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Within a mean-field theory, the disordered spin- —single-chain state is shown to be unstable towards

an antiferromagnetically, long-range ordered one, when any finite transverse coupling, J~, is introduced
between chains. A mean-field Hamiltonian is derived from the Heisenberg model, using an extension of
the Wigner-Jordan transformation in two dimensions. The staggered magnetization and the ground-
state energy are calculated for values of transverse couplings ranging from 0 to 1. The main consequence
of these calculations is that the value of Ji, required to have antiferromagnetic long-range order, must
only be nonzero. This result is consistent with that of Sakai and Takahashi indicating that the critical
transverse coupling should be of order of the inverse of the one-dimensional staggered magnetic suscepti-
bility. Following a qualitative argument, it can also suggest that the Luttinger-liquid state is unstable at
least at nearly half-filling for the Hubbard model in the limit of large Coulomb repulsion.

I. INTRODUCTION

The activity in the field of low-dimensional spin sys-
tems has been greatly stimulated by the Haldane conjec-
ture. ' Haldane pointed out that isolated integer-spin
chains, with first-nearest-neighbor interaction, have an
energy gap in the spin-wave spectrum excitation, whereas
the case of half-integer-spin chains is massless. In a pre-
vious paper, the effect of a small interchain coupling on
a quantum antiferromagnetic two-dimensional array of
spin chains in the case of integer spin is studied. In this
work the case of the spin S=—,

' is investigated. For in-

teger spin the correlation length is finite and the spin-spin
correlation decreases exponentially with the distance.
For S=

—,
' the correlation function decreases algebraically

as 1/R, implying an infinite correlation length. This
difference in behavior is attributed to the presence of a to-
pological term in the long-wavelength action of spin- —,

'

chains and not in the action of integer-spin chains. Con-
sequently, for integer spin a finite transverse coupling Jz
is required to establish long-range antiferromagnetic or-
der. The case of half-integer spin is more dificult. This
is due to the simultaneous disappearance of the topologi-
cal term and the decrease of the quantum spin Auctua-
tions, as soon as the transverse coupling becomes
nonzero. We can expect that the system would become
massive once J~ is nonzero and that, to have long-range
order, a finite transverse coupling would be required as in
the case of integer spins. But the results of this work sug-
gest that the system gets ordered for any finite transverse
coupling. This result has been found out already by
Sakai and Takahashi, who combined a mean-field treat-
ment with a one-dimensional exact diag onalization.
However, the originality of our present work is that the
method, applied here, is entirely analytic and allows the
calculation of the local magnetization for any value of J~.
Because of the mean-field approximation, the result we
obtain, for the magnetization in the isotropic two-

dimensional Heisenberg model, is found to be greater
than the one given by spin-wave analysis.

On the other hand, the discovery of high-critical-
ternperature superconductors has lead to the interesting
question of whether a Luttinger-liquid state can occur or
not in more than one dimension. Our results may sug-
gest that the Luttinger liquid is unstable toward another
state in more than one dimension, at least at nearly half-
filling for the Hubbard model in the case of large
Coulomb repulsion U. We know from renormalization-
group analysis that this is equally true for the small-U
limit. The Hubbard model is canonically equivalent to
the Heisenberg model for large U and at half-filling. Let
us assume that we create a single hole on one chain. If
the chains are decoupled, theri we get a Luttinger liquid.
Now, if a transverse coupling is switched on, the hole will
not be able to distabilize the long-range order, because we
need a finite density of holes to disorder the system. The
Luttinger liquid is unstable in the sense that we get an or-
dered spin system for any finite transverse coupling.

In this work we introduce a generalization of the
Wigner-Jordan transformation in two dimensions. In or-
der to do so, we recall briefly the one-dimensional
Wigner-Jordan transformation which allows a mapping
of the XY model into a spinless free-fermion Hamiltoni-
an. Then the anisotropic two-dimensional Heisenberg
model is mapped, within this transformation, to interact-
ing spinless fermions. These fermions are moving in a
gauge field generated by the spin configuration itself. A
flux-phase Neel ground-state type is found to give, at the
mean-field level, the lowest variational energy, for all
finite transverse couplings.

II. METHOD AND RESULTS

The Hamiltonian of the XYmodel is given by
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with the sum running only over the first nearest neigh-
bors (i,j ). J is a positive antiferromagnetic exchange
constant. In one dimension this model is exactly solvable
using the Wigner-Jordan transformation

S'=c+c ——'

i —1

S; =c;exp in+ . n
j=0

(2)

FIG. 2. Dashed line crosses only one time the site i. This is
im.n.

to say that +e ' appears only once in the products of the com-
mutators between i and j.

n =c+c
J J J

The commutation relations of the spin operators are
satisfied since we consider that c; and -c;+ apply to fer-
mions. The presence of the phase of S; in Eq. (2) is
essential in preserving these commutation relations when
they are calculated for two different sites. The commuta-
tor

i —1 j—1

[S;,SJ ]=c;exp i~ g nk cJexp im g nk
k=0 IG =0

j—1 i —1—cJexp imgnk . c;exp i~ g nk
k=0 JG =0

complicated to be solved by the one-dimensional
Wigner-Jordan transformation, because the commutation
relations are no longer satisfied and because the XFmod-
el can no longer be mapped into a free-fermion Harnil-
tonian. To surmount the first difficulty, we introduce a
generalization of the Wigner-Jordan transformation by
proceeding in the same spirit as for the exactly one-
dimensional problem. We propose a transformation
where the phase at the site (i,j ) is, now, obtained by sum-
ming up all the sites at the left of the dashed line as indi-
cated in Fig. 3.' The summation contains also the sites
belonging to the dashed line. Two coordinates i and j are
taken, respectively, on the x and y axes to specify a given
site. The extended transformation is defined as

where i &j without lose of generality, vanishes since the
important relation S; . =c; .exp iver n~f+ g n, f

d=Of =0 f =0
i mn, . i n.n,.

e 'c;= —ce (4)
1

l, J i, J /, J
holds for any site i. Next, we present schematically the
transformation (2) as is indicated in Fig. 1, where the
dashed line shows that to obtain the phase of S; we
summed up from the site 0 to i —1, in the phase of the
expression of S; (2). It is important to note that this
summation does not extend to every site, except i, in or-
der to preserve the spin cornrnutation relations.

In one dimension the commutator [S;,S~ ] with j
greater than i, as shown in Fig. 2, equals zero because the
operator c; appears once and only once, multiplied by the

phase term e ' of Eq. (2), in the products S; S~ and
i m. n,.S S; . To indicate that c;e ' appears only once, only

one dashed line crosses the site i in Fig. 2. If we make
use of (4), we then will be able to get [S;,S ]=0. This
idea is very helpful to obtain a generalization of the
Wigner-Jordan transformation in the case of two dimen-
sions. The question is reduced to how to make a general-
ization of the one-dimensional scheme.

Following Eq. (2), the up or down spins correspond to
the absence or presence of one ferrnion, respectively. H „
becomes a spinless free-ferrnion Harniltonian

H„» =—g c; c;+&+H. c. ,xg 2 l l

+

+

+

with a Fermi surface half-filled. But in the presence of a
transverse coupling between chains, the problem gets too

FIG. 1. Dashed line indicates that, to obtain the phase in the
transformation (2) at the site i, we summed on the occupation
number of all the sites from the origin until i —1.

FIG. 3. We summed up all the sites, located at the left of the
dashed line, to get the phase of the lowering spin operator at the
site (i,j): Eq. (10). The sites belonging to this line are contained
in the summation. Using the same reasoning as in Fig. 2, it is
not hard to convince ourselves that the commutation relations
are preserved.
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JJ. —iy . .+&(i)
C; e '

C;
i,j,5

(7)

which is an effective hopping Hamiltonian for fermions,
moving in a gauge field created by the spin configuration
itself. J~ is, as J, a positive exchange constant in the y
direction. The hopping of the fermions is between
nearest neighbors, and the hopping amplitudes are

J —i/;;+g( j)2'
in the x direction and

—iy . . +~(i)J&J+

2

in the y direction The p. hases P;;+s(j) and ip +&(i) are
as follows:

00 j—1

p;;+s(J) 5' g n, —
s f+ g n+s

ip~ J. +s(i) =6mn;.
1,j+5

(10)

In these formulas, 6 +, +& is the Kronecker symbol, and
5=+1 indicates the first nearest neighbors of a given site.
The operator n; is the occupation number at the site
(i,j). These two phases are not symmetrical because of
the choice of the gauge in the transformation (6). Every
site is occupied by either an up or down spin, correspond-
ing to the presence or absence of a fermion as in one di-
rnension. Therefore these phases have a nonobvious
dependence on the ferrnions positions. If Jz =0, then the
one-dimensional limit is recovered by using a Read-
Newns gauge transformation, ' where c; j is transformed

iO,
I i ' Xn &i 4n n+ 11 '1'

This calculation shows how the XY model becomes
difticult to analyze in two dimensions, whereas it has an
obvious solution in one dimension. The asymmetrical
form of the phases P and ~p allows us, however, to get a
state similar to the known mean-field solution of the uni-
form flux-phase state. ' We see that P can be either 0 or
m. depending on the spin configuration, and so it may
have on average (it is a statistical average) a value of m/2.
y is then equal to zero as in the one-dimensional problem.
The dispersion relation is calculated assuming a bipartite
lattice:

where the operator c;j takes two space indices i and j. It
is possible to show, following the same reasoning as be-
fore, that the commutation relations are preserved. This
transformation gives explicitly the phase of S;, which is
a complicated function of the configuration of spins in
the considered region. Wang" has proposed a similar
transformation, but with the difference that he did not
specify the phase as we did. Other extensions of the
Wigner-Jordan transformation in two dimensions appear
in the literature. ' Using this transformation, the two-
dimensional XYmodel becomes

J —ip;;+~( j)
x» 2 g I', 1 l'+s, j

i,j,5

E ( g ) +(J2sin2k +J2 cos2k )
1/2

This dispersion relation is not symmetric in k and k .
But an another gauge, where k is replaced by k» in (11)
and vice versa, is also possible and we can show that our
results are gauge invariant [see Eq. (23) below]. It be-
cornes quite clear that the uniform Aux-phase solution is
a very good candidate to represent the ground state of the
XYmodel in two dimensions.

Now the Heisenberg model is expressed, in the follow-
ing way, using Eqs. (6) and (7):

H =H„+J g n; n; +s J+J1 g n; Jn; J. +s . (12)

H represents interacting spinless fermions. The second
and third terms measure repulsive interactions J and J~
between fermions belonging to adjacent sites. Equation
(12) has the advantage of not needing any constraint on
the fermion occupation number. The Fermi statistics of
the operators ensures no double occupancy. It is interest-
ing to compare this Hamiltonian with that of the
Schwinger-boson analysis. ' As was done by Wang" in
the case of an isotropic two-dimensional Heisenberg
model, we search for a Hartree-Fock solution for the
term biquadratic in fermion annihilation and creation
operators. The decoupling of this term takes into ac-
count two tendencies in the physics of the problem. The
first one is characterized by the presence of a Aux-phase
term, and the second one is the result of the assumption
of long-range antiferromagnetic order. The dispersion re-
lation, calculated in the gauge discussed above, is

E+(&)=+[(J+J1)m +J (1+2Q) sin k„

+J (1+2P) cos k ]1/2 (13)

where m = ~(n; J ) ~, Q= ~(c;ic;+, ) ~, and
P=~(c;ic;i.+, )~ are three variational parameters. m is
the local magnetization, and Q and P are interpreted as
efFective hopping terms in the x and y directions respec-
tively. It is interesting to note that, for a similar phase to
(13), Hsu' showed that spin-wave excitations are al-
lowed. In our approach this can be done by calculating
Gaussian corrections which give a particie-particle-type
interaction between quasiparticles in the lower band.
This is beyond the scope of the present work. The pres-
ence of the gap 2(J+Ji )m at (k, k )=(0,+sr/2) is an
"insulating gap" and is interpreted as the energy required
to Hip a spin (create a quasiparticle and quasihole pair
which corresponds to the creation of a domain-wall exci-
tation in the space of the spins). This behavior is not seen
in the case of the XYmodel, where the gap is zero. It be-
comes obvious that the gap will vanish once the long-
range order disappears in the case of the Heisenberg
model when the system gets away from half-filling. We
are interested in studying only the ground-state proper-
ties. The values of the variational parameters are deter-
mined by minimizing the total energy with respect to m,
Q, and P. This gives, at zero temperature, a set of three
self-consistent equations

d2k (J+J, )
(14)

(2m. )
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Jsin k„
2 f 2~ 2 E (I

)" "+ (15)
0.80 —

!

(2~)' E (16)

We will search for a nonzero magnetization m since the
corresponding energy is lower than that of m =0. First,
we are interested in the limit where Jj is much smaller
than J. We are going to calculate m when J~ is exactly
zero and show that this limit is singular. The reason is
that in one dimension the local magnetization is zero'
and the ground state has no long-range antiferromagnetic
order. Putting Ji =0 in Eqs. (14)—(16) leads to

0.60—

0.40

0.00

m= dk„ 1
m

[m +(1+2Q) sin k ]'/

+„dk sin k
2 2 i/2([m +(1+2Q) sin k„]'/

(17)

Transverse coupling

FIG. 4. Staggered magnetization, calculated in the Hartree-
Fock approximation, is plotted as a function of the transverse
coupling.

2 1 CX
f72 = K

~ (1+a ) (1+a )'
(19)

g — Q
( 1+ 2)1/2E

m.m a (1+a')'"
—m —. ,2

(20)

where a=(1+2Q)/m. We see that m must be of order
of unity to avoid the divergence of Eq. (18). X and E are
the complete elliptic integrals of, respectively, the first
and second kind. If we assume that m is very small com-
pared to 1+2Q, then we get rough estimations of

(21)

where m =0 is a solution of (17) and it implies Q = I/m.
from (18). But as we mentioned above, the total energy
can be minimized further by a nonvanishing solution of
m. In this way we get

E+(k)=+[(J+Ji) m +J (1+2Q) cos k„

+J2( 1 +2P)2sin2k ]1/2 (23)

the m =0 solution. The reduction of the energy separa-
tion between these two levels (m &0 and m =0), as the
transverse coupling is decreased, is a signature of the fact
that the quantum fluctuations become stronger and
stronger with decreasing the transverse coupling. So, in
our mean-field approximation, a transition between disor-
der and antiferromagnetic order occurs at a critical value
of the transverse coupling, J~=O. This result is con-
sistent with the one found by Sakai and Takahashi. A
finite critical value of the transverse coupling would man-
ifest itself by producing a crossover between the levels
m =0 and m )0 at a nonzero value of J~. In Fig. 6 we
draw the variations of Q, P, and P /Q as functions of
Ji/J. In all these figures, J is set equal to unity. In order
to see the gauge invariance, we have performed a calcula-
tion with the energy spectrum

and

m =4(1+2g)e —(i+2&)~/2-0 5 (22)
-0.20—

These values of m and Q are confirmed approximately by
a numerical solution of (17) and (18) (m =0.513 and
Q =0.285).

Equations (14)—(16) are solved numerically for any
value of the transverse coupling. In Fig. 4 we plot the
variation of m and see that it is an increasing function of
Ji/J. The local magnetization m is 0.778 for the isotro-
pic model. This estimation is, of course, higher than the
spin-wave one (0.6) (a value of m = 1 is the full sublattice
magnetization). This discrepancy is due to the mean-field
treatment which underestimates quantum fluctuations.
Still, from Fig. 4, it is seen that the one-dimensional limit
is singular, because we know from exact results that the
antiferromagnetic chain is disordered (m =0). We calcu-
late the ground-state energy and plot it in Fig. 5 for vari-
ous values of the transverse coupling and for m )0. This
energy is compared with the one we get by considering

-0.30—

rn&0

-0.40

0.00
Transverse coupling

FIG. 5. Energy vs transverse coupling. The m &0 curve is
the ground-state energy. This energy is compared with the one
calculated for the m =0 solution of the self-consistent equations
[Eqs. (14)—(16)].



6140 MOHAMED AZZOUZ 48

1.00—

0.50—

one chain in a system where all chains are decoupled.
What we get is a Luttinger liquid with a charge-spin sep-
aration. If, now, these chains are coupled within a trans-
verse coupling J~, then the system will undergo a transi-
tion to an ordered phase, because the single hole will not
be able to destroy long-range order. Things are certainly
complicated for doping greater than 5, .

III. CONCLUSION

0.00

0.00 0.50

transverse coupling

FIG. 6. Mean-field parameters Q, P, and P/Q vs transverse
coupling for m )0. P/Q nearly behaves as J~ /J.

and found the same results for m, Q, and P
When holes are introduced by doping the system, the

situation becomes different. We expect that for any con-
centration of holes smaller than the critical value 5„
where the antiferromagnetic order disappears for J~ )0,
our result would remain qualitatively exact, and the one-
dimensional Luttinger liquid is destroyed for any finite
transverse coupling. To explain this we develop the fol-
lowing argument. Assume that a single hole is created on

Weakly coupled Heisenberg spin- —,
' chains are studied

in this work. Within a simple mean-field approximation,
it is found that the critical value of the transverse cou-
pling, required to have long-range antiferromagnetic or-
der, is equal to zero. This result is in contrast with the
case of integer spin. In this case it is almost established
that a finite critical value is necessary to undergo a transi-
tion between the one-dimensional disordered phase and
the two-dimensional ordered one. The correction beyond
the mean-field solution may be important in the limit of
small J~. The question of Gaussian fluctuations is
planned to be addressed in an upcoming work.
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