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Magnetic long-range order in the t-J model with finite doping
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The spiral phase of the two-dimensional t-J model and the t-t'- J model is studied in the S ~ oo
limit and in the low-doping limit. By rewriting the model in a form that is more transparent for
analyzing the carrier-spin interaction, we show that a wave vector characterizing spiral long-range
order in the t-J model varies linearly with hole density b. If we dope more holes, the spiral phase
changes discontinuously towards a ferromagnetic phase, the Nagaoka state, at a critical hole density
8 = 3(1+v 2) J/8t. The spiral phase, however, does not maintain its stability because of electron-
density Huctuations. The next-nearest-neighbor hopping t' stabilizes the Neel phase and allows it
to occupy a finite area in the magnetic phase diagram. We also investigate the efFect of spiral-spin
Quctuations upon the stability of the spiral phase, and find that the stability is not recovered by the
spin Quctuations.

I. INTRODUCTION

The physical nature of a doped antiferromagnet on a
square lattice is considered to be one of the crucial is-
sues in theoretically clarifying the mechanism of high-
temperature superconductivity. One model which is ex-
tensively studied in this context is the t-J model:

Htg —— t ) c; c~—+H.c. + 1) S;.S~,
(i,j),cr (i,j)

where c, = c, (1 —n; ). At half filling, the t term
vanishes as a result of the constraint of no double oc-
cupancy at each lattice site, and the model becomes
that of a Heisenberg antiferromagnet, which is believed
to have a Neel ordered ground state. Upon introduc-
ing holes at half filling, the magnetic structure may be
significantly modified because the holes prefer ferromag-
netic surroundings in order to propagate smoothly. So
far, several studies have suggested that the Neel or-
der becomes incommensurate upon doping. Shraiman
and Siggia semi-phenomenologically showed that dop-
ing induces a spiral state where the staggered magneti-
zation rotates in a plane with a wave vector proportional
to the electron number density. Kane et al. , Auerbach
and Larson, and Igarashi and Fulde obtained similar
results using the slave-fermion technique. Auerbach and
Larson, however, pointed out that the spiral phase is not
stable owing to the negative compressibility of electrons.
The spiral order and its instability against density Huc-
tuations are also present in the large-U Hubbard model
near half filling. Schultz showed that the spiral pitch
varies with the hole density and continuously becomes
that of Nagaoka ferromagnetism.

In this paper we obtain qualitatively similar results for

the t-J model using a different and more physically trans-
parent technique. We also study the spiral-spin wave ef-
fect on the coherent hole motion.

Prom now on we shall work units such that 6 = 1 and
the lattice constant a = 1.

II. SPIRAL ORDER

We begin the analysis by rewriting the t-J model into a
form more convenient to handle the interaction between
carrier hopping and the spin structure. Noting that c
c S, o.c = 2c S, and 0 = c S, where S is
defined by S+ = c&tcg when o. = 1 and S = c&cg when
o = —1, we can easily show that the t JHamiltonian -(1)
takes the form

Ht ~ = — t ) S,ct c~—Sz. +H c +J) S;. ..S~.. (2)
(i,j),cr (i j)

We note that Eq. (2) is a rotationally symmetric form
of the Hamiltonian studied by Xu et al. , who analyzed
hole motion in the Neel background. The t term of Eq.
(2) explicitly shows the coupling of carrier hopping and
spins.

In order to study the spiral-spin structure, it is useful
to rotate the coordinates at each site. We rotate them
at an i site about the y axis by an angle oi = q ri. In
the new frame we assume ferromagnetic long-range order
(LRO), which corresponds in the original frame to spiral
LRO with wave vector q. We omit the degrees of &eedom
of the particles with down spin in the rotated coordinates,
which means that no spin Buctuation is considered at this
stage, that is, we use the S —+ oo limit approximation.
Then the t-J Hamiltonian is written as
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H = —t —) S2cosq (r; —r~) cos — (r, —r~)dtd~ + H.c. + J ) S cosq. (r, —r~),
(i,j) (i j)

(3)

where d represents the up-spin-particle operator dg defined in the rotated coordinates, and dg is omitted. Notice that
the Hamiltonian (3) is valid only in the low-doping limit since the J term must be modified if a moderate density of
holes is doped. Transforming Eq. (3) into momentum space, we obtain

H: tS ) (Cq Cq /2' + Cq Cq /2', )dkdk+ JS N(Cq + Cq )~
k

(4)

where we write cosq as Cq in short. In the half-filled

case, (d;d;) = 1, the hopping term does not contribute
to the energy, and the total energy has a minimun at q =
(+m, +m). This is just a classical result for the Heisenberg
antiferromagnet. In the finite-doping case, (d,. d;) = 1—b',

the optimal q must vary with the hole density b because
the t term favors g = 0 as seen in Ecl. (4). In the following
we investigate two types of spiral phases; diagonal (q
q„= q) and stripe (q = vr, q„= q) (see Fig. 1). In the
diagonal phase, the t term becomes

Edits(q) tS ~CqCq/2~b+ 2JS Cq3 (6)

for h « 1. By analyzing ]his energy as a function of q,
we can easily see that when b & h, = 3(1 + ~2) J/8t the
minimum energy E& " is given at

lattice, we calculate the hopping energy for the diagonal
phase with g = (q, q) and obtain the total energy per site
&~'- (q) = (~)/N:

Hg —— tS CqC—q—/2) (Ck +Ci, )dktdk.
k

i /4+ 6(8tH/3J) —2

16th/J' (7)

When b (( 1, we can assume q & vr and CqCq/, & 0.
Hence d particles occupy the corners of the first Brillouin
zone and d holes are located around k = 0. Note that
we are working in the rotated frame. When transformed
back to the original kame, the electron operator c can be
written in terms of d as follows:

c;~ = d cos(g r;/2),
c,~ = —d sin(g r;/2),

and in momentum space

ckg = (dk+q/2 + dk —q/2)/2&

k$ = ( k —q/2 k+q/2)/2i.

DIAGONAL PHASE

E/)'8
STRIPE PHASE

FIG. 1. Schematic illustration of the diagonal spiral phase
and the stripe spiral phase. In the diagonal phase the spiral
pitch is the same both in the a and y directions, and in the
stripe phase it is 6xed to be antiferromagnetic in one direction
( x direction in this figure).

This means that dk o holes are composed of c~~yq holes
and therefore the doped real holes stay around k = +g/2
which is around +(7r/2, m/2). Similarly, when we choose
q~ = —q„, the location of doped real holes is around
k = +(ir/2, —ir/2).

Using the exact form of the state density for the square

which is approximately given by q = +sr —(4/3)tb/ J for
b &( 1, and when b & b the energy is lowest at q = 0.
Consequently, as far as the diagonal phase is concerned,
the spiral-spin structure characterized by the wave vector
q = +7r (4/3) th/ J—abruptly changes into the ferromagtic
order at the critical hole density b .

If we choose g = (7r, q) (stripe phase), we obtain the
total energy for 8 « 1:

E„„,(q) = tS ~C~Cq/—z~—h+ JS (C —1).
3 (8)

E,q„~, has a minimum E,~,',", also at q given by Eq. (7)
whenb & b and at q = 0whenb ) b. It iseasily
shown that Ed;" „& ( E,~,',"-,. As a result, at low dop-
ing (b & 8,) the diagonal spiral order with wave vector
q given by Eq. (7) appears upon doping, and when holes
are doped beyond the critical value 3(1 + ~2) J/8t, the
ferromagnetic LRO suddenly takes place. At this transi-
tion the wave vector q changes discontinuously.

There are two important points to be noted. First,
the spiral wave vector q varies linearly with tb/J as far
as b &( 1, which is a result previously obtained in sev-
eral studies mentioned in Sec. I. Secondly, the wave vec-
tor q discontinuously changes at the boundary between
the spiral and ferromagnetic phases. (Remember that
those phases are continuously connected in the Hubbard
model according to Ref. 6.) Figure 2 gives a schematic
description of the phase diagram for the low-doping re-
gion. Since we have used the condition b (( 1, we cannot
see how far the ferromagnetic region extends in the mod-
erate doping, although it is one of the important issues
for the study of the t-J model.

Extension to a model which contains next-nearest-
neighbor hopping t in addition to the nearest-neighbor
hopping t is straightforward. We numerically calculated
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the energy of the magnetic phases and obtained the phase
diagram shown in Fig. 2. We see that the, t' term sta-
bilizes Neel order since it is associated with hopping on
the same sublattice while the t term represents hopping
between di8'erent sublattices.

The stability of the spiral phase against electron-
density Quctuations can be easily checked. Here we show
the case of the t-J model, but we get a similar result for
the t-t'-J model. When b « 1, the t term of Eq. (4)
gives e~ (16/3)tS ~C~Cz/2~(1 —orb) + O(b ) and hence
Be~/Bb is positive, which means the spiral phase is un-
stable against density fluctuation. (Note that the Fermi

energy e~ is defined for particles, not for holes. Hence
the derivative of eF with respect to the electron density
is negative in this case. ) This situation can be intuitively
understood as follows. Equation (4) shows that the band-
width is proportional to ~C~C~/2~ (2/3)tb/ J. Therefore
the Fermi energy, which is a decreasing function of b in an
ordinary rigid-band model, could be raised by the expan-
sion of the band upon doping. In addition, the constant
term which comes from the J term is also an increasing
function of b in the low-doping limit. When those two
contributions e~ceed the decrease of the electron filling,
we may have cia~/cia ) 0, as in the present case.
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F&&. 2. Phase diagrams for the t-t'- 1 model obtained in the mean-field approximation in the low-doping region: (a) t'/t = 0
(b) t /t = —0 125, (c) t'/t = —0.25, and (d) t'/t = —0.5. Here "spiral" means the diagonal spiral phase. There is a discontinuous
change in the spiral pitch from finite q to q = 0 on the critical line between the spiral and ferromagnetic phases The spiral
phase is shown in the text to be unstable, however.
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III. SPIN-WAVE EFFECT

Since the above results are obtained by the classical
spin approximation, the situation could be changed by
taking into account an effect of spin waves. If the spin
wave induces incoherent motion of holes, the simple anal-
ysis based on the band description of holes might no
longer be correct. So in what follows we investigate the

spiral-spin-wave effect on the hole motion.
It is straightforward to take account of the spin fluc-

tuations in the t-J model. Since we have assumed the
spins are ferromagnetically ordered in the rotated coor-
dinates, we make the ferromagnetic Holstein-Primakoff
transformation there: S'+ +2Sb, S' v 2Sbt, and
8' = S—btb, where S' is the spin operator in the rotated
coordinates and b is a boson operator. The spin coupling
S; S~ in the original frame is thus written by

S, . Sz ——S cosq. (r, —r~) — sinq. (r, —r~) + —[cosq (r; —r~) —1](b;b~ + b, b). .2 /2S . S

+—[cos q (r, —r~) + 1](b,bt + btb~) —S cos q. (r, —r~)(btb, + btb~) + O(S ),2

and consequently the Heisenberg term becomes, in momentum space,

IIJ = JKS p + J—) b (A & —2p + r g )bk —JS) (A g —2p ),
k k

where

A~ k = (Cq. + 1)Ci,.+ (C~„+ 1)Cy„,

Z~ = &q. +&q„,
r „=(c,. —1)c..+(c,„—1)c,„,

bi, ——(bi„b i,), and a is the x component of Pauli matrix. Since in the large-S limit, [d, b] = d i//2S ~ 0, we
can treat the d particle and the b particle independently. Then the t term can be written in terms of d and b in the
form;

IIt = ) t(q, k)d„dq + ) D(q, k, k')d„dq (bk q + b„, „),
k, k'

where

e(q, k) = ——tS (C~ )2c~.cy. + C~„(2'„ci,„),
4 t

D(q)k)k ): i V2SS [Cq g2Sq (Sl.& Sg ) + Cq y2Sq (SA, ~ Sx )])

and Sz ——sinq. The second term in Eq. (11) represents
the emission and absorption of a spin wave due to carrier
hopping. It is noted that the coupling D is small, com-
pared with the bandwidth, since D/t O[(th/J)2] while
e/t - (Otb/ )J.

We calculate the self-energy of the d particle col-
lecting noncrossing diagrams in the self-consistent Born
approximation. The nonperturbed Green's function Go
for d particles and 2 x 2 matrix Green's function G, for
the two-component spin-wave operator b are respectively
given by

Go ——(w —e(q, k) + iq sgn[e(q, k) —e~]}

G = Go —Z where G is the renormalized Green's
function for d particles. E is obtained for the diagonal
phase in the self-consistent Born approximation as

Z(k ~) =) ID(q k k)~ G(k ur ~z,k —k')

where

(14)

We numerically solved Eq. (13) for the 16x16 lattice us-
ing Eq. (7). The quasiparticle energy Ek defined by

Eg = e(q, k) + ReZ(k, Eg)

where g = +0. The self-energy Z(k, u) is defined by

is given in Fig. 3 for J = 0.25 and 8 = 0.05. (Here and
in all the following figures the energy unit is taken to
be t,. Also remember that the d particles are composed
of real electrons whose momentum is difFerent by +q/2
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racy but is significantly affected by the finite-size effect.
Hence we have z(k) & 1 when EI, happens to encounter
the fine structure of ReZ. It should be stressed, however,
that this is a rare situation, because Z has a fine struc-
ture only when we choose parameters such that Ep is in
the lower-energy side. For most cases, Z tends to change

20

(5 =0. 025

I
'

I

(5 =0. 050

FIG. 3. The energy contour of Ek, where J = 0.25 and
b = o.o5. -10—

&om that of the d particles, and that all the analyses are
made in terms of such d particles. ) As clearly seen in the
figure the dispersion is almost the same as the mean-field
cosine band of e(g, k), and the spin-wave effect coming
from ReZ seems quite small. The quasiparticle weight
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for the same parameters as in Fig. 3 is shown in Fig. 4,
where the data are plotted in the form 1—z(k). There are
some values of k giving z(k) & 1, which are not plotted
in Fig. 4. Those are just numerical errors in a sense given
below. The self-energy Z as a function of ~ generally has
some structure over a certain range of u, and the quasi-
particle energy Eg is to be located in any of the following
energy regions depending on the parameters we use: the
low-energy side of the oscillating region of Z, the high-
energy side of that, and the oscillating region. If Eg is in
the rapidly oscillating region of Z, the numerical deriva-
tive cI ReZ/Bu at w = Ei, not only has insufficient accu-
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FIG. 4. The quasiparticle weight z(k) for J = 0.25 and
b = o.o5.

(b)

FIG. 5. (a) The spectral functions A(k, &u) at k = 0 for
b = 0.025, 0.050, 0.075, and 0.100 with J = 0.25. (b) The
quasiparticle weight z(k) at k = 0 vs b, where J = 0.25.
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its shape to be more smooth as we make Eg larger us-
ing appropriate parameters, and when Eg enters it, the
shape of Z has already been smooth enough to give accu-
rately a numerical derivative oIReZ/cia~ @„.However,
for some k and some parameters, it could happen that Z
still barely keeps a fine structure even when Eg reaches
the low-energy end of such structure. As for a single hole
doped in the Neel background, Ep is shown to always
be located in the lower-energy side and. the spectral func-

tion has a peak at low energy accompanying incoherent
structure at higher energies.

To see more clearly this situation, let us show how
the spectral function A(k, ~) = —(1/vr)ImG(k, ~) and
the self-energy Z(k, ur) at k = 0 would be changed as
we vary the parameters b and J. Figure 5(a) displays
that the coherent peak moves &om the low-energy side
to the higher-energy side as b increases. When b is suf-
ficiently small we have a coherent peak at low energy
and the negligibly small incoherent structure follows in
the higher-energy side. As b increases, the higher-energy
part grows and finally forms a new coherent peak. On
the other hand, the coherent peak at low energy is grad-
ually destroyed into an incoherent broad peak. For the
intermediate values of b around b = 0.075, the quasipar-
ticle weight has a low value as shown in Fig. 5(b). In this
range of the intermediate b value the quasiparticle energy
Ep stays in the oscillating region of ReZ. When we vary
J instead of h, the situation is completely reversed (Fig.
6).

The difference of those two behaviors of the spec-
tral function in terms of b and J is explained if we see
it in terms of the spiral wave vector q. Noting that
q = +sr —(4/3)&8/J, we can summarize the above be-
haviors as follows: Near the Neel order (cf. the phase
diagram in Fig. 2) a coherent peak is located at low en-
ergy, and, as we move away &om the Neel ordered phase
and approach the ferromagnetic region, another coher-
ent peak grows in the high-energy side with simultane-
ous collapse of the low-energy peak. In other words the
qualitative feature of the spectral function is determined
by q rather than b or J. This is primarily because the
quasiparticle energy is almost determined by the mean-
field energy e(g, k) which explicitely depends on q. Since
e(q, O) = (16/3)tS—C~~2C~, e(q, O) is zero at q = vr

and is increased as q becomes smaller, that is, Eg is an
increasing (decreasing) function of b (J).

Although we saw some relatively small values of z(k),
I
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FIG. 6. (a) A(k, u) at k = 0 for J = 0.15, 0.20, 0.25, and
0.30 with h = 0.05. (b) z(k) at k = 0 as a function of J with
b = O.O5.

0 ]
0

I I I I I I I I I I I I I I I

0. 1

FIG. 7. The Fermi energy vs h (solid circles). The dashed
line shows the mean-field result and the solid line is a guide
for the eyes.
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we did not find any parameter region which gives the
totally incoherent feature of the spectral function, and
the band scheme of the mean-Geld analysis still seems
to hold in the presence of the spiral-spin wave. There-
fore the mean-field conclusion that the spiral phase is not
stable due to density fluctuations is expected to be un-
changed even if we take account of the spin-wave effect.
Actually, as shown in Fig. 7 where the Fermi energy as
a function of b is plotted, we see De~/Bb ) 0 in the low-
doping region. (Although in a moderate doping, Bey /Bb
becomes negative both in the mean-field result and in
the perturbed result, we cannot judge whether or not
the spiral phase is stable in this doping region because
we have used the approximation which is valid only in
the low-doping limit. )

For the finite t' model we also got similar results.

IV. SUMMARY AND DISC US SION

In order to analyze the electron-spin interaction in the
t-J model, we transform the model to the form of Eq.
(2), which clearly shows the interaction. We start the
analysis using this form of the t-J model. Since the new
form contains the spin operators explicitly, we employed
the classical spin approximation for the first step. As
a result we obtained a phase diagram where the mag-
netic LRO varies from Neel to spiral order and the spiral
pitch becomes longer as we dope. There is a critical hole
density b, = 3(1 + ~2)J/8t beyond which ferromagnetic
LRO takes place. The spiral pitch discontinuously jumps
at this phase boundary, in contrast to the case of the
Hubbard model. This spiral phase is not stable, how-
ever. The calculation of the Fermi energy shows that the
system has a negative compressibility, namely the den-
sity fluctuation would spontaneously occur and the spi-
ral phase would not be able to keep its uniformity. We
also extended the model to include next-nearest-neighbor
hopping t', and show the Neel phase grows with t'.

Although we do not know what kind of phase takes the
place of the spiral phase, it is expected that the unknown
phase has lower energy than the ferromagnetic phase and
the area of the ferromagnetic phase should be smaller.
Hence we consider the calculated critical density b as a
lower limit of the true value.

We also investigated how the spin-wave effect modi-
fies this mean-field result. The spectral function shows

a coherent peak at low energy followed by a high-energy
incoherent background when the system is nearly Neel
ordered. As long as we stay in the vicinity of the Neel
phase, i.e. , as long as t1 (n, a), the incoherent back-
ground is extremely small. As we go away from the Neel
phase, however, the location of the peak moves to higher
energy and simultaneously the incoherent part is gradu-
ally developed. Then a new peak appears in the incoher-
ent background, and the lower-energy peak breaks into
incoherent background as we approach the boundary be-
tween the spiral and ferromagnetic phases. Despite those
features, the spectral function never becomes totally in-
coherent for any case, that is, the spin-fluctuation effect
on the mean-field solution is not crucial. Therefore the
doping dependence of the Fermi energy is qualitatively
the same as that in the mean-field result, and the spiral
phase, which is shown by the mean-field analysis to be
unstable due to density fluctuations, would not be stabi-
lized by the presence of the spin wave.

We should make some comments regarding the high-
temperature superconductors. All those materials
equally show the Neel order in a small but finite range of
doping near half filling, in contrast to the present result.
In our analysis for the t Jmode-l (with no t' term) using
the S m oo approximation, the magnetic LRO is to be
modified from commensurate Neel to spiral order as we
dope, because the doped holes cannot move in the classi-
cal rigid Neel background but can propagate smoothly in
the spiral background. The magnetic background tends
to change its form losing some magnetic energy in order
to gain the kinetic energy of doped holes. There can be
at least two possible scenarios for the stabilization of the
Neel order in the finite doping region, however. One is the
presence of the next-nearest-neighbor hopping, which is
shown in the above to stabilize Neel order. The second is
the spin-fluctuation effect. Since we have quantum spins
and not classical spins, the spin-flipping process removes
traces which doped holes leave behind. So we might have
a finite area for the Neel phase even in the t-J model.
Actually a high-temperature expansion indicates that
Neel order remains in a finite range of doping.
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