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Halogen-bridged transition-metal chain compounds have recently emerged as an important class
of low-dimensional electronic materials with strong electron-lattice and electron-electron interac-
tions. We introduce a many-body model for such materials which is quantitatively successful for
highly valence-localized (strong charge-density-wave) members of the class, e.g. , PtCl with various
ligand structures. The model introduces nearest-neighbor Coulomb attraction and metal ion-ion
electrostatic repulsion directly rather than through a linear Peierls-Hubbard Hamiltonian. These
interactions have the efFects of (i) modifying the on-site orbital energies, (ii) generating an efFective
anharmonic intrasite electron-lattice coupling (leading to the formation of a charge-density-wave
even if the intersite electron-lattice coupling is weak), and (iii) acting as an efFective anhormonic
elastic force between neighboring metal and halogen atoms. The stoichiometric ground state and
various defect states (polaron, bipolaron, kink, exciton) are studied within this framework by com-
puting their optical absorption, Raman, and infrared spectra: The results agree well with available
experimental data. Buckling of Cl atoms out of the chain axis in certain PtCl compounds is pre-
dicted to be important in order to obtain the observed Raman frequencies for electron polarons and
bipolarons. Finally, a strong "template" effect is discussed by comparing two PtCl materials with
different ligands and counterions.

I. INTRODUCTION

The chemical and physical properties of low-
dimensional, molecular solids have been the subject of
intense study in recent years, both because of the in-
trinsically interesting properties of the materials and be-
cause of their potentially important technological appli-
cations. These materials have in common both low di-
mensionality and competing electron-phonon (e-ph) and
electron-electron (e-e) interactions, leading to a vari-
ety of broken-symmetry ground states (e.g. , charge- and
spin-density waves, superconductivity) and related meso-
scopic ordering. Examples of such materials are the
high-temperature superconductors, organic superconduc-
tors, conducting polymers, charge-transfer salts, charge-
density-wave materials, and the materials discussed here,
halogen-bridged mixed-valence transition-metal linear-
chain complexes, hereafter referred to as MX chain com-
pounds; see Refs. 1—5 for extensive discussions of MX
materials.

Certain MX chain compounds have been of inter-
est to chemists for many decades as strongly dichroic
materials. A typical crystal consists of an array of linear
chains of alternating metal (M) and halogen (X) atoms;
with ligands attached to the metals, and in some cases
counterions between the chains to maintain charge neu-
trality. Symbolically, the MX complex can be repre-
sented by [MP sL4][M + X2L4]Y4, where X is Cl, Br,
I; M is Pt, Pd, or Ni; and b denotes the deviation of
the valence of the transition-metal ions from the average

valence p; L is a ligand molecule such as X, ethylamine,
ethylenediamine (L2), or cyclohexanediamine (L2); and
Y is a counterion such as X or C104, present if the chains
are not neutral. In the ground state of the Ni materials
there is no (or extremely weak) observed charge dispro-
portionation (b 0) or lattice distortion. In the ground
state of typical Pt and Pd materials, the strong valence
dimerization of the M sublattice is stabilized by a sim-
ilarly strong dimerization of the X sublattice displace-
ment. In other words, the X atoms are displaced from
the midpoint between neighboring M atoms, giving rise
to charge disproportionation (mixed valence) on the M
atoms, e.g. , Pt or Pt instead of the average P t
Some examples include the ethylenediamine (en) com-
plexes, [Pt(en) 2] [Pt(en) 2X2](C104)4, hereafter referred
to as PtX (X = Pt, Br, I). The structure of the PtC1 com-
plex, shown in Fig. 1, is representative of the MX class.
The major differences between members of the class are
(i) the extent of lattice distortion, with PtC1, PtBr, and
PtI typical of MX chains ranging from strongly to weakly
distorted limits, and (ii) whether the chains are charged,
as in the above examples (with Y=C104 ), or neutral, as
is the case for [Pt(NHs)2Br2][Pt(NHs)2Br4].

Microscopic modeling of strongly correlated electronic
materials such as the MX class or those others listed ear-
lier has the aim of utilizing a minimal many-body Hamil-
tonian which focuses on the essential electronic orbitals
and lattice degrees of freedom needed to explain ground-
state and excited-state properties. Ideally, input for the
model many-body Hamiltonian parameters is taken from
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FIG. 1. Structure of the Pt2C materials,
[Pt(en)2][Pt(en)2C12](C104)4, obtained by x-ray diffraction
[S.C. Huckett (unpublished)].

ab initio calculations and then numerical or analytical
techniques are applied to the many-body Hamiltonian
to predict experimentally measurable quantities (optical
absorption, phonon spectroscopy, etc.). In reality, few
complex materials have permitted closure of this itera-
tive modeling strategy. The MX class, however, is prov-
ing an exception, and therefore is an important class of
materials from the point of view of many-body modeling
strategies for complex electronic systems more generally.
In particular, we have introduced earlier an extended
two-band Peierls-Hubbard one-dimensional model. This
has been able to describe successfully much of the sys-
tematic structural, electronic, and phonon properties not
only in the stoichiometric (homogeneous) ground states
but also (using the same model parameters) for a variety
of intrinsic defect states induced by chemical or photo
doping namely, solitons, polarons, bipolarons, and ex-
citons. This model has proved to be widely successful
in that it gives a good account of systematic variations
in properties of all PtX materials, as well as the experi-
mentally observed segment length dependence of the res-
onant Raman modes for the mixed-halide PtBr Cli
(Ref. 5) and PtI Clq (Ref. 6) compounds. It also
predicts an observed photo-induced charge-transfer ef-
fect in PtBr Clq, and can explain variations in ESR
spectra.

An exception to the above near-quantitatively mod-
eled materials are the very valence-localized MX exam-
ples such as the PtCl family. In these cases, the stoi-
chiometric materials are described quantitatively, but
the defect states cannot be predicted satisfactorily with
the same Hamiltonian parameters for both electronic and
phonon properties. We propose here that the reason is
the strongly ionic limit of these members of the MX class
(analogous to a "one-dimensional NaC1" ionic crystal and
color centers therein). In this regime our earlier model
assumptions of a linear spring constant and electron-
lattice interactions, although typical of current literature
for Peierls-distorted materials, are inadequate to describe

the effects of large charge redistributions around spatially
localized defect states. The fact that PtCl compounds
have large Peierls' distortions (e.g. , 10%%up of the lattice
constant) already suggests the possibility of anharmonic
effects. One major consequence is the large shift of Ra-
man phonon &equencies for polaron excitations, relative
to the homogeneous stoichiometric material's Raman fre-
quency. These considerations lead us to return here to
a more fundamental description of the anharmonic ef-
fects in PtCl, in terms of explicit Coulomb attraction and
electrostatic repulsion forces. Since the linear approxi-
mation is so widely used in Peierls-Hubbard modeling of
whole classes of novel electronic materials (above), this
lesson for PtCl has wider significance than the specific
examples discussed here.

In valence-delocatt'zed materials (e.g. , PtBr, PtI), our
generalized description is equivalent to our previous lin-
ear Peierls-Hubbard tight-binding model (see the Ap-
pendix). However, for the ionic limit, there are minimal
band screening effects, so that a linear spring constant
between neighboring Pt and X is insensitive to the local
charge environment. Then local Raman modes associ-
ated with defect states (polarons, excitons, bipolarons,
etc.) are hardly changed in frequency from the homo-
geneous chain: This is contrary to experimental data
e.g. , for [Pt2 (en) 4C12] (C104)4 Raman frequencies for elec-
tron and hole polarons are assigned at 263 cm and 287
cm, respectively, compared with the uniform chain
Raman frequency of 311 cm

As pointed out by Bulou et al. , because of the sig-
nificantly changed local charge distribution, the polaron
states of PtCl are associated with locally changed effec-
tive elastic constants (i.e. , in a pure lattice dynamical
model), different from that of a uniform chain. Using
pure lattice dynamics for a small chain segment, and
assuming an exponentially decaying electrostatic repul-
sive force between neighboring Pt and Cl atoms, these
authors calculated the elastic constants of various de-
fect states by fitting the Raman frequencies. However,
this approach is unable to determine electronic properties
(e.g. , optical absorption), and to impose self-consistency
between the electronic and vibrational fields.

To address these self-consistency issues, we extend our
previous model by not assuming a harmonic nearest-
neighbor spring constant, but introducing instead an
ion-ion repulsive force plus the Coulomb attraction be-
tween neighboring Pt and Cl atoms. As we will see,
this leads to effectively anharmonic elastic and electron-
lattice interactions corresponding to modifications of
the frequently used extended linear Peierls-Hubbard
model. These modifications are essential for quantitative
modeling of polaronic defects in strongly ionic materi-
als. We first determine the model parameters by fitting
the ground-state data (dimerization, electronic absorp-
tion, Raman), and then use the same set of parameters
to accurately predict the Raman frequencies (as well as
electronic properties) of various defect states. We will
also see that a buckling of Cl atoms out of the axis of the
chain around the electronic defect is necessary to achieve
the observed relative ordering of Raman frequencies for
electron and hole polarons (and bipolarons).
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Another important consideration is the issue of a re-
cently observed "template" effect. Namely, the MX
family exhibits a very large tunability in electronic prop-
erties by changing not only M and X, but also the ligand
and counterion, which control mean chain lattice con-
stants, i.e., acting as an efFective internal pressure. To
illustrate this effect, we will show below that two PtCl
materials, [Pt2(en)4C12](C104)4 and [Pt2(chxn)4C12]C14
(see below for meanings of ligands en and chxn), have
quite different charge-density-wave strengths, refIected
in their corresponding ratio of long and short Pt-Cl
bond lengths, intervalence charge-transfer (IVCT) energy
gaps, and Raman phonon frequencies.

This paper is organized as follows: In Sec. II, our
model Hamiltonian is presented; in Sec. III, parame-
ters are chosen to fit the ground-state properties for the
two PtCl materials, and the template effect is brieBy dis-
cussed; in Sec. IV, using the parameters found in Sec.
III, various polaronic defect states are studied, includ-
ing the difFerence between electron and hole polarons in
terms of the presence and absence of buckling, respec-
tively. Finally, Sec. V contains concluding comments.

II. MODEL

Based on the ideas in Sec. I, we use the following
Hamiltonian for a single MX chain (with effective pa-
rameters in a three-dimensional MX environment):

~ = ) ( [
—&o + n(x;~z —x;)](c,~c;+z ~ + c +x ~c; ~)

2)CJ

+e;n;~)+) Un;gn, g

+ V. ' ' +(n; —Z;) (n, +g —Z;+, ) p
B, ;+g R,-,.+~

.(p2
+ ) * + —K, (x,+g —x, g)(2M, 2

* ' '
)

Here, c, and c, are the electron creation and annihilation
operators at site i with spin 0, and n; is the correspond-
ing number operator (i refers to both M and X sites).
to, o., e, , U,. are the electron transfer integral, intersite
electron-lattice coupling, on-site energy (= eo for Pt and

As will be seen below, y, are predicted to be zero for
ground, hole polaron (bipolaron), and exciton states.

Compared with our previous model, the Hamiltonian
(1) omits two terms (see Ref. 4 for notation): the uniform
spring constant, KMx, term (we still keep the second-
nearest-neighbor K, term which, for simplicity, we take
nonzero only for KMM) and the intrasite electron-lattice
coupling, P, term. Instead, we have explicitly included a
nearest-neighbor Coulomb term in (1):

~ (n, —Z, )(n;+g —Z,+~)
C )

i+1 &i++
and an electrostatic repulsion term with power-law de-
pendence (other model dependencies are equally accept-
able):

P
(x,+g —x, + a)" ' (4)

The structure of a single MX chain, including the pos-
sible buckling of X atoms, and associated model param-
eters is shown schematically in Fig. 2. In the Coulomb
term, Eq. (3), Z, is the positive ion charge at site i
(i.e., excluding the valence shell described by n; ), which
is ZM ——4 for Pt and Z~ ——1 for Cl. Since PtCl is
very valence localized, n~~ is always near 2, and np& is
always near 2 for Pt (reduced Pt) and to 0 for Pt
(oxidized Pt). Therefore, the numerator in the Coulomb
term is always negative, yielding an attractive interac-
tion. We also note that this term, proportional to V„
is the bare nearest-neighbor Coulomb interaction. Con-
sequently, there is an upper limit for the parameter V„
namely 14.416 eV A. , i.e. , the unscreened Coulomb energy
for two-point unit charges separated by 1 A.

The Hamiltonian (1) is to be solved self-consistently
with the equation minimizing the total energy with re-
spect to ion positions in an adiabatic sense. The equa-

—eo for Cl), and on-site Coulomb (Hubbard) strengths
(UM and Ux), respectively, and a is the average Pt-Cl
bond length. x; is the position of the ith atom, and p;
is its conjugate momentum. The distance between two
neighboring atoms, with both parallel (x) and perpendic-
ular (y) to the chain directions being included to allow
for the possibility of buckling is

&", +i = V'(x*+i —*'+~)'+ (~'+~ —~')' (2)

Ux
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FIG. 2. Schematic of the MX chain show-
ing the model parameters, buckling of X
atoms, and a CDW distortion (see text for
notations).
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tion minimizing energy is determined by taking the first
derivatives of the total energy from the Hamiltonian (1)
with respect to each x, and equating these equations
to zero. The total energy from (1) includes elastic and
electronic contributions and is determined by diagonaliz-

ing the electronic components for a given distribution of
ion positions x, . The electron-electron interactions are
treated in a mean-field approximation (MFA). In the
case of the homogeneous (stoichiometric) chain, there is
no buckling, and the equation minimizing the energy is

, +V ' * ' ' —2o(c,c,)+K, i(x, —x; 2)
pv (n; —Z;)(n, +, —Z;+, )

x;+i —x; + a "+' x,+i —x, + a '

—V,
' * ' ' + 2n(c, c, i) —R;+i(x;+g —x;) = 0 . (5)

yv (n; —Z, ) (n, i —Z; i)
x; —x, i+a "+i x, —x, i+a 2

Equation (5) constitutes a set of K (the number of chain
sites) coupled nonlinear equations. This set of equations
is also valid in the hole doping (inhomogeneous) case
where no buckling of the chain is predicted.

For the stoichiometric case, the lowest-energy self-
consistent solutions are the dimerized lattice —charge-
density-wave ground states described in Sec. I. Introduc-
ing a~ and a, as the long and short Pt —Cl bond lengths
in such a dimerized ground state, and ti and t2 as the
corresponding electron transfer integrals between neigh-
boring Pt and Cl atoms for the long and short Pt—Cl
bonds, respectively,

tl —o'(cptn cC1) + c c ~ (6)

p2 ——(npt&c ) —Zpt

Ps —(nptiv ) Zpt (10)

where ( ) denotes the expectation value over the mean-
field approximation (MFA) solution e.g. , (npt) means
the expectation value of electron charge on a Pt site:
nC1 = (cClcCi), etc.

The parameters p and v in the ion-ion attraction term,
Eq. (4), are determined by fitting stoichiometric ground-
state properties. In this case, Eq. (5) yields

ln[(ti —pip2V, /al )/(t2 —pipsV, /a, )]
ln(a. /al)

(ti —pip2V, /a, )
p =

m+1
GII

(12)

Now let us investigate the consequences of the com-
bined interactions of Eqs. (3) and (4). First, they rede-
fine the on-site energy, eo. The efFective energy splitting
(2eo) between the M and A bands in the valence local-
ized limit (i.e. , to n 0) for the undimerized chain

t2 = o. (cp tvccl) + c.c.t

and the total Pt or Cl charge expectation values defined
as [see Eq. (3)]

pl = (ncl) Zcl

can be easily derived from the Hamiltonian (1) as

(ZPt Zcl + ncl nPt)
2eo 2eo + 2V

Replacing Zpg = 4, Zg] = 1, nc~ = 2, and npq ——1, we
find that in order to have a physically reasonable (4—6
eV) location of the Pt band above the Cl band, we need
to choose a relatively large negative eo for the value of
V, chosen in Table II: Only eo is physically meaningful.
Note that this M/I band separation is slightly different
from 2eo defined in the Appendix.

Second, we can define a bare intrasite electron-lattice
coupling strength (analogous to P in Ref. 4) by taking
the first derivative of the energy contribution (3) with
respect to x, and identify the coefIicient in front of the
electron density operator n; (see the Appendix). In this
sense, Eq. (3) defines an anharmonic extension of intra-
site electron-lat tice coupling.

Third, the bare nearest-neighbor elastic constant,
KMx (i.e., with renormalization by electron-phonon or
electron-electron interactions), is given by taking the sec-
ond derivative of the energy terms (3) and (4) with re-
spect to x, , yielding

(n, —Z;)(n, +, —Z,+, )
M~ 2 c

(x;+i —x, + a)s

+ pv(v+ 1)
(x;+i —x;+ a) +' (14)

We see that the combined electrostatic and Coulomb in-
teractions, (3) and (4), provide an efFective bare elas-
tic constant, but again anharmonically extended with re-
spect to KM~ introduced in Ref. 4.

Having determined the mean-field lattice, charge and
spin distributions self-consistently (for either homoge-
neous or inhomogeneous cases, Secs. III and IV), linear
fluctuations around these mean-field states can then be
calculated numerically and electronic optical absorption,
infrared and Raman phonon spectra, and other response
functions calculated at a random-phase-approximation
(RPA) level see Refs. 4 and 14 for details. In partic-
ular, for polaron, soliton, and exciton self-trapped de-
fects there are local "shape oscillations" which give rise
to electronic absorption within the IVCT gap, and corre-
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sponding infrared and Raman modes shifted in frequency
relative to those of the homogeneous chain.

III. STOICHIOMETRIC GROUND STATES AND
THE TEMPLATE EFFECT

In this section we consider stoichiometric (i.e., homo-
geneous) ground states. Parameter values (to, n, eo, UM,
U~, V ) for the Hamiltonian (1) are chosen by Btting to
experimental data as follows. We first diagonalize the
Hamiltonian (1) and then insert the obtained electronic
spectrum into the energy minimization equation (5) to
obtain the corresponding lattice positions. After iterat-
ing these steps to convergence, we evaluate the mean-field
IVCT energy gap and dimerization magnitude. We then
use the RPA to compute the Raman phonon frequency.
We fit these three theoretical predictions to the available
experimental data by a least squares fitting method.
Note that p, and v are determined from Eqs. (11) and
(12). Also we have taken a KMM value suggested from
experimental literature and consistent with our previ-
ous model parametrization . In addition we constrain
the separation of M and X bands to the range of 4—6
eV, as explained in Sec. II. Since we have more model
parameters than input experimental data, and the set
of relationships is nonlinear, we do not expect that the
parameters set is unique. Final determination will de-
pend on additional experimental data becoming available
(charge-densities, infrared modes, ESR, etc.). However,
the parameters are chosen with physically reasonable val-
ues to satisfy the above constraints, and are capable of
explaining systematic variations for self-trapped defects,
as shown in Sec. IV.

We have used the above procedure to investigate
the stoichiometric ground-state properties of two PtCl
materials, [Pt2(en)4C12](C104)4 and [Pt2(chxn)4C12]C14.
These two materials differ only by ligand [en (ethylene-
diamine) and chxn (cyclohexanediamine)] and a counter-
ion. As pointed out by Scott et al. , difFerent ligands
and counterions bring about major changes in ground-
state properties, primarily because of the change of the
average lattice constant a. Table I shows the experimen-
tal data available for their stoichiometric ground-state
properties: Peierls-distortion strength (defined as the ra-
tio of the short to long Pt-Cl bond length), IVCT energy
gap, and Raman frequency vi. These properties exhibit a
consistent trend as the Peierls-distortion strength weak-
ens from the former to the latter material. Using the
approach described above to fit the experimental stoi-

chiometric ground-state properties shown in Table I, we
found two sets of parameters for these two materials, as
summarized in Table II.

From Table II, the template effect is very clear. The
fact that both to and n for [Pt2(en)4C12](C104)4 are very
small and the Coulomb V coeKcient is large, suggests
that indeed it is a very valence-localized, strong charge-
density-wave (CDW) material. On the other hand, for
[Pt2(chxn)4C12]C14, both to and n are larger and V, is
smaller. This indicates that the latter is a weaker CDW,
less valence-localized material, as anticipated. The same
trend is clear from the charge distributions we calculate
in our model with the parameter sets in Table II. The
stoichiometric charge distributions are 1.98, 1.90 (Pt );
0.04, 0.40 (Pt ); 1.99, 1.85 (Cl), for the localized and
more delocalized cases above, respectively.

IV. DEFECT STATES

In this section, we discuss the self-trapped de-
fect states formed by adding electrons or holes into
[Pt2(en)4C12](C104)4 and adding relaxation of electronic
and lattice fields. Removing or adding an extra electron
from a stoichiometric PtX chain forms a hole or electron
polaron, respectively. Exciting an electron from the top
of the filled majority-Pt valence band into the bottom of
the empty conduction band and allowing relaxation can
result in a self-trapped exciton, either singlet or triplet
depending on spin configuration. Solitons are formed in
an MA chain of length 4n+2, where n is an integer. They
can be neutral or negatively or positively charged. We
use the same procedure described earlier to evaluate lat-
tice distribution, electronic absorption, and phonon prop-
erties following from the Hamiltonian (1), with the same
model parameters as for the homogeneous stoichiometric
chain (Sec. III). Depending upon the choice of material,
the locally changed charge-density associated with de-
fect states may or may not extend over a long segment of
the chain. Since PtCl is a very localized CDW material,
any self-trapped defect is also expected to be confined
within very few PtCl units. Due to the locally changed
charge-density and Pt-Cl bond lengths, the elastic con-
stant K~bx [Eq. (14)] also changes locally, resulting in
strong changes in Raman local mode frequencies.

We note one further interesting feature. Without al-
lowing any buckling, the calculated electron polaron Ra-
man mode would have higher frequency than that for the
hole polaron. This is because removing a charge (tend-

TABLE I. Experimental data and theoretical prediction (in parentheses), using parameters in
Table II, for the ground-state properties of [Pt2(en)4C12](C104)4 (a) and [Pt2(chxn)4C12]C14 (b).
The experimental long and short Pt-Cl bond lengths are input to the theory. The Peierls-distortion
strength ( is defined as the ratio of short and long Pt-Cl bond lengths (therefore, smaller ( means
stronger Peierls distortion).

Pt' -Cl (A)
(a) 2.327
(b) 2.324

Pt"-Cl (A)
3.101
2.834

CDW strength
0.75
0.82

IVCT (eV)
2.5 (2.50)
1.6 (1.58)

Raman frequency (cm )
311 (307)

280 (279.6)
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TABLE II. Parameter sets for [Pt2(en)4C12](C104)4 (a) and [Pt2(chxn)4C12]C14 (b). Values of y, and v are deduced from
Eqs. (11) and (12). K„=0.55 eV/A is used to fit electron polaron Raman data for [Pt2(en)4C12](C104)4 in Table III.

tp (eV)
(a) O.O6

(b) 1.6

ep (eV)
-17.79
-8.6

n (eV/A)
0.0187

1.8

L M (eV)
0.343
0.2

Ux
0.0
0.4

V, (eV A)
13.26
7.82

KMM (eV/A )
2.5
2.5

3.41
4.57

P
119.3
148.8

ing to contract Pt -Cl bonds) will soften the local elastic
constant more than adding one (tending to expand the
Ptiv-Cl bonds) will. However, if we allow the Cl atoms
on and near the electron polaron center to slightly buckle
out of the chain, we reduce the electron polaron Raman
&equency below the hole polaron's, consistent with ex-
periment. Such buckling is physically reasonable for an
electron polaron.

To model buckling, we introduced a further parameter

into the Hamiltonian (1), namely a (harmonic) elastic
constant, K„(see Table II) associated with the move-
ment of Cl in the direction perpendicular to the chain.
K„characterizes effects associated with the ligand and
counterion environment.

The self-consistent equation (5) needs to be modified in
the case of buckling, and one more self-consistent equa-
tion is needed in the y direction. The set of coupled
equations are then

pv(x, +i —x; + a) ~ (n, —Z, )(n,+, —Z,+,)(*,+, —*,+ a+ V, s
—2o. c+ic;

',.-+1 i,i+1

pv(x; —x, i+ a) (n; —Z, )(n; i —Z;, )(x, —x; i+ a) +2cr(c, c, i)+K, , (x, —x;,) —K;+i(x;+, —x, ) = 0,
2/2 1 272 1

(15)

ivy, +i (n; —;)(n,+i —,+i)y,+i, , ivy; (n; —Z;)(n, i —Z; i)y;+ c ~s + ytya ye+i) ~+2 c ~s + yly; —y; i ——0 .
i,i+1 i,i+1 2)2 1 i,i—1

Buckling of course costs elastic energy. However, more
energy is gained by suppressing an expansion in the chain
direction which we find to occur if buckling is not al-
lowed. The buckling occurs only if K„ is small enough.
We found that there is a threshold value for K„(in the
case of [Pt2(en)4C12](C104)4 which we studied, this value
is about 0.7 eV/A. 2), above which there would be no
buckling at all. This effect may be relevant for pres-
sure studies. The threshold value depends upon the type
of defect. For example, for an electron bipolaron it is
higher than that for an electron polaron. We also note
that we find no buckling for exciton states (triplet or sin-
glet). The value of K„we used to fit the experimental
[Pt2 (en) 4C12] (C104)4 electron polaron Raman frequency
is 0.55 eV/A (Table II). The buckling found for the elec-
tron bipolaron is of course greater than for the electron
polaron using the same value of K„.

In our calculation, we can also constrain an electron-
doped chain to be unbuckled. This results in the chain
being more extended in the chain direction than the buck-
led chain, leading to a higher total energy (see discussion
below). Figure 3 contrasts the difference of lattice con-
figurations around the center of an electron polaron for
buckled (a) and unbuckled (b) chains.

Table III summarizes our calculations ' of the elec-
tronic optical absorption and Raman phonon frequencies
for various self-trapped defects electron and hole po-
larons and bipolarons, singlet and triplet excitons, neu-

FIG. 3. Predicted lattice positions of Pt (o) and Cl (o)
atoms, excess charge density (solid line), and excess spin den-
sity (dashed line) near an electron polaron for buckled (a)
and unbuckled (b) chains in [Pt2(en)4Clq](C104)4. Buckling
out of the chain in (a) is 0.06 A, but exaggerated here ap-
proximately three times. The unbuckled chain in (b) is more
expanded ( 0.005 A ) than the buckled chain in (a).
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TABLE III. Characteristic Raman phonon frequency, electronic optical absorption peak energies
for electron-hole polaron, electron-hole bipolaron, singlet-triplet excitons, neutral-positive-negative
solitons. Parameters are taken from Table II.

Type of defect

Electron polaron P
Hole polaron P+

Electron bipolaron B
Hole bipolaron B'++

Singlet exciton
Triplet exciton

Neutral soliton S
Positive soliton S+
Negative soliton S

Raman frequency

263 cm
288 cm
260 cm
290 cm

285, 252 cm
284, 257 cm

282 cm
290 cm
276 cm

Optical absorption peak energy

0.6, 2.08, 2.34 eV
0.6, 1.75, 2.38 eV

1.72, 2.15 eV
1.78, 2.22 eV

0.55, 1.55, 2.14 eV
0.67, 1.6, 2.38 eV

2.25 eV
2.15 eV
1.85 eV

Buckling

Yes, 0.06 A

No
Yes, 0.1 A.

No
No
No

Yes, 0.09 A
No

Yes, 0.11 A

tral and charged solitons. Figures 4—7 show their corre-
sponding predicted optical absorptions. We restrict our-
selves to the buckling of Cl atoms only on or near the
center of the electron defect in the calculation reported
in Table III.

We emphasize several significant points from our cal-
culations.

(i) The optical absorption peaks below the IVCT gap
(2.5 eV) of a uniform chain shown in Table III and
Figs. 4—7 are associated with specific intragap local de-
fect states.

(ii) We notice that the Raman frequency for a bipo-
laron is not very different from the corresponding po-
laron. This is due to compensating changes in charge
and lattice relaxation in Eq. (14), and may make exper-
imental differentiation subtle.

(iii) One direct consequence of PtCl being highly va-
lence localized is that the electronic Pt band is very flat.
This remains to be adequately tested by experiment. Op-
tical absorption data suggest a conduction bandwidth of

about 0.5 eV. However, the onset may easily arise from
exciton or other defect absorption (Table III) as well as
disorder and quantum lattice fluctuations.

(iv) More experiments are needed to confirm our as-
signment of Raman modes for bipolarons and excitons.
ESR measurement may provide important information in
this direction.

(v) We have calculated the energy difference between
the buckled and unbuckled electron polaron, and found
it to be of the order of 100 K. We can anticipate thermal
mixing of the two configurations to be reflected in exper-
iments above this characteristic temperature: tunneling
between degenerate buckled states should occur at lower
temperatures. Of course, states with (discrete) rotations
of the buckled configuration around the chain axis can be
expected, and must be included in a complete tunneling
description.

Finally, we should point out that PtBr and PtI in
the MX family may also be studied within the present
model. However, we reiterate that in these much more
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FIG. 4. Predicted optical absorption of hole polaron (P+)
and bipolaron (B++) in [Ptq(en)4C12](C104)4.

(ev)

FIG. 5. Predicted optical absorption of the electron po-
laron (P ) and bipolaron (B ) in [Ptq(en)4C12](C104)4.
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FIG. 6. Predicted optical absorption of triplet and singlet
excitons in [Pt2(en)4C12](C104)4.

delocalized CDW materials, the deviation from our pre-
vious linear Peierls-Hubbard model is unimportant, as
shown in the Appendix.

V. CONCLUSION

In this paper, we have discussed the Coulomb and elec-
trostatic interactions in strongly valence-locahzed (e.g. ,
PtC1) materials. In contrast to the linear elastic force and

I I I I I II I I
]

I I I I

electron-lattice coupling in our previous extended Peierls-
Hubbard model, these interactions generate effective an-
harmonic elastic force and intrasite electron-lattice cou-
pling. Two PtCl materials were compared, demonstrat-
ing a strong template eKect. The various polaronic and
self-trapped excitonic defect states were characterized by
computing their corresponding optical absorptions and
Raman frequencies, and good agreement with available
experimental data was achieved using the same model
Hamiltonian and parameter values as for the correspond-
ing stoichiometric material. We found that it is necessary
for the electron polaron and bipolaron to buckle out of
the chain direction to minimize energy, while no buckling
for hole defects or excitons is predicted. This buckling
accounts for the experimentally observed ordering of Ra-
man phonon frequencies for electron and hole polarons.
The explicit inclusion of Coulomb and electrostatic in-
teractions is only essential for describing defect states in
valence-localized materials, such as the PtCl compounds
described in this manuscript. For valence-delocalized
materials, our previous linear Peierls-Hubbard modei is
equivalent to the present one (see the Appendix).

In conclusion, we reiterate the essential need for
an integrated synthesis —microscopic characterization
modeling strategy to achieve predictive control of
strongly correlated electronic materials, such as those
noted in Sec. I. The quantitative success of this strat-
egy, for both stoichiometric ground and doped states in
the class of MX compounds we have discussed here is
very striking, and provides important guidance for novel
electronic materials generally.
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s'
APPENDIX: EXTENDED LIMIT OF

THE MODEL HAMILTONIAN (1)

~ I

Here we show how the Hamiltonian (1) reduces to
our previous harmonic Hamiltonian in the case of weak
dimerization and no chain buckling. This comparison
is especially relevant to highly valence-delocalized MX
materials such as PtI.

First, we expand the distance B, ;+i in the denomi-
nator of the Hamiltonian (1) around the average M-X
bond length a up to second order:

]I

ll
I

Il
Il
I

~

~ ~

~

]
~

I

B, ,+i

We define

1 1 vA; v(v+ 1)E2
+

(& + Q. )v &v &v+1 nv+2

(eV)

0FIG. 7. Predicted optical absorption of neutral (S ),
positive (S+), and negative (S ) charged solitons in
[Ptq (en)4Clq] (C104)4.

A = Z;Z;+, —(c,c;)(c,.+,c,+,).t t (A2)

In the homogeneous undimerized case, A = 2 is a con-
stant independent of i. Our Coulomb and electrostatic
terms for site i are thus given by



48 IONIC INTERACTIONS IN PLATINUM CHLORIDE LINEAR-. . . 6073

VA p, f'VA vp l+ const —A;
i

+
+i,i+1 +i,i+1 a2 go+1 )

1 2
t'2V A v(v+ 1)p)

al/+2 )
(A3)

V,ZM VZM 2VZM V ZM

(a+4) (a+4; g) a ' ' a

(A7)

Therefore, eo is renormalized as

The linear term with 4; is canceled when summing over
i since

2V, (ZM —Zx)
2eo 2eo +

a (AS)

and the on-site electron-phonon coupling is given by
(A4)

2V, A v(v + 1)p+i,i+1 —+MX — +a a + (A5)

The second order term in b„. in Eq. (A3) provides the
elastic constant for an MX bond:

V&x
a2

+c+M
a

(A9)

(A10)

This is a harmonic elastic constant, which is a limit of
Eq. (14) for the undimerized case.

Now consider the electron-phonon interaction. Ex-
panding the coefEcient before the term n; = c,. c; in
Eq. (1) up to the linear order, we have the following.

(i) If i = M site,

V,Zx U Zx 2V, Zx V,Zx
(a+ +') (a+ +'—&)

H = ) (t —nA—,)(c,c;+g + c +,c;).
'i

+(—)ieoctc, —) P;(A, + A; g)ctc;
i

) K; 2 M;. 2 (A11)

Putting together Eqs. (A5) and (A8) —(A10), the reduced
Hamiltonian now reads

(ii) If i = X site,

(A6)
This is precisely the same as our previous harmonic
Hamiltonian.
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