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Delocalized vibrations in classical random chains
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Normal modes of one-dimensional disordered chains with two couplings, one of them assigned
at random to pairs in an otherwise perfect chain, are investigated. We diagonalize the dynamical
matrix to And the normal modes and to study their spatial extent. Multifractal analysis is used
to discern clearly the localized or delocalized character of vibrations. In constrast to the general
viewpoint that all normal modes in one dimensional random chains are localized, we And a set
of extended modes close to a critical frequency, whose number increases with the system size and
becomes independent of the defect concentration.

In his famous paper on vibrations of glasslike disor-
dered chains, ~ Dean stated that when disorder (in any
form) exists in a system the lattice modes are localized.
Since Dean's paper was published, it has been claimed
that unless the chain is ordered, or unless w = 0, all vibra-
tional modes are localized in one dimension. Later on,
in analogy to previous works concerning related vibra-
tional problems, some authors conjectured that electrons
in one-dimensional disordered lattices are also localized.
That is, localization of all eigenstates by disorder in one-
dimensional systems is viewed as an exact statement. In
a series of recent papers, however, Wu, and co-workers
have proposed some discrete (tight-binding) models that
exhibit metal-insulator transitions in spite of their ran-
domness. These authors have shown that when defects
containing a plane of symmetry" are introduced at ran-
dom in an otherwise ordered chain, v K states (K be-
ing the total number of states) remain unscattered by
the disorder and consequently are extended. In addi-
tion, Sanchez and Dominguez-Adame have presented
evidence that a large number of states whose localization
length is greater than the system size arises in contin-
uous (Kronig-Penney) models, in which b functions are
regularly spaced and their strength takes two values, one
of them in pairs at random (dimer defects). As a con-
sequence, in such random systems electronic transport
can take place almost ballistically. In view of these re-
sults, it is a natural question to ask whether classical
vibrational modes in atl random lattices are actually lo-
calized. In this paper we attempt to answer this question
showing a particular random system that presents a set
of delocalized vibrations. We feel that this is a novel re-
sult because, whereas electron dynamics is quantum me-
chanical and tunneling allows for transitions classically
forbidden (roughly speaking, tunneling favors delocaliza-
tion), we are dealing with a purely classical problem it
is well known that energy levels of the vibrating system
can be derived by considering the corresponding classical
problem. Quantum features of phonons appear in their
statistics, not in their dynamics.

n= 1, . . . , N, (1)

where U is the displacement of the nth atom from its
equilibrium position, m is the corresponding mass, and
K denotes the strength of the harmonic coupling be-
tween atoms. We build our model in the following way:
we take all the masses to be the same m = m, and
we allow only two values for K, K, and K', with the
additional constraint that K' appears only in pairs. As-
suming a time harmonic dependence U oc exp(iwt) in
Eq. (1), the stationary equation of motion can be cast in
the following matrix form:

/U. )(K+K(—AKK„g)(U++
i

—
i

K K

= P„(A) (2)

with A = m(u2/K.
Consider now a single defect in which three atoms,

placed at sites I —1, l, and l+ 1, are coupled by strengths
K' between them and by strengths K to the surrounding
lattice. The transfer matrix across such a defect is sim-
ply given by the matrix product Pj+q(A)P~(A)Pj q(A). It
is a matter of simple algebra to demonstrate that at the
particular value A = 2K'/K this matrix product equals,
appart from a constant phase change without physical
relevance, the transfer matrix at any site of the perfect
lattice. The meaning of this result is easy to understand:
There exists a special frequency w, = /2K'/m for which
the reflection coefBcient at the defect vanishes. Since ~
must be below the highest frequency of vibrations in the

A standard way to study the acoustic properties of a
lattice is to consider a nearest-neighbor harmonic chain.
The equation of motion for the N atoms reads

d2U„m„" = K„U„+~+K„jU„g—(K„+K„y)U„,dt2
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perfect lattice tu „=2/It/m, the additional condition
K' ( 2K is required. This result is related to that found
for electrons in tight-binding models containing symmet-
rical defects, where the location in the energy band of
the unscattered states is determined by the vanishing of
the reflection coe%cient at a single defect. " It is worth
mentioning that the special frequency u, is nothing but
the &equency of the longitudinal mode of a single atom
of mass m attached to two springs of constant K' with
Axed ends.

Bearing in mind the above result, we now proceed
to study the localization properties of vibrating systems
when several of such defects are located at random along
the chain. For comparison, we have also studied ordinary
random chains, that is, without requiring the constraint
that K appears in pairs. In addition, we have obtained
results both realizationwise and on average. With no
loss of generality we set K' = 1.5 K, so the special fre-
quency for which the reflection coefficient at a single de-
fect vanishes is u, = /3'/m. For brevity let us denote
A, = mu, /K = 3. Another important parameter in our
model is p, defined as the ratio between the number of
couplings K' and the total number of couplings, which
we set in the range 0.01 up to 0.8.

The localized or delocalized character of the vibrations
has been elucidated by means of multifractal analysis, a
method succesfully used in characterizing electronic wave
functions in disordered samples (see Ref. 9 and references
therein). The amplitude distribution of normal modes
can be characterized by the scaling with the system size of
moments associated to the measure defined in the system
by us. We use the standard definition of those moments
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FIG. 1. Squared atomic displacements for three values of
the frequency, indicated in each plot, in a system of size
N = 5000 with p = 0.2. States become more delocalized
in approaching the critical value A = 3.

Notice that the second moment p2(N) coincides with the
inverse participation ratio (IPR), as introduced, for in-

stance, in Ref. 10. The multi&actal dimension Dq is de-

fined via p~(K) N (& ) ~, for q g I. For localized vi-

brations one finds that Dq vanishes for all q, whereas Dq
equals unity (the space dimension) for vibrations spread-
ing uniformly. In these two extreme cases trivial multi-
fractal spectra are obtained.

We first describe our studies realizationwise. To find
eigenfrequencies and normal modes we directly diago-
nalize the tridiagonal, symmetrical matrix arising from
Eq. (2) with rigid boundaries (U0 ——

Univ+i
——0).ii The

system size was as large as N = 5000. We systematically
found that vibrations are more delocalized in approach-
ing the critical value A . Figure 1 shows the squared
atomic displacements for three difFerent frequencies close
to the critical value A for a system of N = 5000 and
p = 0.2. A simple inspection of normal modes, however,
does not sufFice to discuss the localized or delocalized
character of vibrations. Usually the IPR works fine to
clearly discern localized and extended states. Delocal-
ized states are expected to present small IPR, of order
of N, while localized states have larger IPR values. A
typical situation is presented in Fig. 2(a), where the IPR
for a chain with the same parameters as in Fig. 1 is plot-
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FIG. 2. Inverse participation ratio, obtained by direct diag-
onalization of the secular matrix, for systems of size N=5000
with p = 0.2 as a function of A = mu /K, where K' strengths
are set (a) at random to pairs and (b) at random. The inset
shows the inverse participation ratio close to A on a linear
scale.
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ted vs A, in the range 0 & A ( 4. For comparison the
IPR of an ordinary random chain with the same length
and the same value of p is shown in Fig. 2(b). One can
observe a deep minimum of the IPR around the criti-
cal value A, while this minimum is completely absent
in ordinary random chains. Interestingly, the values of
the IPR at that frequency are similar to those at A 0,
which so far were believed to be the only ones that could
exhibit delocalization properties. Moreover, the inset of
Fig. 2(a) shows a plateau close to A, revealing the exis-
tence of a set of states with an IPR almost equal to the
minimum value. This result indicates that in our model
vibrations become extended for frequencies close to w .
We have estimated that the number of these states is
about the square root of the system size, although this
result cannot be stated rigorously due to the uncertainty
in selecting these states. It is important to mention here
that the same results are obtained for larger values of the
concentration p. In particular, the value of the IPR at A

only depends on the system size but not on p. Therefore
it seems that the exact number of defects is inmaterial
regarding the existence of extended vibrations.

Let us now comment on the average results. We have
numerically evaluated the positive integer moments as
defined in Eq. (3) with q = 2, . . . , 6. Atomic displace-
ments were recursively computed from the transfer ma-
trix equation (2), with the initial conditions Uo = 0 and
U~ ——1, and the system size was as large as N = 10 .6

When computing averages, they were taken over a num-
ber of realizations up to 5000 to exclude errors due to
poor statistics. Convergence of moments is reached after
very few averages for frequencies close to u . This fact
is easily understood in view of our previous results: In
such a frequency range almost all states are unscattered
by defects and consequently no strong fluctuations are ex-
pected. Conversely, the number of averages to obtain ac-
curate results increases as one considers more distant fre-
quencies. Our data indicate that 500 averages are enough
to investigate the main features of the scaling of moments
with system size. Numerical calculations point out that
moments scale very accurately as pz(X) X (~ ) for

A in all systems we have studied, as illustrated
in Fig. 3. Hence the generalized dimension Dq at this
critical frequency is, within the numerical uncertainty,
exactly one, i.e., the space dimension. This means that
vibrations spread homogeneously over the whole chain,
supporting our claim that those states are completely ex-
tended. Close to A, we find that p~(N) follows a power
law for small N but tends to a constant value for large
N, as plotted in Fig. 3 for A = 2.90. The critical size
for which deviation from power fit occurs increases in

q:2
—5- q—

q=4
—10- q=5

q=6

—20-

—25-

—30 I I I I I I I

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
log N

FIG. 3. Scaling of moments with system size for two dif-
ferent frequencies: A = A, (solid line) and A = 2.90 (dashed
line). The concentration of defects is p = 0.2 in both cases.
The logarithms are to base 10.

approaching A, suggesting that vibrations become more
and more delocalized. This is a crucial point because it
supports that these are main features of our model irre-
spective of the particular realization of the disorder.

In summary, we have studied a one-dimensional dis-
ordered chain which, in contrast to the generally ac-
cepted viewpoint, presents a set of delocalized states close
to a critical frequency. The number of such extended
states roughly grows with the squared root of the system
size. We have shown that correlation in coupling between
atoms —foreign springs appear in pairs —leads to a cjta8-
8ical resonance effect which allows for such extended vi-
brations. In our studies, not reported here, we also found
that if correlation is introduced in the masses rather that
in the couplings —foreign masses appear in pairs —the
same resonance effect occurs yielding delocalized vibra-
tions. On the other side, it is clear that the main in-
fluence of these states concern transport properties of
phonons. Accordingly, when computing the contribution
of different modes to the thermal conductivity, as de-
fined in Ref. 12 we have observed a drastic enhancement
around the critical frequency. Work currently in progress
regarding these topics will be reported elsewhere.
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