, the fluctuation contribution to the reflectivity
of plane metal surface above T, is discussed briefly in Sec.
V.
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FIG. 1. Aslamazov-Larkin diagram. Solid lines correspond
to electron propagators, wavy lines correspond to fluctuation
propagators.

II. FLUCTUATION COMPONENT
OF ELECTROMAGNETIC RESPONSE

In a normal metal near 7, and out of the critical re-
gion, the basic contribution to the fluctuation linear elec-
tromagnetic response is provided, as is known, by the
Aslamazov-Larkin and Maki-Thompson terms*> (see
Figs. 1 and 2). Let us first consider the former term,
which can be described within the framework of a time-
dependent Ginzburg-Landau equation with a Langevin
source (see, e.g., Ref. 10):

FIG. 2. Maki-Thompson term. Dashed lines denote impuri-
ty scattering.
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Here a=a(T—T,), {|g(Q,Q)|*) =2y T, and the validity
of inequalities Q << T, and Q <<&; ! is implied. Expand-
ing W over the set of plane waves W(r,t)
=3, pC0pe' " ' and performing the Fourier transfor-
mation in Eq. (1), one can get the following expression for
the Fourier component of the superconducting current:
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The applied transverse field (divE=0) is regarded here as a perturbation and the quantities ¢‘?,¢‘!) are of zero and first
order in A, respectively. On averaging Eq. (2) over superconducting fluctuations of the order parameter, the kernel, re-
lating j=(J) to A, is obtained. For 7 > T, this kernel must be zero in the limit Q—0, Q —0 due to gauge invariance.
However, in calculating this kernel, the Ginzburg-Landau theory results in an integration over momenta, which is
divergent at the upper limit. It is associated with the invalidity of the Ginzburg-Landau theory for large momenta
Q 2 &, 1. In order to obtain the finite result within the framework of the Ginzburg-Landau theory, it is sufficient to sub-
tract the integrand, corresponding to the limit Q—0, Q —0.

Following this procedure we get in the linear approximation in A the relation j(Q,Q)=(—iQ/47)e/(Q,Q)E(Q,Q),

where
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Here £(T)=1/2(ma)'/?. 1t is convenient to introduce the dimensionless frequency w=2my&*T)Q and wave vector
q=Q&(T /2 Then, performing an integration in Eq. (3), one finds the final result for e/(Q,Q):
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Here the function arctanz is defined in a complex plane z with cuts (/,i o ), (—i, —i ). Radicals have cuts along the
real negative axis.

One can also obtain Eq. (4) from the Aslamazov-Larkin diagram, represented in Fig. 1. The Aslamazov-Larkin dia-
gram is generally considered for the external frequency Q << T, in the limiting case Q —0, where Q is the wave vector
of the external electromagnetic field. Suppose, that the external momentum can be comparable to or even exceed the
inverse radius of superconducting correlations £ 1(T'), remaining much less than £, !. In the calculation of the dia-

gram of Fig. 1, this circumstance leads to the essential dependence of fluctuation propagators on Q, while electron loops
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may be described as before by expressions, corresponding to the Q —0 limit. The thing is that the characteristic
momentum for fluctuation propagators K® 4(p,w)=1/(a+p?/4m Fiyw) is £ (T) and the one for normal electron
Green functions is either & ! or [ ~! for clean and dirty limits, respectively.

The appropriate integral over momenta, giving response at Q =0, Q=0 appears to be divergent as earlier. However,
according to Ref. 1 the account of the other diagrams, which are important at Q@ =0, Q=0, results in the total zero
value of response in this case. So the subtraction procedure stated above is justified.

For small wave vectors g2 <<, expression (4) gives

256y°m2e?T,E%(T)
1

e(Q,0)=¢/(Q)+ 5o g 1—Sio—(1—i0)?— LoX(1—ie) ], )
where the fluctuation dielectric function, in which only frequency dependence is taken into account,
32y m%*T,E(T) ;
)= e T Ty | 2y e | (6)
(4] 3w

is in agreement with the results of Refs. 1 and 2.
For relatively large wave vectors g >>w, we have, from Eq. (4),
4mc?Q?
QZ

4i

el(Q,0)= Xf(Q)+Taf(Q). 7

Here x/(Q) and 0/(Q) are the wave-vector-dependent fluctuation diamagnetic susceptibility and transverse conductivi-
ty of a normal metal near T,. The expression for Y/(Q) is

3Xo 1 1
S —_ i —_ —_—
xN(Q)=xof(q)= 1+ arctang , (8)
where o= —e?T.E(T)/6mc? is the well-known expression for the fluctuation diamagnetic susceptibility of a massive

sample in a uniform field. The spatial dispersion of the static transverse fluctuation conductivity is given by

. ZUAL
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where 0 o) =e?ymT_,&(T)/m is the fluctuation Aslamazov-Larkin conductivity. It follows from Eq. (9) that the spatial
dispersion of the fluctuation conductivity of metal becomes essential even for relatively small values of the wave vector
Q~& NT)<<&; !, whereas the wave-vector dependence of other terms in conductivity may be ignored under such con-
ditions.

The expression for the longitudinal fluctuation dielectric function can be obtained in a way similar to that outlined
above, after removing the restriction divE=0. Then we have
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where the fluctuation component of the longitudinal dielectric function is given by
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On carrying out the integration in Eq. (11) one obtains
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For small wave vectors g2 << expression (12) gives
256y m2e* T, EX(T)
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where £/(Q) is defined in Eq. (6).

For relatively large wave vectors g2>>>w we have
e{(Q,0)=4mio{(Q)/Q and the longitudinal fluctuation
conductivity o{(Q) is as follows:

20
a,f(Q>=-;§£[

(1+g»)'?—1]. (14)
Temperature dependences of £/(Q), y/(Q), 0{;( Q) and
0{(Q) for small w or g are entirely governed by a factor
E(T), being proportional to (T —T,.)”!/? as follows from
Egs. (6), (8), (9), and (14). In approaching T, the values
of w and ¢ may become large enough (R 1). Then tem-

perature dependences of £/(Q), /(Q), {(Q), and o(Q)
are saturated. This results in the appearance of the cor-
responding plateau. Such behavior is quite common.
For instance, the usual correlation function of an order
parameter in the Landau theory of the second-order
phase transition increases with temperature for small mo-
menta and becomes independent of temperature with ap-
proaching to T, due to momentum dependence.

Contrary to the Aslamazov-Larkin diagram, the
Maki-Thompson diagram,*> represented in Fig. 2, allows
the parametrization with the external momentum passing
only through the electron Green functions. The external
momentum is completely excluded from the fluctuation
propagator (as can be seen in Fig. 2). The qualitative
difference in the behavior of the spatial dispersion for the
Aslamazov-Larkin and Maki-Thompson terms stems
from this fact. If Q <<&; !, the spatial dispersion of the
Maki-Thompson correction oyt to the conductivity of
metal can be neglected. In the dirty limit, for instance,
the nonlocal correction to the Maki-Thompson term is of
order (QI)% This correction originates from the momen-
tum dependence of electron Green functions. The impur-
ity vertex does not result in dependence on the external
momentum Q because it is associated only with the sum
of the incoming momenta of electron propagators.

Straightforward calculations yield a frequency disper-
sion of this term resulting from the diffusive frequency
dependence of the impurity vertex in the dirty limit:

UMT(Q)

__e? ro p’dp
- 2 f 2_ 2 -2 :
drgy <o (p°—iQ/D+1/74D)[p°+§ (T)]

(15)

Here D is the diffusion constant, Ty is the phase relaxa-
tion time. Contributions to 7, may be of different physi-
cal origin.!! This parameter may be extracted from ex-
perimental observations, e.g., magnetoresistance data.!’
Taking into account the relation £5=mD /8T, we obtain,
after integrating Eq. (15),

x
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Mix)= e —2X/ET) 4
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where t=|T—T,|/T,, 8=m/8T 7, In the limit of small
frequencies we recover from Eq. (16) a familiar result for
O MmT:

1 ¢

8 §0(t1/2+51/2) *

If 8~ 1 that takes place for HTSC,'? we may discard both
the frequency and wave vector dependences of oy under
assumed conditions Q << T, Q << £&; 1.

opr(Q)= 17)

III. STATIC FLUCTUATION RESPONSE

A. Fluctuation diamagnetic response of a massive sample

The nonlocal kernel, relating fluctuation magnetization
to magnetic field H, according to Eq. (8) exactly coincides
with the phenomenological Pippard kernel'® (see also
Ref. 14), relating j to A in superconductors. In the coor-
dinate space it is given by

3
M= e f

R(RH(T’))e—zR/g(T)dr' ,
R4
R=r—r . (18)

Here M(r)=[B(r)—H]/4w. It is essential that the
characteristic radius of nonlocality in Eq. (18) is §(T).

The external magnetic field H, parallel to the plane
boundary of massive normal metal, induces magnetiza-
tion My=x H in its interior. In this problem the mag-
netic field H is completely uniform over the whole space.
A nonuniform profile of magnetization M(r)
=[ f x(r,r')dr’' JH appears within the metal near the sur-
face owing to the inhomogeneity of diamagnetic suscepti-
bility. This inhomogeneity is, in turn, associated with the
spatial dispersion of the fluctuation diamagnetic response
(8). The profile of magnetization turns out to have
characteristic length ~&(T'). M is varying from the zero
at the boundary to M, in the depth of the sample.

Under the specular reflection condition the half-space
problem is known to reduce to the effective whole space
problem, in which A is continued symmetrically across
the boundary or, equivalently, H is continued antisymme-
trically. Then, if the sample occupies half-space x >0,
the magnetization is given by

Mx)=2p [*30Q%) /040 . (19)
T 0 Q

On calculating this integral with an account of Eq. (8), we

obtain
2
2x" ] . 20)

E(T)

3 }Ei
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Here Ei(—x)= [ “% dt e'/t. For x <<&(T) we have MO/ Mo
1.00 1
Mox [ &) '
M(x)= 21
GOy ™| 2 16 @D
And in the region x >>&(T), Eq. (20) gives 080
2
Mx)=M, [1—3 T —2ee) @) osd /

It can be seen from Egs. (20)—(22) that experimental in-
vestigation of magnetization near the surface on the
scale of £(T') can yield the data on the properties of non-
local fluctuation response. The dependence of
M(x)/M(0) on the dimensionless coordinate 2x /§(T) is
represented in Fig. 3.

B. Static response in a slab geometry

In this subsection we will consider the fluctuation di-
amagnetic response to the static magnetic field in a slab
geometry. Let the normal to the slab coincide with the x
direction and the plane boundaries have coordinates
x=0 and d. If H=(H cosa, H sina,0) we can choose a
vector potential such as A,=H(y cosa—x sina). Then
the condition of the absence of the current normal to the
surface takes the form V¥|,=0. Substitute an expansion
of W over the set of functions cos(nmx /d)exp(ik-r) into

the Ginzburg-Landau effective Hamiltonian in the
Gaussian approximation:
2
F= [ {alw|*+ lV—EA vl lav. @3
c

The parameter n=0,1,2,...; k,r are two dimensional
and correspond to y,z. Further calculations are analo-
gous to those presented above in Sec. II if the integration
J

T+[(n +v)2+n2]/21

s b er e bl el g
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FIG. 3. Fluctuation magnetization M(x)/M, near the

vacuum-metal boundary.

over p, is replaced by a summation over n. The com-
ponents of current or magnetic field may also be
parametrized by these numbers. In order to take into ac-
count that for n =0 and k —0, the kernel relating current
to the vector potential has to vanish, the subtraction pro-
cedure, analogously stated above, must be used.

It is convenient to use magnetization M instead of the
current j=c curlM. For the averaged over x magnetiza-
tion M we shall get M=y H, +x H,, where indices 1 and
|| denote components perpendicular and parallel to the
slab.

On the integrating over the components p,,p,, suscep-
tibility x, is given by

7+ (n+v)?

48 |
X”:?XOTI/Z = 2

4 22
v=2k+1>0 V' n=—c (n+v)—n

where 7=[d /m&(T)]? is the dimensionless temperature.
If r>>1,

X~ Xo 172 (25)

87T

Naturally, this result follows from Eq. (20), when the de-
crease of the average fluctuation response due to the dis-
tribution (20) is calculated. In the opposite limit 7<<1,

1/2 0.28
T

= —X (26)

As was noted in Ref. 6 on the basis of qualitative con-
siderations, susceptibility x, should not practically de-
pend on temperature for 7 <<1. According to the quanti-
tative result (26) this susceptibility reveals logarithmic
temperature dependence.

The result for perpendicular susceptibility appears to

-1, 24
T+n? 24)

-
be much simpler:

Xi_ 1/2 2 - (27)

n=0 T+n

For small 7 it recovers the well-known expression
X1=2Xo/m7'/? for a thin film, while for large 7

Xi=Xo |1+

1
— } : (28)

In Fig. 4 numerical results for ¥, and y; measured in
units of y’'= — Te’d /6¢?* are represented as functions of
dimensionless temperature 7. For example, according to
the calculations, the relation x,=2y, is fulfilled at
d=~1.7&T).
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C. Fluctuation corrections to the penetration depth

The spatial nonlocality of fluctuation response can also
manifest itself below T,. In the superconductor at T < T,
the length scale of the nonlocal coupling of the main
(nonfluctuation) part of the current with the field is
known to be determined over the entire temperature
range by the zero-temperature coherence length &,. Near
T, we have £, <<&(T) and according to approximations,
under which we can use the Ginzburg-Landau theory, we
ignore the nonlocality with the length scale &, In the
Gaussian approximation the fluctuation contribution to
the screening current amounts to only a small correction
to the main superconducting current. However, one can
hope that this correction may be extracted from experi-
ments.

16T,

[ p | pi+Qi/2)(p+0,/2)
c (2m)3

Ji(Q)=

p?  p2H2£TXT)

(p+Q7[p*+26~XT)] 4

Under the gauge condition div A =0, the expression for
the average current in the approximation linear in the
field can be represented as j(Q)=—L(Q)A(Q). The
fluctuation correction to the value of L(0) was found in
Ref. 8.

In the equilibrium states the averaging of supercurrent
J(Q) can be carried out with the help of a standard
Ginzburg-Landau effective Hamiltonian. As compared
to the case T>T, [see Eq. (23)], the quartic term
b|¥|*/2 does contribute to the Gaussian fluctuations
here. Owing to this fact averaged quantities like (WW)
and (W*W*) appear to be nonzero apart from common
ones {W*W) type. This procedure leads to the following
expression for the average current in the linear approxi-
mation:

L L 8, | 4,(Q) . (29)

In integrating Eq. (29) over momenta we obtain linearly divergent at the upper limit terms. Regularization of the in-
tegral is associated exclusively with the limit Q =0 and is fulfilled analogously to Ref. 8. As a result the dependence of
the fluctuation response on the wave vector in the Gaussian approximation is given by

172

L 6

+ =
: 3

2£2
1+Q§2(T)

—=_C 42
L(Q) 41r}”‘

Here A; =(mc?b /8me?|a|)!’? is the London penetration

depth. The Ginzburg number is defined as
Gi=2T,m*b*/m*a. The function f(x) was introduced
in Eq. (8).

In the case Q&(T)<<1, which corresponds to large

X Xy /X
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FIG. 4. Fluctuation diamagnetic susceptibility y/x’ of a slab
as a function of dimensionless temperature 7=[d /7&(T)]%
The upper curve corresponds to the perpendicular susceptibility
X1, the lower curve corresponds to X|.

f[Qg(_T)

(30)

[
values of the Ginzburg-Landau parameter « >>1, we find
from Eq. (30)

1 172
1+ [14+2Q%XT)]

L(Q)=57" Gi . @D

It follows from here that the fluctuation correction to the
penetration depth is
1/2
[ 2

Gi

1+1

ATr=ap2 3 1+ =

el I B €2
K

Expression (32) differs from the corresponding result in
Ref. 8 in that it also incorporates the small correction
( < k~2) due to the nonlocal nature of response.

If the condition Q&(T) >>1 is satisfied, that takes place
for type-I superconductors with x << 1, Eq. (30) leads to

L(Q)

_ € 2| 4 mQETD) | Gi __42
47 "F 42 t TQE(T) ||

(33)
For the penetration depth determined from the formula
A= [$B(x)dx /H, we find from Eq. (33) the following
result for the case of specular reflection at the boundary:

172

1 [1—2V2k]

2V 2k

Gi

t

1+

AT2=7;2 , k<<1.

(34)
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Here, contrary to Eq. (32), the nonlocal nature of the di-
amagnetic response is important for the first fluctuation
correction to the penetration depth.

The range of the applicability of the results derived in
this section is determined by the applicability of the
Ginzburg-Landau theory, the assumption that the fluc-
tuations in the order parameter are small, and the validi-
ty of ignoring the fluctuations of the magnetic field.
These conditions impose the requirements

Q <&y, max{Gi,k %Gi} <<t <<1. (35)

The condition ¢ >>Gi /k® is important for a type-I super-
conductor with xk<1. Because of this condition, in
describing small fluctuations in the order parameter one
can ignore the circumstance that the fluctuations in the
magnetic field make the superconducting transition a
first-order transition.!> In  particular, we find
(Gi /1) ! <<«? from this condition. Consequently,
the second term in Eq. (34) is always small in comparison
with the first, as it should be.

IV. FLUCTUATION CONTRIBUTION TO THE
MAGNETIC NEUTRON SCATTERING ABOVE T,

Specific dependences of dielectric function on the tem-
perature, wave vector, and frequency may be revealed in
the differential magnetic neutron-scattering cross section
in normal metal near T,. Behavior of this type was ob-
served recently in experiments on HTSC polycrystal sam-
ples.’ In the absence of the magnetic ordering, the mag-
netic neutron scattering is caused by their interaction
with an equilibrium fluctuating magnetic field. The cor-
responding differential scattering cross section of an un-
polarized beam into the solid-angle region dO and the in-
terval of transferred energy d(} with energy increase ()
for the massive homogeneous isotropic sample is as fol-
lows:

d’s _ g%V P
dQdoO 3273%c? p

(BY)q, - (36)

Here Q is the transferred momentum, p=myvy, and
p'=p+Q are the initial and final neutron momenta,
g =1.91 is the neutron gyroscopic factor. According to

J
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the fluctuation-dissipation theorem applied to the elec-
tromagnetic field, the spectral component of the bilinear
correlator of the magnetic field is described by the expres-
sion

87 0:9;
(BB;)g o= |8, — ——2
77Q,Q 1—e /T j Qz

X Im 1 (37)

1—(Q%/c?2Q%e, (Q,0)

Substitution of Eq. (37) into Eq. (36) under the condition
Q<< T, leads to

d’s _ 8%VT, p' | 1
= — 1m .
dQdo  27% p Q@ 1—(Q2/c*QYe, (Q,0)
(38)

In Ref. 9 the total scattering cross section dS /dO in a
given direction was measured for low-energy neutrons
and small scattering angles near the forward direction.
In order to calculate this quantity, one has to integrate
Eq. (38) over energy Q at a fixed scattering angle 6,
or equivalently at fixed transferred momentum K
=2p sin(6/2), corresponding to quasielastic scattering at
angle 6. In integrating Eq. (38) we have Q /vy ~K <<p
for the small scattering angles. Thus, we can set approxi-
mately Q=K+n'Q/vy, Q?=K?+Q2?/v}, where
n'=p’/p’. In the discussed region of frequencies and
wave vectors we can represent the dielectric function in
the form e,(Q,Q)=4mio /Q+el(Q,Q), where o is the
nonfluctuation part of the static conductivity of normal
metal and £/(Q,Q) is defined in Eq. (4). The spin contri-
bution to £,(Q,Q) in the given region of Q) and Q is as-
sumed to have no specific temperature dependence near
T, and therefore it is ignored.

Estimates based upon the experimental conditions of
Ref. 9 show that the inequality c?Q?>>Q%,(Q,Q) holds
with sufficient accuracy. Taking into account this in-
equality we get explicit analytic expressions for the con-
tributions of superconducting fluctuations in the cross
section dS//dO in the angle intervals K <<myvy /#* and
K >>myvy /#:

as’ 16g2e4VTE2 5.3 2 =~ 1 )
40 sot (myvy)€(T) T [(1+k) 1] 2Rk K <<myvy/#, (39)
ds’ _ g%*VTiyvy | 1 k 2¢/(K)
— _ 4+ = — 2\1/2 LA\ T 2 .
90 = omepe |77 |1 TR S Ko myuy /A (40)

Dimensionless units k =K&(T)/2, k =2myvyEXT)K /#* have been introduced here and the Planck constant is no
longer set to be a unit up to the end of this section. Conditions K <<myvy /#* and K >>myv, /#* correspond to the
limiting cases g2 << and g2 >>w (if Q ~Kvy). Thus, the dependence of the cross section dS’/dO on momentum #K in
the interval of angles K <<myvy /#* is associated with the dependence of the dielectric function (6) on the frequency Q.
In this case the influence of spatial dispersion may be neglected. At the same time the dependence of dS’/dO on
momentum %K in the angle interval K >>myvy /#* [see Eq. (40)] is directly connected with the dependence of fluctua-
tion conductivity (9) on the wave vector. Hence the account of spatial dispersion becomes important for K X myvy /2,
E7N(T). According to the estimate, wave vectors of such an order of magnitude were present in measurements.’

The fact that a number of terms on the right-hand side of Eq. (40) combine into x/(K ) does not seem to be occasion-
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al. Indeed, according to the sum rule that stems from the Leontovich dispersion relationships,'® we have

do

1

_ _1 + o
w(K)=1+4my(K) 77_vpfﬂ)0

Here the inequality z2 < 1 must be satisfied and relations

lim 1
00 1—(Q%/c*K?)e (Q,K)

lim 0%,(Q,K)=0
Q-0

=u(K) ,
(42)

are supposed to be valid. The integral with which we
deal in the magnetic scattering problem is very close to
Eq. (41), but for the magnitude of appropriate parameter
u. Instead of the wave-vector argument K+uQ /c as in
Eq. (41), the quantity K+n'Q /vy appears. So the
effective value of parameter u? is ¢2/v} > 1 and the sum
rule (41) cannot be applied in our case. The presence of
X/(K) in Eq. (40) may be regarded as a reminiscence of
the broken sum rule.

Under the condition K <<myvy /#* any of the inequal-
ities kK <<1 and k >>1 may, generally speaking, hold.
Analogously, the inequality K >>myvy /#* does not ex-
clude both limits k <<1 and k >>1. In the limiting cases
k <<1 and k << 1, expressions (39) and (40) coincide, as it
must be:
ds’ g2 VTiyvym'”?

dO  wc*#[a(T—T.)1'K

_ 28%*VT.0 oLy
c*#K

(43)

In this situation the scattering cross section increases as
(T—T,)"'/? with temperature approaching T, and is
proportional to 1 /K. If kK >>1in Eq. (39) or k >>1in Eq.
(40), the cross section no longer increases with tempera-
ture approaching 7,:

ds/ _ 8¢V [2myvy]'?
do ImcHK 32 ’
ﬁZ

5 <K <myvy/# (44)

2myvyE(T)
ds’/ _16 |z |g% ' VTimyvy
do 77.2 2 C4ﬁ6K2 ’

1
2
—— . 4
K >myvy /#°, ET) (45)

In fact, any term Ao in the conductivity of metal leads
to expression (43) for scattering angles, where both spa-
tial and frequency dispersion of Ao can be disregarded
[under the condition ¢?K?>>Q%,,(Q,K) all the contribu-
tions to the cross section from different terms in €,(Q,K)
are additive to a first approximation].

The contribution of the Maki-Thompson term (16) is
obtained in an analogous way on integrating Eq. (38):

dS{sr _ g% VT vy
dO  4c*#PEK (t'2+ 8+ (mKvy /8T,)]'?}

(46)

Due to the short phase relaxation time in the HTSC, it is
possible to ignore the term mKvy /8T, as compared to 8

I .
Q 10/ K +u(Q/c)Ple [ K +ulQ/c)]

(41)

[
in Eq. (46). It corresponds to the possibility of ignoring
the frequency dispersion of the Maki-Thompson term in
Eq. (16). Then we have
dS{r _ 282e*VT.opvy
do K

(47)

in agreement with Eq. (43). This term can be disregarded
because the ratio of the contribution (47) to the cross sec-
tion given by Eq. (45) is characterized by a small parame-
ter K&,

Since the superconducting fluctuations are supposed to
be Gaussian, the plateau height is correctly described by
Egs. (44) and (45) for T > T;, where T; is the boundary
between the regions of Gaussian and strong fluctuations.
In particular, the validity of Eq. (45) demands
[K&(TgH)*>>1. Under the experimental conditions of
Ref. 9, the quantity K&(Ty;) is likely to be equal to
several units, hence we can use Eq. (45) at least for quali-
tative estimates.

Let us consider the cross section dS//dO as a function
of temperature at a given value of the transferred
momentum, satisfying the inequalities K&;<<1 and
#K <<p. With decreasing of temperature and approach-
ing T, the value dS//dO primarily increases according
to Eq. (43). Then, due to the growth of £(7') , one of the
inequalities (44) or (45) becomes valid, so the plateau ap-
pears in the graph of dS f/d0. Such a behavior was ob-
served in Ref. 9.

According to our results, (44) and (45), the plateau
height decreases with the increase of the transferred
momentum. It is proportional to K ~3/2 if the effects of
frequency dispersion in contrast to spatial nonlocality are
important (K <<myvy/#). It is also proportional to
K ~? if the account of the spatial dispersion is indispens-
able and frequency dispersion can be ignored
(K >>myvy/#*). The numerical calculation gives the
dependence of the plateau height for intermediate values
of transferred momenta. Let us represent
dS’/dO=f,(K)f,(K), where f,(K) is given by Eq. (45).
The graph of f,(K ) is shown in Fig. 5.

One can see that experimental data’® of the plateau
height is better described by K ~2 dependence than by
K 73/2. This circumstance together with other above-
mentioned estimates leads us to the conclusion, that the
account of spatial dispersion is needed for the analysis of
the results of measurements.’

The height of the plateau is proportional to 72/ /&, for
the scattering angles (44) and to T, /&3 for the angles (45)
[here we set £,~#/(maT,)!”? and y <a]. Hence, for the
HTSC the plateau height, i.e., the characteristic value of
the contribution of superconducting fluctuations, appears
to be 10°-10° times greater than for ordinary low-
temperature superconductors (with sufficiently large
coherence length).
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FIG. 5. Function f,(K), giving the plateau height of

the magnetic neutron-scattering cross section dS//dO
=f1(K)f,(K), where f(K) is defined in Eq. (45).

We have assumed above that the sample is isotropic
and homogeneous. Naturally, for the quantitative
analysis of the effects in the HTSC, the generalization of
the results for the case of anisotropic superconductors
and, probably, the polycrystal structure of the samples is
needed.

V. FLUCTUATION CONTRIBUTION TO THE
REFLECTIVITY OF PLANE METAL SURFACE

Let us finally return to the frequency dependence of
fluctuation conductivity af(Q)=0¢f (Q)/4mi, where
£/(Q) is defined in Eq. (6). This quantity contributes, for
example, to the surface impedance of plane metal bound-
ary under normal skin effect conditions:

1/2
Q

ZQ)=(1—i) | ——————
= 8o +o/(Q))]

(48)

The HTSC dimensionless frequency o=2my&XT)Q
that governs the frequency dependence of o/(2) may be
much greater than a unit, in particular, for the millimeter
wave region near T,, whereas Q <<T,. So the high-
frequency limit
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o (Q)=41+1)eT,(my)'2/37Q!/?

must be used for sufficiently low-frequency waves. While
this contribution may be noticeable, corrections due to
nonlocality turn out to be small here and are character-
ized by a small parameter o /myc>.

VI. CONCLUSION

A fluctuation contribution to the dielectric function
with an account of spatial and temporal dispersion has
been obtained near T,. Both the Aslamazov-Larkin, (4)
and (12) and Maki-Thompson (16) terms were considered
for wave vectors of the external field Q <<&;! and fre-
quencies 1 << T,. The possibility of ignoring the spatial
dispersion in the Maki-Thompson term for Q <<&; ! was
substantiated. The Aslamazov-Larkin term has the ra-
dius of nonlocality ~&~1(T'). The nonlocality of fluctua-
tion diamagnetism in a homogeneous massive sample of
the normal metal was examined. It governs the profile of
fluctuation magnetization near the metal-vacuum bound-
ary (20). The static diamagnetic response in a slab
geometry was also calculated, Egs. (24) and (27). Nonlo-
cal fluctuation corrections to the penetration depth below
T, were found in Sec. III C. The wave-vector dependence
of the response essentially modifies the behavior of the
fluctuation contribution to magnetic neutron scattering
near T, (45). The frequency dispersion of fluctuation
conductivity appears to be very important for the surface
impedance of the normal phase of the HTSC, in particu-
lar, for the far infrared and millimeter electromagnetic
waves. Results obtained here concern homogeneous iso-
tropic metals near T,.. Consideration of the influence of
anisotropy is in process.

Note added in proof. Recently, an article appeared by
L. I. Glazman, F. W. J. Hekking, and A. Zyuzin [Phys.
Rev. B 46, 9074 (1992)], where similar general aspects of
the spatial dispersion of the Aslamazov-Larkin term and
the Maki-Thompson term were observed for a different
particular problem of fluctuation conductivity of a hol-
low cylinder with a magnetic flux.
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