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We exactly show that the ground state of the Anderson lattice with U= oo is ferromagnetic at quarter
filling if the level of localized electrons €, is deep enough: €, <€y, where g, is of the order of the band-
width. Rigorous arguments show that if €, <e,., the ground state has the total spin S =(N —1)/2 for
N,=N —+1, where N is the number of lattice sites and N, is that of electrons. This indicates that a transi-
tion to a (incompletely) magnetically ordered ground state will occur for a value of €, less than ,.. We
observe this transition for finite U if —¢/ is sufficiently large. An extension to more generalized models
is discussed. The exact diagonalization technique is applied to a cluster cut out of the CuO, plane. Our
analysis shows that the system with one-hole doping has a ferromagnetic phase in the ground state, indi-
cating that a doped hole in the O p orbital is moving around in the ferromagnetic background of Cu

spins.

I. INTRODUCTION

Heavy fermions and oxide superconductors are typical
strongly correlated fermion systems.? The undoped ox-
ide compounds exhibit rich magnetic structures with
strong antiferromagnetic correlations. Heavy fermions
also show fruitful ground-state properties including su-
perconductivity, magnetic ordering, and paramagnetism
with a largely enhanced specific-heat coefficient.! Many
of heavy-fermion compounds show strong antiferromag-
netic correlations and undergo antiferromagnetic transi-
tions at low temperatures. A certain class of materials
has been reported to develop tiny ordered magnetic mo-
ments of order 0.02—0.04 uB.*> Furthermore, a few fer-
romagnetic heavy-fermion compounds were found to in-
dicate a new class of magnetic materials.*

Since one of interesting elements of heavy fermions and
oxide superconductors lies in an interplay between
magnetism and itinerancy,> we consider the Anderson
lattice model (periodic Anderson model) in order to gain
insight into the physical properties of these systems:
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where nf,-(,Zf;[,fo and ¢, =(1/VN)3;e . Rfcja.
The conduction-electron operators are represented by c;,
(c;c,) and local f electrons are denoted by f;, (f, itr ). Uis
the on-site Coulomb repulsion between f electrons.

The purpose of this paper is to investigate ferromagne-
tism of the Anderson lattice Hamiltonian at quarter
filling by rigorous methods. Recently there have been in-
teresting works on the ferromagnetism of the Kondo lat-
tice. Our work has a close relation to recent interest on
the ferromagnetism of the Kondo lattice.>’” We assume
that the on-site Coulomb repulsion of localized electrons
is large. We denote the number of lattice sites by N and
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that of electrons by N,. At quarter filling there is one
electron per site: N,=N. First we show rigorously that
for N,=N +1, the ground state is (incompletely) fer-
romagnetic with the total spin S =(N —1)/2 if the level
of localized electrons € is sufficiently deep: e, <ef.. €y
is a critical value which we cannot know precisely only
by rigorous arguments. The above statement holds also
for the finite U case if U is large enough, where ¢, is
dependent on U and the system forms a ferromagnetic or-
der for U > U, and €, <g; (U). For less than or equal to
quarter filling, the ferromagnetic state is described by
spinless fermions occupying the lower band. At quarter
filling N,=N +1, our exact arguments predict a metal-
insulator transition as well as a ferromagnetic one at
U=U, if e,<egz(U), or at e,=g.(U) if U>U.,.
Second, we determine critical values of €, by the exact
diagonalization method in small systems. We can safely
extrapolate €. to the infinite limit N — o0 and we show a
phase diagram to indicate ferromagnetic regions. When
U is very small or U =0, we can clearly apply the Fermi-
liquid theory to describe the ground state and lower ex-
cited states properly. However, we find ferromagnetic re-
gions for sufficiently large U. This indicates a breakdown
of Fermi-liquid descriptions of heavy fermions at quarter
filling with the increase of U.

The CuO, plane in the oxide superconductors is also
within the scope of our study. We adopt the three-band
Hubbard model given as

H= 3 [—tulpld,,+H.c.)—1,,(p}p;,+H.c.)]
(ij)o
+23 (—=Bnge+U X ngiyng, - (1.2)
io i
Here p,, and d;, are the annihilation operators of holes
with spin o on the O p and Cu d orbitals at site i, respec-
tively. —A is the energy of a hole in the Cu orbital and U
is the on-site Coulomb repulsion. We consider a Cu,Oyg
cluster with one-hole doping by the exact diagonalization
method. This system also contains the phase with high-
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spin state, indicating that a doped hole is moving in the
ferromagnetic background.

This paper is arranged as follows. In Sec. II, we show
some rigorous statements on the ferromagnetism of the
Anderson lattice for N,=N +1. Our proposition sug-
gests an existence of a critical value of €, below which
the ground state is ferromagnetic. We give a remark
about frustration effects for the Anderson model. In Sec.
III, the numerical diagonalization method is applied to
show a phase diagram for small N. It is shown that £..’s
in the limit N — o are finite, which indicates that local-
ized spins are ferromagnetically ordered even in the ther-
modynamic limit. A phase diagram of the ground state
in the case of one-hole doped into a Cu,Oy cluster is
shown in the ¢,;-t,, parameter space. Concluding re-

pd
marks follow in Sec. IV.

II. RIGOROUS STATEMENTS

A. Rigorous statements for the Anderson lattice model

In this section we present some rigorous arguments to
show that the ground state is ferromagnetic for
N,=N+1, if U and —¢, are sufficiently large. In the
following we show a theorem below.

Theorem 1

Let us assume that N,=N+1 and U=w. If g, is
negative and —e, is sufficiently large, then the ground
state of the 1D Anderson lattice Hamiltonian (1.1) with
open boundary condition has the total spin S =(N —1)/2
and is unique, apart from S, degeneracy.

Proof

We set N,=N+1. If —g,>>V, we can restrict our-
selves to truncated basis sets which contain at most two
conduction electrons. We consider the following basis
states:
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where {o0,} (n=1,2,...,N) denotes a set of spin
configurations of f electrons. Applying the Hamiltonian
t0 ¥;4;(,,}» We Obtain

Hio;(0,) _tU(CiT+1o+Cit1a )roleaz- . -f;'aN 0)
+Vac,~t, 2(—1)j“1cjajf;rol. ..
J
Xf]T—lojflfjjl%lojﬁ_l' . 'f]I’oN |O>
+N8f¢io;[a"} (2.2)

Off-diagonal elements due to the kinetic part of the Ham-
iltonian are always negative if (—#) <0 for the periodic
boundary condition. H 1/1,-0;10"] has nonzero matrix ele-

ments with the following basis sets:

¢ia’ Jo's{o,}

=( —1)10‘(,‘”7 ja.flo1 . fj—-lo ij+10j+l"'f11\}0N|o> >
(2.3)

which . contain two conduction electrons. When i =},
from Eq. (2.3) we obtain
¢iT,il'[o J=Viin {o,

=—<—1>'c.lc,wal e, Sl e, 10D

2.4)

Then we easily obtain
<¢iu,ja';[an]|H|¢ia;[a"]):— aa ’ for 17&] ’ (2.5a)
and
(¢1T,il;{a’n]!H|1/’ia;[a'”]>=_—V8—a,a,. ’ (2.5b)

which are negative if ¥ >0. The action of H on

Yios(o,) =ac,~t,fJ{‘,1f;02 ce f]t’o'N o), (2.1 H‘pia;lﬂ,,} leads to third vectors,
_
t t t
¢ia,j+la';{o I A10]+10'c11;1’cj+laf1(71 'f'—lc:rj_lf_j+laj_‘_l . 'fN0N|0) ’ (2.6a)
1/)ia,j—la’;{an]'_:Aio,j~10’6 Cj —laflal f —10 fJT*'Iaj_H . 'fII’aNlO) ’ (2.6b)
— T
l/}i+la,j<7';[a'n]——Al+1¢7,jcr 1+10 ja.flcfl 'fj—10]-_1.]";'4’10!4Jrl "fNaN|O> ) (2.6¢c)
and
— il i
¢i"10,j0";{0'n}_ Ai—lo,ja'ci*—lacjjra'f:al‘ . 'f]T—lajilfj+laj+1 . 'fNaN |0> . (2.6d)
[
We can arrange phase factors 4;; ; 1o - - -, S0 that ma- total spin S=(N—1)/2.7 In the subspace
trix elements are negative (—¢) <0. Thus we have shown  S’=(N —1)/2, we define a state V¥, with
that all the off-diagonal elements are nonpositive for S =(N —1)/2. ¥, is given by
—gp >V According to the Perron-Frobenius 1y _
theorem,®° the lowest eigenvalue state ¥, is unique and Wimax = 2( 1y 'Tf il 6 lf i) Hf it 0. 2.7)

is a linear combination of basis states with positive
coefficients. We can easily show that such a state has the

JFi

Applying the total spin lowering operator .S, we obtain
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a state with S =(N —1)/2 and lower SZ
(S TV W= 3 (=1 Uch £l =l AT L £ 10).
i

j#i
(2.8)

Since this state is a linear combination of basis states with
non-negative coefficients, it has a nonzero inner product:

(W, |(S7)"W e )70. Note that a trial state with
S=(N+1)/2,
=2(—1)“1(S el i+l OILf10), 29

Viall

and W, are orthogonal ¢,.|¥,)=0 due to a factor o in
(2.1). Thus we can conclude that the ground state ¥, has
the total spin S =(N —1)/2.

For N,=N +1, we obtain the quarter-filled model in
the limit N —o0. The ferromagnetism of the ground
state indicates that we can describe it by spinless fermion
model of the Anderson lattice. It is then easily followed
that the lower band is completely filled by spinless fer-
mions and thus we have an insulating ground state.

From the theorem above we know the existence of €;
for e, <e, the ground state is ferromagnetic. However,
we should refer to other methods to know exact values of
g7, Note that we have a possibility that le .| is infinite.
Numerical calculations in small systems provide us one
way to obtain €. Thus, we have performed exact diago-
nalizations for the Anderson lattice Hamiltonian in Eq.
(1.1) to determine € re» Which is the subject of Sec. III.

Before proceeding further, we discuss that the above
theorem holds for finite U if U is large enough. Since the
large U allows us to truncate the basis space, similar dis-
cussions prove the following theorem.

Theorem 2

Let us assume that N,=N +1. If U is large and ¢/ is
deep enough, the ground state of the 1D Anderson lattice
Hamiltonian with open boundary condition has the total
spin S =(N —1)/2 and is unique apart from S* degenera-
cy. The finite U case will be investigated by numerical
methods in Sec. III.

B. Anderson lattice with frustrations

Here we consider the following one-dimensional (1D)
Hamiltonian:

=—t 2

(ij)o
+8f 2fiofia+U2nfifnfil ’
io i

which we illustrate in Fig. 1. Frustration effects are con-
tained in the mixing term of Eq. (2.10). The model for

FIG. 1. Lattice structure of the one-dimensional Anderson
lattice with frustrations.

1r7 jU+V2 (Cla+ct+lo flO'+H C. ]

(2.10)
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CuO, plane in the oxide superconductor is considered to
be a variant of the 2D Anderson lattice with frustrations,
which we will discuss in Sec. III. We investigate now
whether we can apply the Perron-Frobenius theorem to
this model. We consider a set of truncated basis states as
for the original Anderson lattice,

¢ia;[a !ZO'I f‘{ﬂlfgﬂz' . 'fl.'\"a |0) ’

¢10j0 {o,} —(—I)IUCIU j(rfla] . 'f'—

(2.11a)

T
aj_1f1+laj+l

X ..fM,N|0> , (2.11b)
Jio,ja‘;[a _(—l)acwcj+lafla] . fj—la f1+laj_*_1
X.. ‘fN0N|0> . (2.11¢)

It easily appears that matrix elements are not always neg-
ative in this space because one obtains

(Yo, joilo,) |H|¢,,, (o] )=— Voo, » (2.12a)

g, jors o, | HI Wiy (0 ) = — V5o, » (2.12b)
and

Fiviosto, ) HIW 10400 1) =V, (2.12¢)

Therefore we cannot know only by exact arguments
whether the ground state can be ferromagnetic or not for
N,=N +1 when effects of frustrations are taken into ac-
count. We show, however, in Sec. III that numerical cal-
culations reveal the ferromagnetic ground state for
N,=N+1, if € r is well below the Fermi level. In other
words we are allowed to say that very small frustrations
are not enough to destroy ferromagnetic ordering.

III. NUMERICAL RESULTS

A. 1D Anderson lattice

We use the Lanczos method to obtain eigenvalues of
the ground state in the subspace with S?=M (0<M <S).
We show in Figs. 2(a) and 2(b) the ground-state energy
versus € for N,=N +1, where V" =0.2 and N =4 and 6.
We observe that the ferromagnetic state with
S =(N —1)/2 is the ground state for large —¢,. In Fig.
3 we show € 7. V8 1/N for several values of V in the limit

U=o, where N=4,5, 6, 7, and 8, and N,=N +1.
Extrapolated values of €4, are presented in Fig. 4, where
the solid line denotes €4, in the limit N = oo, below which
the ground state is ferromagnetic. As easily known, €, is
of the order of the bandwidth over the wide range of V.

Here we estimate the ground-state energy by simple
calculations. When U =0, the dispersions of the mixed
band are given by

Ef=(e,+e;) 24V (g, —¢, )2 /4+ V2.

We evaluate ground-state energy in two ways and com-
pare them with exact values as shown in Table I. In
column A we show the ground-state energies for U =0.
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FIG. 2. Ground-state energy vs £, for N,=N +1. Parameters are ¥ =0.2 and N= (a) 4 and (b) 6. (a) Circles, triangles, and
squares are for S =1/2, 3/2, and 5/2, respectively. (b) Circles, crosses, triangles, and squares are for S =1/2, 3/2, 5/2, and 7/2, re-

spectively.
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FIG. 3. Critical values €, vs 1/N for N,=N +1. Parame-
ters are ¥ =0.5, 0.2, 0.1, and 0.02 from the bottom (z =1).

Column B indicates the case where the lower band is
filled completely by up spins and we add one down spin
at the bottom of the conduction band as illustrated in
Fig. 5. This picture reminds us of the band structure of
the Hubbard gap. Clearly, when €, is deep, the ground-
state energy is well approximated by the ferromagnetic
model in column B. We also point out that if the position
of g, is well above €4, the ground state is degenerate
with respect to its momentum for U =0.

In Fig. 6 we have plotted U, vs 1/N for ¢,=—4 and
—3. We obtain finite values of U, for £, <g, in the limit
N=o. We denote the critical value of €, by £,.(U) for
finite U cases. In Fig. 7 we show ferromagnetic regions in

TABLE 1. Comparison of the ground-state energy for
N,=N+1, V=0.2,and U= 0. In column A we show energies
for U =0 and in column B we show those obtained by the fer-
romagnetic model where the lower bands is filled with up-spin
electrons and we add one down spin at the bottom of conduc-
tion band €.

N £f Exact A (U=0) B (ferro.)
4 0.0 —4.579 —4.6396 —4.4396
—1.0 —7.139 —7.1926 —7.1288
—2.0 —10.2736 —10.4594 —10.2496
6 0.0 —8.214 —8.2322 —6.1937
—2.0 —14.330 —14.5673 —14.3136
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FIG. 4. Ferromagnetic regions in the e,-V plane for
N,=N+1 and t=1. g ’s are plotted for N =4, 5, 6, and 7
(from the top) with the periodic boundary condition. Solid line
shows the critical line in the limit N = «, below which the
ground state is ferromagnetic.

the e,— U plane for N,=N +1. We observe the phase
transition at U =U, if —¢, is large enough to be compa-
rable to the order of the bandwidth.

Let us turn to the 1D frustrated Anderson lattice
shown in Fig. 1. We present €. for several values of Vin
Fig. 8. Extrapolated values of €4, in the limit N = oo are
finite as shown in Fig. 9, leading to an existence of the
ferromagnetic ground state. This ground state is de-
scribed in a manner similar to the original Anderson lat-
tice; localized electrons are aligned ferromagnetically and
one electron is at the bottom of the upper band E;" ~¢,.

Our theorems are valid even if there are ferromagnetic
intersite Ruderman-Kittel-Kasuya-Yosida (RKKY) in-
teractions because off-diagonal elements are still negative.
However, antiferromagnetic RKKY interactions violate

Upper band

\4\.;‘__’__4:_,__1‘ Lower band

FIG. 5. Schematic illustration of the band structure in the
ferromagnetic region.
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FIG. 6. Critical values U, vs 1/N for N,=N +1. Parame-
ters are £, = —4 (circles) and —3 (squares), and V' =0.2 (¢ =1).

the negativity and thus the condition of the theorem is
not satisfied.

B. 2D CuO, plane with one-hole doping
Let us turn to investigate the three-band Hubbard

model in Eq. (1.2). This model can be regarded as a vari-
ant of the 2D frustrated Anderson lattice model. In this

€
fc
0.1 U o2
o s 1
_2_
!
]
1
1 1
1
]
1
-4 "";',‘ Ferromagnetic
1
1
L
(R
FIG. 7. Ferromagnetic regions in the &,-U plane for

N,=N +1 and V=0.2 (¢t =1). Dashed lines show critical lines
for N=4, 5, 6, and 7 (from the top) and the solid line represents
that in the limit N=oo.
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fc
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FIG. 8. Critical values of €, vs 1/N for the frustrated An-
derson lattice and N,=N +1. Parameters are as follows:
V' =0.5,0.2, and 0.1 (from the bottom) in units of ¢.

section we use the usual hole notation found in the litera-
ture.” The undoped system has an intrinsic hole at each
Cu orbital, exhibiting a strong antiferromagnetic correla-
tion. An extra hole, doped mainly at the O p, orbital, is
considered to couple strongly with the intrinsic hole at
the Cu d orbital.

In Fig. 10 we show the phase diagram of the ground
state with one hole doped into the Cu, Oy cluster in the
t,q VS t,, plane. Parameters are A=3.6 and U =10. We
have found two types of states depending on parameters
for the periodic boundary conditions. As long as t,,/1,,
is small, the one-hole ground state becomes S =1/2 be-
cause Cu spins and O holes are strongly mixed due to the
hybridization term. In this region, the ground state is de-
generate with respect to its total momentum as (7,0) and
(0,7).1° Now let us discuss the effect of b If 2, /1,4 in-
creases beyond a threshold, the ground state turns out to
be a new state with the spin eigenvalue S =3/2 and the
total momentum (0,0). This state can be regarded as the
(incomplete) ferromagnetic state discussed previously in
this paper. We can easily imagine a picture where a
doped hole is moving in the ferromagnetic background of
Cu spins. If one of the boundary conditions is changed
into an antiperiodic one, the total energy is stabilized for
the periodic boundary condition at the region with the
large values of 7,; and ¢t,,, giving the ground state with
S =1/2 and the momentum of (7, 7/2).

Figure 11 represents schematically the electronic struc-
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FIG. 9. Ferromagnetic region in the €..-¥ plane for the frus-
trated Anderson lattice where N,=N +1 for N=4, 5, 6, and 7
(from the top).

ture of the high-spin state. The doped hole forms a local
singlet with an intrinsic hole at the Cu site and other
holes at Cu sites couple ferromagnetically among them.
The ground-state wave function is a superposition of
configurations with various locations of the local singlet.
In each configuration the wave function of the doped hole
is isotropic around the localized center at the Cu site.
We may call this singlet the Zhang-Rice singlet!! al-
though the background is ferromagnetic. Our local sin-
glet has a tail delocalized to neighboring O orbitals.

1.5

1.0

top

0.5

0 0.5 1.0 1.5 2.0
tpd

FIG. 10. Phase diagram of the ground state in the case of
one-hole doped into the Cu,Os cluster in the #,,-¢,, plane. The
ground state has three regions with different total momentum Q
and spin S. Qr and Qy denote (0,0) and (1,0), respectively.
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FIG. 11. Schematic representation of a doped hole at p, or-
bital in the weak-hybridization case.

IV. DISCUSSION

In summary, by exact methods we have shown that the
ground state of the Anderson lattice model is incomplete-
ly ferromagnetic with S =(N —1)/2 when N,=N +1, if
the level of f electrons is deep enough, i.e., e, <e;.. The
critical level €4 appears to be of the order of the band-
width. Our discussions essentially depend on the
Perron-Frobenius theorem of the matrix analysis. We
have obtained exact values of €. by numerical diagonali-
zations in small clusters and extrapolating them to
infinite systems N — 0. If £, >>€,., the ground state is
degenerate, as we would expect for the noninteracting
case. Our theory predicts a ferromagnetic transition as
the intra-atomic Coulomb interaction is increased or the
localized level e is decreased. This indicates that a tran-
sition to an insulating magnetically ordered ground state
will occur for e, <eg, or U > U, at quarter filling in the
limit of infinite N. Thus, the ferromagnetic region exists
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near the insulating phase. Please note that our results in-
dicate an example of itinerant electron ferromagnetism.'?
We have also shown that frustrated systems form an in-
complete ferromagnetic order although the Perron-
Frobenius theorem never applies to such systems.

In the 2D CuO, model with one-hole doping, the
high-spin state shows up as the ground state in the ?,;-7,,
plane. In our opinion this state can be recognized as the
ferromagnetic state discussed throughout the paper. In
the case where the hybridization f,; dominates over
direct p-p hopping, ¢,,, the ground state with § =1/2 is
degenerate with respect to its momentum, which agrees
with the predictions of the noninteracting band picture.
If ¢, is not so large, the ground state turns out to be fer-
romagnetic with the spin quantum number S =(N —1)/2
and the momentum (0,0).

Our ferromagnetism has the same origin as that of the
Nagaoka theorem!? for the single-band Hubbard model.
The ferromagnetic state is the most favorable to gain ki-
netic and hybridization energy. Our results discussed
here are valid for finite U although the Nagaoka theorem
is rigorously applicable only in the limit U— . Here let
us comment that several ferromagnetic rare-earth com-
pounds have been reported in a long history of study on
the dense Kondo system,* for example U;As, (Ref. 14),
CeSi,_,, and CeRh;B,. There may be a possibility that
ferromagnetic transitions occur based on our program.
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