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Mean-field theory of the Ising random-anisotropy-axis model
in the large-component limit
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The Ising random-anisotropy-axis model with additional noncubic anisotropy is investigated in
mean-field theory in the limit p —+ oo for p-component random vectors on a lattice of N sites.
The effects of anisotropy for statistically independent and identically distributed random-vector
components with a trimodal probability distribution are studied in the limits o. = p/N = 0 and
a ) 0. Ferromagnetic, mixed, and residual ordered phases are found in the first case, while only
mixed ordered and spin-glass phases are found for the latter. Phase diagrams with explicit phase
boundaries are obtained.

I. INTRODUCTION IJi. = J,~ ni. n~,

The random-anisotropy-axis model (RAM), intro-
duced by Harris, Plischke, and Zuckermann to describe
the unusual properties of amorphous intermetallic com-
pounds, such as TbFe2, is de6ned by the Hamiltonian

) J,, s, . s, —D) (n, s)' —h ) s, (1)
(i i) 2 Z

for p-component classical unit "spins" si, with nearest-
neighbor ferromagnetic exchange interactions J;~ on the
sites i = 1, . . . , K of a d-dimensional lattice. Here, ni are
unit vectors that are randomly oriented from site to site,
and the anisotropy strength D is assumed to be the same
at all sites, while h is a uniform, nonrandom, external
field.

There has been great interest in the model due to
the competition between long-range magnetic order and
the global disorder built into the random anisotropy. It
has also been viewed as an alternative to the Edwards-
Anderson (EA) model for a spin glass. Although the
model explains some of the extensive experimental re-
sults on amorphous alloys that are now available, the
nature of the ordered "ferromagnetic" and "spin-glass"
phases, and when they should be expected to appear, is
still a matter of some controversy.

The strong-anisotropy limit D/J ~ oo has been stud-
ied numericallyis and in mean-field theory (MFT), the
latter by Fischer and Zippelius (FZ), and by other
means. In this limit each spin is aligned along its
local anisotropy axis, si = nio;, in which o, = +1. The
Hamiltonian then becomes, apart from a constant,

(2)

which is that of a particular random-bond Ising
model, the so-called Ising random-anisotropy-axis model
(IRAM), where

h, ; =h-n, ,

in which the ni are constrained unit vectors. Although in
pratice the average over random angles that appears in
calculating the thermodynamic properties of the model
is sometimes replaced ' by an average over an efFective
distribution of independent random bonds, it has been
pointed out recently that this is not correct, in general,
except in the limit p —+ oo. In this case, the problem is
uninteresting since the model reduces to the already ex-
plored EA model, unless the distribution of ni is neither
isotropic nor a Gaussian.

In the large-p limit, the model becomes identical to the
Hop6eld model for neural networks if the n,". are dis-
crete independent random variables that take the values
+1, and this model is known to have a difFerent behavior
from the EA model even in the limit p ~ oo.

The relevance of the probability distribution of ni for
the RAM has been pointed out by Harris, Plischke, and
Zuckermann . In the case of the IRAM, the magnetiza-
tion states are degenerate for an isotropic distribution of
n;, due to the underlying O(p) symmetry of the model.
FZ showed, in MFT for Rnite p, that a random hyper-
cubic anisotropy stabilizes a ferromagnetic state in the
IRAM with a symmetric diagonal magnetization that has
equal components along any of the hypercubic axes.

The purpose of the present paper is to study further
the role of the distribution functions for n,". in the IRAM,
with particular emphasis on the behavior when p ~ oo
while n = p/1V remains finite, the so-called n limit.
The related Hopfield model of neural networks is known
to have a spin-glass state for o. larger than a critical value
and local or globally stable one-component ferromagnetic
(Mattis) states below this value. These states arise as
a "condensation" of a single component of the magne-
tization becoming of O(1), while the remaining (p —1)
components are of O(li/%).
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The behavior of the IRAM as a function of 6 = p/z,
where z is the coordination number of the lattice, has
been studied on a Cayley tree and on hypercubical
latticesii for finite p and z. These works also suggest
a spin-glass or ferromagnetic behavior for o. above or be-
low a critical value, respectively.

The outline of the paper is the following. In Sec. II
we state the model and introduce the relevant order pa-
rameters and probability distributions for n,". . The re-
placement of the uniform distribution appropriate for the
"hard" constraint by an often-used. Gaussian is also dis-
cussed there. In Sec. III we deal with the large-p behav-
ior when o. = 0, and in Sec. IV we consider the finite-o.
case. We end with a critical discussion in Sec. V.

II. THE MODEL

p

p(n*) = + —) [b(n' —e ) +b(n'+e. )] (8)
Op 2p

with constrained random axis, has been used in the
IRAM by FZ. The first term is isotropic with the vec-
tor n; on the unit sphere of area 0„= 2m "~ /I'(p/2),
in p-dimensional space, r(0 & r & 1) is the anisotropy
strength, and e, is a unit vector in the direction of a
crystal axis. The b functions are Kronecker deltas, equal
to 1 if n; = +e, and 0 otherwise, implying that n, = +1,
with equal probabilities, for one component of n; at a
time and zero for the remaining (p —1) components.

We consider two distributions of statistically indepen-
dent random variables in this work. One is the sometimes
employed Gaussian distribution for statistically indepen-
dent and identically distributed components n,. of mean
zero and unit variance, '

The Hamiltonian of the IRAM with infinite-range in-
teractions, suitable for MFT, is given by d4(n, ) = dn; P(n, ) = [dn," P(n,")],.

p

) ) n,"n,"c;o, —). o; ). h,„n,",
~)2 0=1 P

(4) used here only for comparison, in which

where the n,". , for p = 1, ..., p, will be taken as identically
distributed independent variables.

The magnetic variable of interest for the IRAM is de-
fined here as

1
m~ =—

The thermal average with the Boltzmann factor
exp ( PHI), which—will be denoted by angular brackets,
and the self-averaging property for finite p yield the mag-
netic order parameter

1 2/2e
27r

(10)

In this way, the random-axis vector also acquires a vary-
ing modulus. Nevertheless, the Ising random-axis limit
D/J -+ oo is still meaningful in the large-p limit, in
that (D/J)~n;~ does not become of order 1 or smaller
on a sizable set of lattice sites, since p = n = p for
almost every site i in this limit, with relative dispersion
o (7)/[&]„=O(1/~p).

The other case we consider is a variant of (8), given by
the trirnodal distribution

m = lim (m~) = [n(o.)]„, (6)

where the square brackets denote the configurational av-
erage over the probability distribution of n, Thus, m
is the analog of the overlap vector in neural networks.
The right-hand side of Eq. (6) will still be used to de-
fine the magnetic order parameter for all p, even in the o.
limit, in which case self-averaging no longer applies. The
spin-glass order parameter used here is the usual replica
symmetric q = q~@,

dP(n;) = [dn," p(n,".)].
g=1

of statistically independent and identically distributed
components x = n,-, in which

6
p(x) = —(h(x —a) + b(x+ a)) + u8(x),

2

(12)

in the replica space o., P necessary to perform the config-
urational average for the o, limit.

A. Probability distributions

An isotropic probability distribution has already been
used by Harris, Plischke, and Zuckermann . The
anisotropic distribution

where 6 is a real constant such that 0 ( b & 1 and
a = 1/v b (there is no loss of generality with this choice).
Since [n„] = 1/b, a finite lower limit to b is necessary
in order to still have a vanishing relative fluctuation of
n,. for a meaningful large-D limit, as pointed out above.
When b=l the distribution reduces to that for the Hop-
field model. In general, a typical term in the product in
Eq. (11) involves a sum of terms 8(n + a, ) on each site
over all the permutations of 8 & p nonzero components
in a vector a, .
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III. LARGE-p BEHAVIOR WITH n = 0 The components of the magnetization in zero field are
then given by

The Hamiltonian, Eq. (4), may be written as

J
Hr = ——&m~ —g~. mx

2 and

m, = [p tanh(P(mp+ Rz))]p, (19)

making use of Eq. (5). We consider first the large-p limit
when o. = 0, so that the now standard procedure for the
Hopfield model of neural networks for finite p can be used
to find the free energy per site of the IRAM in MF theory
as 19)20

f = —m —T[ln (2 cosh(P(1m+ h) n))]2

Here, T = P is the temperature in units of energy and
the magnetic order parameter m = (mi, ..., m~) is given
by the solution of the equation

m = [n tanh(P( Jm + h) . n)]

7 8f:=———
4 p

8 P
(1 —r) + ——

p 3

with components satisfying m„= Of /Oh-„
It is appropriate to recall here that the solutions in zero

field for finite p are degenerate for an isotropic distribu-
tion of n," [Eq. (8) with r = 0] due to the invariance under
a uniform rotation in p-component space and that the de-
generacy is lifted for r g 0. In this case the only solutions
are the s-component symmetric, m = m, (1, ..., 1, 0, ..., 0),
whose free energy is given, near the critical temperature
T =1andatT=O, by

R = [z tanh(P(mp+ Rz))]p „ (20)

(21)

which are the ferromagnetic (Mattis), mixed, and resid-
ual ordered states, respectively. Depending on the value
of 6, one or the other states may be stable. The first
two (E and M) are genuinely ordered states, with a fi-
nite magnetization, while the last one is a state with, at
most, local order, signaled by a nonvanishing EA order
parameter

q = [tanh (PRz)]„ (22)

which follows from Eq. (20) through an integration by
parts. Note that q ~ 1, while m = 0 as T ~ 0.

Solving Eqs. (19) and (20) for R « 1 yields the phase
boundary

l = tanh(Pl) (23)

taking, for simplicity, J = 1, where the averages of the
quantities in square brackets are over the distributions of
p and z.

If p is distributed according to Eq. (12), in addition to
the paramagnetic high-temperature phase, where m = 0
and B = 0, there could be three further phases charac-
terized as

f.' = —((1 —r ) Q2/7r + r Qs/p) '/2,

respectively, in the large-p limit, where

of continuous transitions in B, shown in Fig. 1, between
the F and M phases, in which l = m/+b. We also find
the finite magnetization

Thus the symmetric state with the maximum number
of nonzero components, in which 8 = p, has the lowest
free energy. The problem with rotationally invariant
distributions is that the degenerate solutions are only
marginally stable. 20

A number of interesting situations arise with the new
probability distributions, Eq. (12), in the large-p limit.
In this case there can be only a finite number of nonvan-
ishing components of the magnetization. Assuming that
there is only one of them, say, m = mq, and that there
are p —1 residual components of O(l/~p), one may write,
in the case of a statistically independent distribution of
random-axis components,

m-n = mp+Bz,

0.5

0.0
0.0 0.5

u=1-b
1.0

dropping the index in m, where p is a single component
of n, while Rz = P i m„n" is the sum of the (p —1) re-
maining terms. Since each term is independent, this sum
is distributed according to a Gaussian, with mean zero
and variance R~ = P i mz. Thus z is also Gaussian
with mean zero and unit variance.

FIG. 1. Phase diagram for o. = 0, indicating the para-
magnetic (P), ferromagnetic (F), mixed (M), and residual
(R) phases defined in Eq. (21). In the region My of the
mixed phase the free energy of the ferromagnetic state is the
next-to-lowest one, while in the region M„ the residual state
has the next-to-lowest free energy.
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(24)

6=1/3 forall T&1, (25)

also shown in Fig. 1, between the M and B phases, to-
gether with the order parameter

(26)

along that boundary.
The stability of the various phases has been studied by

means of two criteria. First, the states of lowest free en-
ergy have been selected as the stable phases, and. second,
these have been checked against a local stability crite-
rion that involves the eigenvalues of the second-derivative
matrix of the free energy, Eq. (14). Both criteria com-
plement each other. If the free energy for two different
solutions for the order parameters is truly convex (all
eigenvalues being positive), then, as usual, the lower free
energy yields the stable phase. The same applies if one
of the solutions is not truly convex (for instance, "flat"
or concave in at least one direction), as long as it is not
the lowest &ee energy. If, instead, the lowest free energy
is Hat in at least one direction, as would be the case with
one eigenvalue being zero, there cannot be a truly stable
state.

Calling fp, f~, and f~ the free energies per spin in
each of the states defined in Eq. (21), it turns out that
f~ & f~ in the E phase and f~ & (f~, fR} in the M
phase, f~ being less than f~ in region Mf in Fig. 1, while
fp ) f~ in region M„and f~ & f~ in the R phase. The
state M does not exist either in the F or in the B phases.

On the other hand, considering the second-derivative
matrix of the free energy, with elements

8D—: = 1 —P(1 —[p tanh (PA)]~,),

along this boundary, in extension to the familiar behav-
ior of the neural-network problem. Note, however, that
here in the random-axis model, there is a whole region of
ferromagnetic states in the (u, T) plane enclosed by the
phase boundary.

On the other hand, solving Eqs. (19) and (20) for m «
1 yields the boundary

in which A = mp+ Bz, the smallest eigenvalue

A = (D~ + D~)/2 —Q(D~ —D~)2/4 —(PQ) (30)

becomes A = min(D, D~), when Q = 0. This is the
case if either m or B are zero. Looking at this lowest
eingenvalue in each of the three states, A, A, A, we
find that A & 0, in the F phase. The equality holds
in the E Mp-hase boundary, Eq. (23). On the other
hand, A becomes negative to the right of this boundary,
where the M state is stable within the region My and M„
indicated in Fig. 1, with A & 0.

At the other extreme, in the B phase, we have A = 0,
while A ( 0. The former is an eigenvalue corresponding
to a marginal mode, meaning either a local Hatness of the
free energy or a region turning into an unstable state. It
should be noted that the solution with m = 0 and R g 0
is marginally stable also in the other phases below T . We
take this as a warning that the limit p ~ oo with n = 0 is
a marginal situation beyond which (i.e., when n ) 0, no
matter how small) a true spin-glass state should appear.

IV. a LIMIT FOR LARGE-p BEHAVIOR

f = —lim lim
[Z"]„—1

+~0 N~oo VNP
(31)

where the configurational average is taken over the v-fold
replicated partition function

Z" = rr e-~ ~. (32)

The v-replicated Hamiltonian in zero field is here

S
Hy = ——) mN

p=1

The analogy with the neural-network problem suggests
that a number of interesting features should. appear in
the random-axis model in the n limit. To deal with this
case one has to resort to the replica method, as in the
neural-network problem.

The free energy per spin is then given by

0
D~ —= = 1 —P(1 —[z tanh (PA)]~, ), (28)

1
mNp — &io ~ (34)

cl2 fQ—: = P[pztanh (PA)]p „ (29)

The quadratic form in the exponential of Eq. (32) is lin-
earized, as usual, by means of a Gaussian transformation
that yields

Z" = e ~""~ Tr exp PN—dm m
(2vr)&&2 2

y

The extremum of a saddle-point integration, in the
large-% limit, provides a physical meaning for the rn~
as the magnetic order parameter whose components are

(36)

I

for a given replica p.
As in the n = 0 case, a finite number of m~'s may

condense macroscopically, while an asymptotically large
number of residual components may be of O(1/~N). In
the case of a constrained probability distribution, such as
Eq. (8), it is not possible to separate and integrate out
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the residual components, as one would like to do, in ac-
cordance to standard practice. We consider therefore,
in the following, only statistically independent distribu-
tions.

For simplicity, we assume first that there is only one
component, say, m~i, that condenses macroscopically (we
consider the case of more components below) and we re-
call that the remaining (p —1) components m~ are mi-
croscopic, in order to have a well-defined thermodynamic
limit of Eq. (35). We denote the corresponding random-
axis vector components by

C = P(1 —q)

is the variance for the overlap

m„—= X-') (,"(o,) (48)

( = (~ )i).fp)
(37)

B* = [e""4

The average over g can, as usual, be taken out of the
trace and written as

of a configuration of spins with the high (p ) 1)
random-axis components. In these expressions, [ ], =
J' d4(z) denotes the average over the Gaussian noise,
in the notation of Eqs. (9) and (10). The parameter R is
related to the auxiliary parameter r in Ref. 21 by means
of

in which

o.qR—= gnr =
1 —C (49)

a; = P) rn, o.,'.
y

(39)

B, = exp ) a;/2 (4o)

For any distribution of statistically independent (,", in
particular for Eq. (12), of mean 0 and variance 1, the
central-limit theorem yields, in the limit p —+ oo,

m = [p tanh(PA)] p „
q = [tanh (PA)]~ „

(5o)

(51)

and accounts for nonmagnetic ordering of the remaining
(p —1) components, in that the local magnetic moment
may be finite without long-range magnetic ordering, as
in a SG phase.

The order parameters satisfy the equations

in which
where A = Rz+mp. Transforming Eq. (51) by means of
an integration by parts, with Eq. (49), yields

) a,' = Pe) ) m~C,.m~, (41) R = gnq + [z tanh(PA)] p „ (52)

where

C~ = P ) o~o,"/N. . .. (42)

m2 CB2f= fc+ +-
—T[ln (2 cosh(P(Rz + mp)))]~ „ (43)

where

(44)

The magnetic and spin-glass (SG) order parameters
that describe the stationary states are, respectively,

Using this result in Eq. (35), performing then the inte-
gration over xn~, and carrying out the trace over o before
the configurational average over the "low" component p,
one obtains, for the free energy per spin in the replica
symmetric calculation,

m = [p sgn(z)]~, = 0 (53)

for all finite T, in place of the marginally stable mag-
netic ordering we had at o. = 0, for a purely isotropic
distribution.

We consider next the trimodal distribution for p and
deal first with the zero-temperature (P = oo) case. The
equations for the order parameters become, in this limit,

in distinction to the n = 0 case, Eq. (20). Note, however,
that the latter is recovered if o; = 0. There is then the
possibility of having, again, a ferromagnetic (E) phase,
where m g 0, R = 0, a mixed (M) phase in which m g
0, R g 0, and there can now be also a spin-glass (SG)
phase with m = 0, R g 0, besides a paramagnetic (P)
phase where m = 0 = B.

It is interesting to consider first the case where p is
distributed according to the Gaussian in Eq. (10). For
the sum in A, the variance becomes 6 = B + m and
the solution of Eqs. (49)—(51) yields C -+ 1, that is, q ~
1 —T and B + oo. The magnetization is then

m = m = [p(o~)]p „all
q = q-p, ~ P P,

assuming replica symmetry, while

(45)

m = Jb erf(x),

R= ~n+(1 —b+be ~ )

(54)

(55)
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over the probability distribution p(t, ) for having t, when
the distribution for n~ is the trimodal of Eq. (12). Con-
sidering, for simplicity, the case s = 2, where p(0)
u2+b2/2, p(1) = bu = p( —1), and p(2) = b /4 = p( —2),
one firlds

symmetry ansatz, the determination of these parts of the
curves is not accurate enough to exhibit possible reen-
trant behavior as one expects to have when b = 1. Nev-
ertheless, the phase diagrams that are obtained should
exhibit the main features of the model with a trimodal
distribution.

m= —erf(m&2/R) + rrerf( ) ),
m

a 2 2B
(63)

V. DISCUSSION
B= ~n+ (b P(2m/B) + 4bug(m/B)

+(b'+ 2u')/i/2~). (64)

0.70

0.65

0.60

0.55
0.00000 0.00002 0.00004

(X

I

0.00006 0.00008

FIG. 4. Zero-temperature diagram showing the region S2
of global stability of the symmetric solution with two Bnite
components.

When these equations are used in the free energy,
Eq. (43) at T = 0, the phase diagram of Fig. 4 is obtained
in which S2 is the region where the symmetric solution
of two finite components is globally stable. The phase
of globally stable mixed states is also shown there for
comparison. The symmetric two-component state is thus
stable over a very small part of the phase diagram. This
is consistent with results for the Hopfield model (the case
u=0) where the critical n for this solution is o.l l 0.
It is also known that the critical o. for the appearance of
the locally stable solution of three finite symmetric com-

ponents is a 0.029, in this model, and the dotted
line in Fig. 2 gives the result of our calculations, which
go along similar lines to the derivation of Eq. (62), for
u & 0.

Two comments are now in order about the phase dia-
grams. First is that both of them follow from the replica
symmetry ansatz, Eq. (45), which is not expected to be
correct at very low temperature, particularly in regions
where there is a sign of strong SG behavior, as is the
case when the replica-symmetric states are globally sta-
ble. Allowance for replica-symmetry breaking will change
somewhat the upper transition line, leading to mixed be-
havior at T = 0. It is beyond the scope of this paper to
determine this change.

The same limitation applies to the lower parts of the
boundaries in Fig. 3. Second, even within the replica-

In this paper we extended earlier works on the IRAM
in two main aspects within mean-Geld theory. We consid-
ered (i) the large-component limit p -+ oo and allowed for
both n = 0 and o. P 0, and (ii) we studied the efFects of
a trimodal probability distribution for the random axes
with a finite probability that each component be either
zero or finite.

In the o. = 0 case our work may be compared with
that of FZ. Their results are justified even in the limit
p —+ oo, as long as o, = 0. We Gnd stable ferromag-
netic Mattis states, with a single finite component of the
magnetization, that have lower free energy than other
(mixed) states within a finite region of the (u, T) plane,
where u is the probability for having a zero random-axis
component. This is in contrast to the behavior found by
FZ, " in which the limiting free energy per site becomes
our Eqs. (16), with a cubic anisotropy, which is the low-
est free energy when the number of nonzero magnetiza-
tion components s = p. The stability of the symmetric
magnetization found for 8 = p is lost in our case where

p ~ oo, if 6 is not very small. This behavior is due to the
use of a noncubic random-axis distribution. Indeed, the
cubic distribution for n,"used in Ref. 17 favors a diagonal
ordering already for finite p, in which each component of
O(1/~p) becomes vanishingly small in the large-p limit.

Furthermore, in addition to E states, we have phases
of mixed ordering and with residual order, when o. = 0,
where the latter has a nonzero spin-glass order parame-
ter, although there is no genuine spin-glass phase as long
as o. = 0.

In the case where a. g 0, we find rather difFerent be-
havior in that a mixed phase appears, in place of the
diagonally ordered E phase of Ref. 17, referred to above.
This phase competes for stability with a true spin-glass
phase, and one or the other is more stable depending on
the value of o. , as discussed in detail in Sec. IV.

Unconstrained probability distributions for the
random-axis vectors have often been used in the liter-
ature. Although easy to handle, a Gaussian distribution
is not appropriate within MFT since it shares some of the
problems of an isotropic distribution for Gxed-length ran-
dom vectors, in which a particular magnetization state is
continuously degenerate. We have introduced here a tri-
modal distribution of statistically independent and iden-
tically distributed random-vector components. Depend-
ing on the size of b, Eq. (12), these components may
deviate more or less from diagonal directions, enabling
us thereby to study the effects of a varying anisotropy.
All our results, for both n = 0, or o. g 0, show a clear
reduction of the size of the ordered regions in the phase
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diagrams with departure &om diagonal ordering.
Our work in MFT yields results independent of the di-

mensionality of the system. In order to determine the
role of the latter, one would have to study the effect of
fluctuations, which is beyond the scope of this work. Nev-
ertheless, we believe that the general features of the phase
diagrams should remain unchanged.
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