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Extended irreversible thermodynamics of liquid helium II
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In this work a macroscopic monoAuid theory of liquid helium II, which is based on the extended ir-
reversible thermodynamics, is formulated both in the presence and in the absence of dissipative phenom-
ena. The work is a generalization of previous papers, where the extended thermodynamics of an ideal
monoatomic Auid was applied to liquid helium II. It is shown that the behavior of helium II can be de-
scribed by means of an extended thermodynamic theory where four fields, namely density, temperature,
velocity, and heat Aux are involved as independent fields. In the presence of dissipative phenomena, con-
stitutive relations for the trace and the deviator of the nonequilibrium stress tensor are determined. In
these relations, in addition to the normal viscous terms (which take into account the mechanical dissipa-
tion), terms proportional to the gradient of heat Aux (which take into account the thermal dissipation)
are present. The proposed theory is able to explain the propagation of the two sounds that are typical of
helium II, and the attenuation calculated for such sounds is in agreement with the experimental results.
Finally, the proposed theory is compared with the two-Auid model making apparent the analogies and
the differences.

I. INTRODUCTION

Extended thermodynamics (ET) is a macroscopic
theory of nonequilibrium processes, which has been for-
mulated in various ways in the last decades. ' The
main difference between the ordinary thermodynamics
and the ET is that the latter uses dissipative Auxes, be-
sides the traditional variables, as independent fields. As a
consequence, the assumption of local equilibrium is aban-
doned in such theories. In the study of nonequilibrium
thermodynamic processes, an extended approach is re-
quired when one is interested in sufficiently rapid phe-
nomena, or else when the relaxation times of the Auxes
are long; in such cases, a constitutive description of these
Auxes in terms of the traditional field variables is impossi-
ble, so that they must be treated as independent fields of
the thermodynamic process.

The behavior of liquid helium, below the A, point, is
anomalous with respect to the other substances. In par-
ticular, it has an extraordinary ability to Aow through a
thin capillary, is unable to boil, it is extremely difficult to
measure its thermal conductivity, and temperature waves
are propagated in it. In order to describe the behavior of
this quantum liquid, Landau and other introduce the
well-known two-Auid model. Other authors have tak-
en into account the inseparability of the superAuid and
normal-Auid component and attempted to provide alter-
natives to the two-Auid model.

The anomalous behavior of helium II can also be ex-
plained supposing that the quantum phenomena do not
allow the introduction of the hypothesis of local equilibri-
um. From a macroscopic point of view, an extended ap-
proach to thermodynamics is required in helium II be-
cause the relaxation time of heat Aux is comparable with
the evolution times of the other variables. This field can-
not, therefore, be expressed by means of a constitutive
equation as a dependent variable. This point of view is

confirmed by the fact that the thermal conductivity of
helium II cannot be measured and by the possibility of
describing, through the proposed theory, several typical
effects of helium II. The two-fiuid model by Landau (for-
mulated when a coherent thermodynamic theory for
nonequilibrium phenomena was not yet established)
shortcuts this problem, because an objective kinematic
variable replaces the heat Aux, which is the nonequilibri-
um variable needed to describe the macroscopic behavior
of helium II: It is the relative velocity between the two
components of the mixture.

An extended thermodynamic theory strongly suggested
by the kinetic theory of gases has been formulated in Ref.
2. Moments of various orders of the phase density
(which satisfies a Boltzmann equation) are chosen as fun-
damental fields, while the balance equations for these
fields are nothing but the transport equations for the mo-
ments. For this reason the theory is valid only for ideal
monoatomic Auids. As a limiting case of this theory, the
case of a strongly degenerate Bose gas, where Bose-
Einstein condensation takes place, has been studied in
Ref. 12.

In some previous papers, basing upon such a theory,
the behavior of an ideal monoatomic superAuid, that is an
ideal monoatomic Auid with extremely low viscosity and
extremely high thermal conductivity, has been studied
both with and without dissipation. It has been shown
that two waves are propagated in it (which become the
two sounds characteristic of helium II when thermal ex-
pansion is negligible and temperature is low' ), and that
in such a superAuid, thermomechanical phenomena, as
the link between the stress and the heat Aux and the foun-
tain effect, take place. ' ' However, owing to the strong
constraints imposed by the ET formulated in Ref. 2, the
state equation of an ideal monoatomic Auid possesses a
very particular functional form; consequently the ther-
mostatic properties of helium II fit into the theory only
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approximatively and at high pressures and low tempera-
tures, as it may be seen from the data reported in Ref. 15.
Finally, the dissipative theory of an ideal monoatomic
superfluid developed in Ref. 16, involves a single viscous
coefticient, that is the shear viscosity, while it is observed
that at low pressures bulk viscosity is not negligible in
helium II. All the former reasons require the formula-
tion of a monofluid theory of this liquid, valid in a wider
range of temperatures and pressures.

In this work, a monofluid theory of helium II is formu-
lated which is based on extended irreversible thermo-
dynamics formulated by Jou, Casas-Vazquez, and Lebon
in Ref. 3. This theory is more general than the one for-
mulated in Ref. 2, because its application is not restricted
to ideal monoatomic fluids, and because, besides the fields
of ET by Liu and Miiller, also the trace of nonequilibrium
stress (which is zero in an ideal monoatomic Iluid) is in-
troduced.

In Sec. II the extended irreversible thermodynamics is
shortly summarized. It is shown, in Sec. III, that the
behavior of helium II can be described, in the absence of
dissipation, by means of the two scalar fields p and T, re-
spectively, density and temperature, and the two vector
fields U; and q;, respectively, velocity and heat flux. In
Sec. IV, constitutive relations for the two fields m &; ~

and
pv, respectively, deviator and trace of nonequilibrium
stress tensor, are determined, when the dissipation is tak-
en into account. Starting from the assumption that the
relaxation time of q; is comparable to the evolution times
of the other field variables, while the relaxation times of
m &;.&

and pv are negligible, one arrives at the constitu-
tive equations for the latter fields, where terms propor-
tional to the gradients of U; and q, are present. The prop-
agation of small amplitude waves is studied and it is
shown that the attenuation coefficients anticipated by the
theory are in agreement with the experimental results. In
Sec. V, finally, the proposed theory is compared with the
two-Quid model by Landau and Khalatnikov.

tv
rp +A,o P TA, O

— piBt Bxj. XJ
(2.1d)

(2.1f)

In Eqs. (2.1), pz is the pressure of thermostatics, T the
temperature, ~p, ~z, and ~, are, respectively, the relaxa-
tion times of the nonequilibrium pressure, stress deviator
and heat flux,'

Ap, A,z, and A,
&

are the coefFicients, which in
a normal fluid, can be identified, respectively, with the
bulk viscosity, shear viscosity, and heat conductivity. Fi-
nally p and p' are coefficients which can be related to the
moments of Quctuations. '

In Ref. 3 the expressions for the entropy g, its produc-
tion 0.", and its flux I" have been determined; up to the
second order in nonequilibrium quantities, denoting with
m the traceless part of m, they are

1 ] 1 &o 2 1 2 p p

2T2A, qq 2TA, J' 4TA, mm

(2.2)

1V=pr)v+ —q+p'p, q+pm q, (2.3)
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In the extended thermodynamics, finally, the entropy q
satisfies a generalized Gibbs equation; an approximate ex-
pression of it is:
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II. OUTLINE OF EXTENDED IRREVERSIBLE
THERMODYNAMICS OF A FLUID IIl:dm
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The fundamental fields of the extended irreversible
thermodynamics are the density p, the velocity v=(U, ),
the internal energy e, the nonequilibrium stress m=(m, )
and the heat Aux q=(q;). In the following we suppose
the nonequilibrium part of the stress m;. =pv6;. +m~, .

~

decomposed into its trace pv and its deviator m &, &. As
we shall consider only thermodynamic processes near
equilibrium, it is sufhcient to use the following linearized
field equations:

III. EXTENDED THERMODYNAMICS OF HELIUM II
WITHOUT DISSIPATION

Experiments" show that phenomena, as heat and
matter transport in liquid helium II, take place in almost
complete absence of dissipation. Namely, its viscosity is
very low and its thermal conductivity is very high. In a
first approximation, we will suppose that in helium II the
viscosity vanishes and the thermal conductivity is infinite:

A,o=0,
X2=0,

A, i
—oo

(3.1a)

(3.1b)

(3.1c)

Finally, the entropy principle, when applied to extend-
ed irreversible thermodynamics, leads to the following
inequalities for the coefficients appearing in Eqs. (2.1):

A.,&0, A, , &0, A,,&0; r, &0, r, &0, r, &0. (2.6)
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We analyze expression (2.4) for the entropy production
cr", in order to verify the compatibility of the conditions
(3.1) with entropy conservation. We observe first that,
because 1/A, 1=0, the term proportional to the square of
heat flux does not appear in entropy production; we can
therefore say that, under the hypothesis (3.1c), the heat
transport is a reversible process in helium II. Substitut-
ing then in (2.4) the conditions (3.la) and (3.1b), we
deduce that, up the first order in nonequilibrum quanti-
ties, entropy conservation requires

(u —Vi )(u —V2) —W, Wzu =0, (3.5)

thermal conductivity. The case considered here is a gen-
eralization of the one analyzed in Ref. 13, because the
present theory does not fix a priori the relation between
pressure and internal energy, which characterizes the
ideal monoatomic fluids.

As it was shown in Ref. 13, Eqs. (3.4} describe the
propagation in liquid helium II of two waves, whose
speeds u are the solutions of the characteristic equation

pv=O; m(, -) =0 . (3 2)
where

Substituting (3.2) in field equations (2.1d) and (2.1e), we
deduce also &O=O and F2=0.

We consider now the balance equation (2.1fl of the heat
flux. The experimental results show that in helium II the
thermal conductivity cannot be measured. The research-
ers who tried to measure it found it very high and ob-
served that its value seemed to depend on the device used
for the measurement. These facts led Mendelsohn to
state that "the concept of 'heat conductivity' in the ac-
cepted sense as a constant ratio of heat current density to
the temperature gradient has thus lost its usefulness when
dealing with liquid helium II." This behavior can be ex-
plained in the frame of ET observing that q; is an in-
dependent variable. As already noted experiments show
that the coefficient A, , is very high. Equation (2.1fl im-
plies that ~1 too must be very high. In what follows, we
assume that the ratio between A. , and ~, is finite and
nonzero. We put therefore,

(3.3)

From (2.6) we deduce that g is strictly positive.
From the previous considerations, we conclude that, in

order to describe the behavior of liquid helium II, the two
scalar fields p and T, and the two vector fields v, and q;
must be introduced as independent variables. The linear-
ized equations for these fields can be obtained by substi-
tuting in Eqs. (2. la), (2.1b), (2.1c), and (2.1f) the relations
(3.1), (3.2), and (3.3):

V2 —
p ~ (3.6a)

V2—
2

p~v
PT

1

p
TPT
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(3.6b)

(3.6c)

(3.6d}

1
q 9E
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Jou and co-workers' ' have shown that the coef5cient
g can be related to second-order moments of the fiuctua-
tions of heat flux. They assume that the classical Einstein
formula

We recall now that in helium II thermal expansion is very
low. In this hypothesis, W, and Wz vanish and Eq. (3.5)
admit the solutions u12=+V1 and u34 +V2, corre-
sponding to the two sounds typical of helium II: To the
wave whose speed is u =+V„only vibrations of density
and velocity are associated, while in the wave whose
speed is u =+ V2, only temperature and heat flux vibrate.
This agrees with experimental observations. The
coefficient g defined in (3.3), can be determined by (3.6b),
once the expression of the second sound is known.

Substituting (3.2) in Eq. (2.2) the expression for the en-
tropy g of helium II, in the absence of dissipation
(o ~=0), is obtained:

+p =0,
Bt »

1Pr = A exp (5 g)E
B

(3.8)

p+— =0,
Bt p»,
aT TPT av 1 aq+ + =0,p~v». p~v»

(3.4)

where kB is the Boltzmann constant, A is a normaliza-
tion constant and 5 g is the second differential of entro-
py, holds also in ET. Taking into account (3.7), the latter
equation leads to the following expression for the
second-order moments of the fluctuations of heat flux:

aT
Bt »,

T
(5q, 5q ) =k~g 5, (3.9)

where Vis the volume occupied by the fiuid.
Finally, we observe that Gibbs equation for helium II

can be written as
In Eqs. (3.4), p denotes the pressure of thermostatics,
(previously denoted pE ), the subscript T near p indicates
partial differentiation with respect to this variable, and cv
is the constant volume specific heat.

We observe that Eqs. (3.4) are identical with the linear-
ized ones, obtained in Ref. 13, by imposing entropy con-
servation in an ideal monoatomic inviscid fluid, with high

T dan=de — dp — q.dq .p
p2 PgT

(3.10)

Using this latter relation, reasoning as in Ref. 14, we can
explain, also in this theory, the static fountain effect. In
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q, +pTgv, =0 . (3.11)

IV. THE ATTENUATION OF THE TWO SOUNDS
IN LIQUID HELIUM II

We show now that helium II can be described through
the two scalar fields p and T and the two vector fields v,.

and q;, even when entropy is not conserved.
In order to deduce a dissipative system of field equa-

tions for helium II, we determine constitutive relations
for the trace pv and for the deviator m&; &

of the none-
quilibrium stress, depending on the derivatives of the fun-
damental fields. We consider Eqs. (2.1d) and (2.1e). As
we have seen, under the hypothesis of entropy conserva-
tion, their solutions are zero. We suppose now that en-
tropy is not conserved. Experimentally the relaxation
times ~0 and ~2 are very small. Under the approximation
of entropy conservation, we have been forced to put them
zero. In a first approximation, they can be supposed to
be zero even when entropy is not conserved. Such hy-
potheses correspond to retain the evolution time of the
stress extremely small, in comparison with the evolution
times of the other variables. Substituting, therefore,
ra=0 and F2=0, in (2.1d) and (2.1e), one gets

8v~ Bqj.
p = —

Au +l3'TA,
BX~ BXJ

Bv &,. Bq &,.
m (~k }

—2A, 2 ~
+2pTA, 2 ~BXk & BXI &

(4.1)

(4.2)

These are the constitutive equations for the trace and
the deviator of the nonequilibrium stress in liquid helium
II we searched for. These equations can be identified
with the ones obtained in Ref. 16, by using the ET of an

I

order to explain other thermomechanical phenomena, as
the link between the stress and the heat Aux, it is neces-
sary to use a nonlinear formulation of this theory. This
investigation will be the object of further study.

In Ref. 14, a boundary condition, able to explain, in a
rnonofluid theory of superAuid helium, the reversible Bow
through a very thin capillary (superleak), has been formu-
lated. This condition, which we shall impose also in this
more general theory of helium II, can be stated as fol-
lows: The component of the entropy flux density tangent to
the walls of the uessel vanishes; J,"=0. In a superleak,
indeed, this boundary condition implies the vanishing of
entropy Aux density through the whole section of the
capillary. This boundary condition, to the lowest order,
using (2.3), can be written

ideal monoatomic superAuid, if we put

p=—,AD=0 .2
5Tp

(4.3)

Equations (4.1) and (4.2) contain, in addition to terms
proportional to the gradient of velocity, terms depending
on the gradient of the heat Aux. We will show that the
first terms allow us to explain the attenuation of the first
sound in helium II, the latter terms explain the attenua-
tion of the second sound.

We write then the field equations of helium II in the
presence of dissipation. We shall use as field variables p,
T, u, , and q, Substituting relations (4.1) and (4.2) into the
field equations (2.1a), (2.1b), (2.1c), and (2.1f), the follow-
ing linearized system is obtained:

ap aT"a +p' a
(4.4a)

(jT Tpz-+ '+ '=0,
Pcv Qx. Pcv Bx.

(4.4c)

Bv&. Bq&
A,gT g 2— 2PT = —— q;.

BXJ ' BX.& BX; & 'T)
L

(4.4d)

We consider the propagation of harmonic plane waves.
Putting lt'=(p, T, v;, q;), we look for a solution of the
linearized equations (4.4) having the form:

(4.5)

where %la=(pD, To, 0,0) and where K =k„+ik, is the
complex wave number. We suppose further that the
oversigned quantities denote small amplitudes whose
products can be neglected. Inserting (4.5) in linearized
field equations (4.4), putting u„=u~nj. , q„=qznj. , and mul-
tiplying finally the last two equations by the unit vector
n;, orthogonal to the wave front, the following algebraic
system for the small amplitudes is obtained:

Bv; 1 gp A, g Bv Bq+- 1 PiT J
at p ax,. p ax, ax, ax,

(j Bv . Bq
2 2l3T — =0, (4.4b)

p BXJ BX; & BX

cop co[pr]D—T+K—[pp ]Dv„=O,

Cd + lK ( A,0+ 3
A, 2 )

1 4

p 0
v„+K — p+iK —(AQI(l'+ —', AzP) q„=O,1 — . 2 T

P 0 p 0
(4.6)

TpT—coT+K V„+K
P~V 0

1 q„=0,
PCV 0

1
CO 1 iK [T g(Ao9' +4k—+2)]0 q„+K[/]DT+iK [T g(A(p'+ 4lp)]au„=O. —
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In (4.6) the subscript 0 denotes quantities referring to the unperturbed state Vlo. In what follows, for the sake of simpli-

city, this subscript will be neglected. The system (4.6) possesses nontrivial solutions if and only if its determinant van-
ishes:

co K—(V, —W, W2)+iK (—Ao ,—'—A, 2) co +i co K—V2+iK coT g(A(P, + 4A2P )
p 7

+ K2 W~ iK~—co (A g—'+ —4Ag) K gW2+iK coT g(A(P'+ 3A g) —=0 .21 2 T
(4.7)

We suppose now that the thermal expansion is zero
( W& = W2=0) and the dissipation is small (k„))k, ); we

suppose further that the frequency co is not too small.
With these assumptions, the solutions of (4.7) are

to the first order in V, . Performing in the latter rela-
tion the change of variable (5.1b), (5.2), and remembering
that pz =e Tri—+(p/p), we obtain, to the first order in

q;

2 —V2
] &

CO

2p'L$ )

(4.8) T dan=de —
2 dP — q;dq, ,

p
p pgT ' (5.4)

2 —V2
2 2 7

2T3+
k,' '= + (A,(P' +—'A,g )

202 '7) 2g 2

(4.9a)

(4.9b)

We analyze now the attenuation coefficients: First we
observe that the expression of the attenuation coefficient
k,'" of the first sound is identical to the one deduced by
Landau and Khalatnikov, using the two-Auid model.
The attenuation coefficient of the second sound appears
different from the one obtained in Ref. 8. However, in
accord with the experimental data, it contains a term
proportional to the square of the frequency ~. A com-
parison between the coefficient k,' ' deduced here and the
one of the two-Quid model of Landau and Khalatnikov
will be done in Sec. V.

V. COMPARISON WITH THE TWO-FLUID MODEL

Ps, Pn
Vi Ui + Vi

p p

q,
———P, TgEV, ,

(5.1a)

(5.1b)

where V;=(u,.' —u,.") is the relative velocity between the
two components of the mixture, we obtain a system of
linearized field equations which can be identified with the
linearized equations of Landau, if we put

The two-Quid model by Landau regards helium II as a
two-component mixture: the normal component with
normal entropy, viscosity and thermal conductivity, and
the superfluid component, with zero entropy.

As it is shown in Ref. 13, if we perform in Eqs. (3.4) the
transformation of variables

which is identical to the Gibbs Eq. (3.10) of the
monofluid extended model here formulated.

In the presence of dissipative phenomena, the two-
phase model postulates that the heat Aux is tied to equi-
librium entropy gE by the relation

aT
q; = —p, TgE V;+v

axi
(5.5)

which generalizes (5.1b). The parameter ~ is the thermal
conductivity of the mixture. Incidentally, we observe
that the terms heat flux and thermal conductivity have
different meaning in the two-Quid theory and in the ex-
tended one. In fact in the former, the heat Qux represents
the correction term, of the Fourier type, appearing in the
expression (5.5) of the energy fiux, and the small parame-
ter ~ here appearing is the thermal conductivity of the
mixture, which, in the two-Quid model of helium II, is
supposed similar to that of a normal fluid. In the extend-
ed theory, which is a monoAuid one, the energy Aux is in-
stead identified with the heat flux. The parameter A, &, ap-
pearing in (2.1f), can be identified with the thermal con-
ductivity only in a normal Quid, where, the relaxation
time ~, being negligible, one arrives at a constitutive
equation for q; of the Fourier type. On the contrary, in
our extended model of helium II, the heat Aux q, is an in-
dependent variable, and the parameter A, &, which is ex-
tremely high, and which we call still (extended) thermal
conductivity, has nothing to bear with the small parame-
ter ~ of the two-Quid model.

In what follows, we compare the field equations (4.4)
with the dissipative linearized equations of the two-Quid
model, as formulated by Khalatnikov, that are reported
here for an easier comparison:

0=p
Pn

(5.2) a aU.
p+p ' ——o,

Bt axJ
(5.6a)

ps
d (pE) = Td (pri)+pzdp+ V;d (p„V; )

p
in the center of mass frame, and retaining only terms up

(5.3)

The Cxibbs equation, in the two-fluid model description of
helium II, takes the form

1 ap + 1 a
at+, a.,

+p a,
1 a+
p axJ

n

(LK) J (LK)
Bx Bx.J J

aU (.(LK) J o
axi )

(5.6b)
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BT Tpr ()ug 1 ()+ +
dt pcv ()x pcv ~~

—P, Tgv +K dT
axJ

=0,

(5.6c)

1 ap 1 a
at p ax; p ax;

n

(E) J (E)—pk) ~
—4

XJ XJ

(5.8), in Eq. (4.4b). One obtains

aIE a
at

+
ax, +ax,

g(LK) & g(LK) J 0
av aU"

ax ' axJ J

1 a+-
p ax

(5.6d) where

—2p, ' —2g' ' =0aV& aU &.
Ps'9 j a

'92 (5.9)

We carry out in field equations (4.4) the formal change of
variables (5.1a) and (5.5), neglecting the terms of the
second order in the dissipative coefficients Ao, A2, I/A, „
and K.

The balance equations of mass and energy are (4.4a)
and (4.4c), the first one is obviously identical to (5.6a),
while substituting (5.5) in the second one, we obtain
(5.6c).

We determine now the expressions of the deviator and
the trace of the viscous stress tensor in the conventional
variables of the two-Auid model. Performing in relations
(4.1) and (4.2) the change of variables (5.1a) and (5.5), we
get

—+P'T1'.p
(5.10)

q(, )=X, +PT—'q, q( )=X, .
1

(5.11)

—+P'AT1
(5.12a)

—+prIT =01'
p

(5.12b)

As we see, Eq. (5.9) is identical with (5.6b) if we put

aUJ
pv = —

A,o
—

A,()p,
—+P'T rj

J

av,
axJ

(5.7) In particular g'&
' must vanish. This condition is satisfied,

supposing A.2&0, if the coefficient p takes the value

1
m (;k )

= —2A, 2
—2A, 2p,

—+pT g
aXk & P aXk &

(5.8) 1p=-
p'g T

(5.13)

In (5.7) and (5.8) the terms depending on x are absent, be-
cause they are of the second order in the dissipation
coefficients.

The field equation for the momentum of helium II in
the new variables is obtained by substituting (5.7) and

In order to compare the last extended field equation
(the one for the heat flux) with the fourth two-fluid field
equation (the one for the superfluid velocity), we perform
in Eq. (4.4d) the change of variables (5.la), (5.5), and
(5.2). One gets

p ax; ax
+

+ a
axJ

PPs
riT P'A, o riT P'A. o

—+P'T rt

n

—2 p rIT2p'A, 2
— ' —2 gT p'))

2
—+pT rt

p„ p ax & p„ p

av,
axJ.

av„ a aT
K

P, Tg at ax,.
1 V;=0 .

T]
(5.14)

Keeping in mind that u = (p„ /p ) V;+ u;, we multiply
(5.12) by p„/p and we sum (5.9) to the equation so ob-
tained. Recalling, finally, the relation d pE = (1/p)dp
—gdT, which ties the equilibrium chemical potential pE
to the equilibrium variables, we can write the field equa-
tions of the superfIuid velocity in the following way:

where

'2

'
p

(5.17)

4 =~a +O'T 'g, g4 '=&o —+p'T rt, (5.16)

apE a
at ax;

n

(E) J (E) J—p.k ~
—

k4
J J

From a comparison of (5.15) with (5.6d), we conclude
that these equations can be identified, if the following
conditions are satisfied:

a+-
p ax.

pa aT
g at ax;

pn 1

p 7i

n

(E) & J (E) &J—2Ps '93
a 214

XI &

(5.15)

2

—+P'AT =g' '
A, —+P'AT'.p '.p

(5.18a)
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'2
1 2 1—+IhrIT =0, k2 —+pgT =0 .'
p

'
p

(5.18b)

K=O, 1=—=0
1

(5.19)

Conditions (5.19) imply that, in both models, the heat
transport is a reversible process. We conclude therefore
that, while in the two theories the mechanical dissipation
can be identified, it is not so for the thermal dissipation.

We analyze further the coefficients g' ' and rI' ' of the
extended model. From (5.10) and (5.16) we deduce that
the coefficients g' ' are not all independent, but they are
related by the conditions

and if the thermal conductivity of the two-fluid model as
well as the heat flux production of the extended model
vanish:

curl free. This assumption, to which Landau was led by
considerations of quantum mechanics, is however, not
confirmed experimentally. ' Feynman solved this para-
dox by supposing that the superfluid component, al-
though curl free at a microscopic level, creates quantized
vortices at an intermediate level; these vortices, when
averaged over a macroscopic volume element, yield a
nonzero value for the curl of v . The above considera-
tions lead us to think that, also in the monofluid macro-
scopic theory of helium II here developed, no constraints
must be imposed on the curl of the vector fields v; and q;.
The coefficients q&, q3, and g4 of the extended model
must be then nonzero, so that (5.13) is not satisfied. We
show finally that these coefficients are not arbitrary, but
must satisfy relations analogous to the ones valid for the
coefficients of bulk viscosity; from (5.11) and (5.17) we
deduce indeed that

g(E) g(E)
g(E) g(E) i 3 1 +P~+T2

g(E) g(E)
(5.20)

(E) (E)

(E) (E)
92 94

(5.21)

Consequently, only two of the four coefficients g( ' are in-
dependent.

Both the conditions above hold for the corresponding
coefficients of the Landau model. Equation (5.20a) is, in
fact, postulated in the two-fluid model to satisfy the On-
sager reciprocity principle; Eq. (5.20b) is not explicitly
postulated in that model. In fact in Khalatnikov dissipa-
tive hydrodynamic equations the three kinetic coefficients

', gz ', and g(3
' need only satisfy the inequality

gz 'g2 '~ [g'( '] (Ref. 8, Chap. 9). However, taking
into account explicit expressions given by Khalatnikov
(Ref. 8, Chap. 21) for these coefficients, one realizes that
they satisfy the equality g(2 )g(3 '= [g(, '] .

We can therefore conclude that in the two-fluid model,
as well as in the extended one, only two of the coefficients

are independent.
In the dissipative model of helium II by Landau and

Khalatnikov, the coefficients g&, g3, and g4 are zero. This
circumstance is a consequence of the fact that the veloci-
ty of the superfluid component of helium II is supposed

I

2

[k (2) ](LK)
S 3

2PQ 2 Pn
g(LK)+ 2((LK) 2 g(LK)

4 (Lz) P k BT
3"2 p, Tan

(5.22)

For the purpose of comparing (5.22) with (4.9b), we ob-
serve that the latter, using the expressions for the
coefficients g' ' and r)( ' [defined in (5.10), (5.11), (5.16),
and (5.17)] and Eq. (5.2), can be written in the following
way:

Consequently, only two of the four coefficients g' ' are
independent.

Let. us now consider again the attenuation coefficient of
the second sound k,' ' expressed by (4.9b). In this section,
this coefficient will be denoted [k,' ']' ), in order to distin-
guish it from the corresponding one of the two-fluid mod-
el, whose expression is reported here:

2
[k(2)](E) 1 1 + co Ps

S 320 2 &i 2PQ 2 PPg

(E) 2

. 0' '+p 4 ' —2pki '+ —
n2 '+ pn) ——p—E 2 E E 4 E 8 (E) 4 2 [~(

n2'
(5.23)

Pn 1 BT 4 1
K

2
Ps T~'9 3 PgT

(5.24)

According to Khalatnikov the left-hand side of (5.24) is

Supposing then g' )=g' ' and gz )=rjz ', we conclude
that the attenuation of the second sound is the same in
the two models if the coefficient 1/~„which takes into
account the production of the heat flux in the extended
model, is supposed zero and further if the terms inside
the inner brackets in (5.22) and (5.23) are equal; this
equality can also be written as

the term giving the main contribution to the attenuation
of the second sound. It comes from the terms propor-
tional to the temperature gradient in the energy balance
equation (5.6c). Consequently in the two-Quid model, the
second sound attenuation is due essentially to the pres-
ence of a Fourier-type dissipative term in the field equa-
tions. In our extended model, the attenuation of the
second sound depends, on the contrary, on the
coefficients P and P', that is on the contribution of the
nonequilibrium stress coming from the heat flux gradient
(trace and deviator).

We analyze finally the physical meaning of the term
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containing the coefficient I/rt, which in our extended
model, appears in the production of heat flux, while it is
absent in the dissipative model of Khalatnikov. In our
theory, this coefficient is very small and it is tied to the
extended heat conductivity A, , by the relation (3.4). If, in
a first approximation, we put I/r, =0, we deduce from
(4.9b) [or (5.23)j that the attenuation coefficient k,' ' is
proportional to the square of the frequency co. The
theory here developed implies on the contrary, if 1/r, is
supposed nonzero, an additional attenuation for the
second sound, which is proportional to 1/w& and indepen-
dent of the frequency co. Attenuation measurements of
the second sound may allow the determination of r, (and
A, , ).

We observe further that, in the variables of the two-
fiuid model, 1/r, appears in the right side of (5.15) as a
coefficient in a term of mutual friction. This term is ab-
sent in the dissipative model of helium II of Khalatni-
kov. However, to the purpose of explaining the dissipa-
tion evidenced in the flow of helium II through channels
when the counterflow takes place, a term proportional to
the cube of heat flux has been introduced ad hoc, and it
has been attributed to the presence of vortices of
superfluid. Such a term emerges automatically in a
nonlinear extended theory as a term of third order in the
production of heat flux. This term takes into account, at
the macroscopic level, the generation of vortices at the
microscopic level.

VI. CONCLUSIONS

In this work, restricting the study to the linear phe-
nomena, it is shown that the main properties of
superfluid helium, both in the absence and in the pres-
ence of dissipation, can be explained using a monofluid
model based on the extended irreversible thermodynam-
ics formulated in Ref. 3.

The theory explains the propagation of two sounds of
helium II with their typical properties. The attenuation
for these sounds is in agreement with the experimental re-
sults.

The main difference between the monofluid theory
presented here and the two-fluid model is that, while in
the latter the thermal dissipation (needed to explain the
attenuation of the second sound) is due to a dissipative
term of a Fourier type, in the extended model it is a
consequence of terms dependent on the gradient of the
heat flux q;, which are present in the expressions of the
trace and the deviator of nonequilibrium stress, besides
the traditional viscous terms. These quantities arise natu-
rally in the evolution equations of this stress (trace and
deviator) once the relaxation times of such dissipative
fluxes are supposed zero.
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