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In this paper we present a critical comparison of calculations of phonon-dispersion curves for alumi-
num, based on pseudopotential and empirical force-constant methods. The former method is based on
both perturbative and nonperturbative evaluations of the total energy of the crystal. In the perturbative
approach the total energy is evaluated to second order in the electron-ion interaction with a local pseu-
dopotential. In the nonperturbative approach the electron-ion interaction is treated exactly using a non-
local ab initio pseudopotential. In the empirical force-constant method the total energy is represented
by a sum of two-body and three-body terms, the latter being restricted to interactions among triplets of
nearest neighbors and of nearest and next-nearest neighbors. All models include physical mechanisms
for ensuring the breakdown of the Cauchy relation. We show that in each method convergence of the
calculated phonon frequencies requires the inclusion of long-range interactions. The radial-force con-
stants obtained by the empirical and perturbative pseudopotential methods are very similar for the first
three shells of neighbors. On the other hand, the tangential force constants differ markedly, a reflection
of the different physical mechanisms that come into play in the various models in the establishment of
equilibrium.

I. INTRODUCTION

Lattice dynamics has been of great theoretical interest
since the slow neutron-scattering technique was
developed as a powerful tool for obtaining detailed infor-
mation on the phonon-dispersion curves of single crys-
tals. ' Ear'.y analyses of the experimental results were
based on the use of phenomenological force-constant
models, usually of the general Born —Von Karman type
with the possible requirement of axial symmetry. The
results so obtained have two features in common; namely,
force constants connect atoms which are relatively widely
separated in the crystal, and more than one model can
give rise to similar phonon frequencies.

A significant development in the evaluation of the
dispersion curves was achieved by the use of pseudopo-
tential theory. In this microscopic approach, the
electron-ion system has been treated perturbatively by
considering the effect of the electronic screening on the
effective electron-ion interaction. The conceptual ad-
vantage of this method is that the force constants are ac-
tually calculated rather than determined by fitting to ex-
perimental phonon-dispersion curves and elastic moduli.
The pseudopotential approach is particularly useful for
simple metals, for which the pseudopotential is weak.
For noble and transition metals, the presence of highly

localized d electrons leads to a stronger pseudopotential,
which rules out the use of perturbation theory. '

Total-energy methods, e.g. , the frozen-phonon ap-
proach, have been developed which are able to produce
accurate phonon frequencies for a variety of materials.
In this approach the interatomic-force constants, of cen-
tral interest in the present paper, are not calculated
directly. Rather, the method produces appropriate linear
combinations of these force constants, viz. , the elements
of the dynamical matrix.

In the last few years, there has been a revival of in-
terest in force-constant models in connection with the
measurements of surface phonons. " These models
provide a means of calculating phonon properties for
bulk crystals and, with appropriate modifications, for
crystals with surfaces. The computer power required is
far less than that needed when the calculations are made
using pseudopotential methods. However, this renewed
interest in these parametrization schemes has reopened
the question of the physical meaning that can be ascribed
to the phenomenological force constants. In this paper
we investigate this problem by a direct comparison of the
force-constant tensor obtained in a phenomenological
model built from the knowledge of both the experimental
eigenvalues and eigenvectors and the force-constant ten-
sor evaluated in the pseudopotential framework. As a
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test case, we will consider the simple metal aluminum.
We will show that the pseudopotential calculations
confirm the main predictions of the empirical model with
regard to the range of the interactions and the values of
the leading radial-force constants. It is noteworthy that
the pseudopotential-based calculations have been per-
formed both within a perturbative approach using a local
pseudopotential' and with a nonperturbative approach
which incorporates nonlocal ab initio pseudopotentials. '

Both methods are based on the evaluation of the screen-
ing response of the conduction electrons to the ionic
motion, which leads to an electronic contribution to the
effective ion-ion interaction and thus to the interatomic-
force constants. In the perturbative method, we use the
response function for the electron-gas (jellium) model
with the average density of Al. In the nonperturbative
method, the response function is computed for the actual
crystal including the ions, i.e., we use the full Bloch states
of Al.

The paper is organized as follows. In Sec. II we intro-
duce our empirical model. This model includes multi-ion
interactions and is designed to violate the Cauchy rela-
tion c,2=c44. We discuss the convergence of the force
constants as the range of the interaction is increased.
The total-energy functional evaluated perturbatively in
the pseudopotential formalism will be discussed in Sec.
III. We consider second-order contributions of the
electron-ion interaction, represented by a local pseudopo-
tential, and derive a central force-pair potential which de-
pends on the volume of the system. This volume depen-
dence of the potential automatically ensures the violation
of the Cauchy relation. Section IV describes a nonpertur-
bative evaluation of the total energy in which the
electron-ion interaction, represented by a nonlocal ab ini-
tio pseudopotential, is treated exactly. Section V is de-
voted to the comparison of the results obtained with the
three approaches. In particular, we show that all ap-
proaches require long-range interactions extending up to
the tenth shell of neighbors in order to describe accurate-
ly (to within 1%) the experimental phonon frequencies of
aluminum. '

For the tangential-force constants, we show that a
direct comparison between the empirical model and the
pseudopotential procedure is difficult. In fact, because of
the different descriptions of the noncentral potential, the
violation of the Cauchy relation and the infinite crystal
equilibrium condition give rise to different relationships
between the values of the tangential-force constants in
the various schemes. While in the phenomenological
model the multi-ion potential affects only the violation of
the Cauchy relation, in the pseudopotential approaches
the volume-dependent potential enters into both the equi-
librium condition and the violation of the Cauchy rela-
tion.

On the other hand, the radial-force constants do not
enter the equations specifying the stress-free condition
and the violation of the Cauchy relation, so that for these
force constants it is possible to compare directly the re-
sults of the empirical and perturbative pseudopotential
procedures. Furthermore, we show that the force-
constant tensors, despite the differences between the

empirical and screening approaches, compare very well
for the first three shells of neighbors.

II. EMPIRICAL MODEL

In this section we consider an empirical model' in
which the interatomic potential is a sum of a central-
potential contribution V (r, ), w"hich depends on the dis-
tance r, between atom i located at r, and atom j located
at r, and a noncentral contribution V"'(cos0,

~1, ) related
to triplets of atoms, ' where 0,"k is the angle between the
directions of the vectors r; —r and r; —rk. Since the an-
gular forces turn out to be of a short-range nature, we
will consider only triplets of atoms of the type illustrated
in Fig. 1. These three-body interactions are sufficient to
obtain the large violation of the Cauchy relation present
in Al. The potential V = V'+ V"' gives rise to the follow-
ing force constants.

(a) Tangential-force constants between the ith atom
and the atom at the origin:

1 BV'a;=
1" BT r =r,.

(b) Radial-force constants:

g2 Vc
(lb)

(c) Angular-force constants:

g2 VIlc

2 23a O ICOS 0 cosO=cosO, .
(lc)

(a)
k j

(b)
FIG. 1. Two types of triplets of atoms considered in the an-

gular part of the potential. (a) Type I: all the atoms are first-
nearest neighbors and form a Oj =60' angle. (b) Type II: i =j
and i —k are first-nearest neighbors and form a 03=90' angle,
while j —k is a second-nearest-neighbor distance forming a
02=45' angle both with i —j and i —k.

where, in the latter case, the subscript i refers to the an-
gles depicted in Fig. 1 and ao is the lattice parameter.

In order to reproduce correctly the stress-free condi-
tion of the infinite crystal, our potential should produce
zero pressure in the crystal. ' A uniform virtual expan-
sion of the crystal allows us to relate the pressure to the
tangential-force constants n;,

1

6A i

where Qo is the unit-cell volume. Therefore the stress-
free condition becomes
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TABLE I. Radial-force constants P; vs the range of central interactions for the empirical model of
Al. The models nC2A refer to central interactions extending up to n neighbors and second-nearest-
neighbor angular interactions. The units are 10 dyn/cm.

Model

2C2A
4C2A
6C2A
8C2A
10C2A

23.820
24.609
24.694
24.671
24.565

1.419
2.483
2.544
2.676
2.685

—0.585
—0.515
—0.566
—0.640

—0.094
0.094
0.168
0.253

—0.026
0.170
0.002

a, r, =0.

Note that the angular interactions do not contribute to
this condition, because in a uniform expansion the angles
0;.k are not changed. From the long-wavelength limit of
the dynamical matrix, one can determine the elastic
moduli. The violation of the Cauchy relation is embodied
in the right-hand side of the equation

6, 6~
~12 ~44 = —18 —8

ao ao
(4)

being nonzero. We emphasize that it is the presence of
the angle-bending terms in the empirical model that is re-
sponsible for this violation.

The values of the force constants are determined by
fitting the experimental neutron data of Stedman and
Nilsson' through a weighted least-squares procedure in
which Eqs. (3) and (4) are included. The range of the cen-
tral interactions has been chosen to minimize the stan-
dard deviation' g between the observed and evaluated
photon frequencies, the elastic moduli, and the speeds of
sound along the high-symmetry directions in the Bril-
louin zone. As illustrated in Fig. 2, the most accurate fit,

with an overall precision better than 1%, is obtained by
considering long-range forces extending over eight to ten
shells of neighbors. We will present the results for the
model with central interactions extending up to ten shells
of neighbors and with the inclusion of the angular in-
teractions 6, and 6z up to second neighbors. This model
will be referred to as 10C2A.

In Table I we present the numerical values of the radial
force constants for the first five shells of neighbors as
functions of the range of the central interactions. As one
can see, only the leading force constants involving in-
teractions out to third neighbors are relatively unaffected
as the range is increased. For this reason the comparison
with the pseudopotential results becomes meaningful
only for the first three shells. In Fig. 3 we present results
for the elastic moduli versus the range of the interactions.
Note that c44 is particularly affected by the variation of
the range of the interactions and that all the elastic
moduli require the inclusion of long-range interactions in
order for them to reach their experimental values to
within 1%.

I
'
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FICx. 2. y of calculated phonon frequencies of Al vs the
range of the central interactions for the phenomenological mod-
el. The range of the angular interactions is kept fixed to
second-nearest neighbors.

6 8 Io
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FIG. 3. Percent errors of the elastic moduli of Al as func-
tions of the range of central interactions for the phenomenologi-
cal model. Solid line, c»,' dashed line, c»,' dot-dashed line, c44.
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III. PERTURBATIVE
PSEUDOPOTENTIAL APPROACH

The total energy of a simple metal in the small core
approximation can be written as

E =E,, +E„, (5)

where E;; is the Coulombic energy of the ions treated as
positive charges of valence Z (Z =3 for Al) and E„ is the
energy of the electrons for a fixed configuration of the
ions. The E„ term is evaluated in the pseudopotential
theory. Two versions of pseudopotential theory are em-
ployed. In the first version, discussed in this section, the
electronic ground-state energy is expanded to second or-
der in the electron-ion interaction expressed in terms of a
local pseudopotential. In the second version, discussed in
the next section, the electron-ion interaction is incor-
porated into the electronic ground-state energy to all or-
ders in the pseudopotential, which, furthermore, is a non-
local ab initio pseudopotential.

For the local pseudopotential, we employ the Heine-
Abarenkov form'

where

NQO
g 1I'~I'g(q)S'(q)S(q),

q&0
(12)

S (q) =( I/N) g exp( —iq r; )

is the structure factor and y(q) is the Fourier transform
of the density-response function for interacting electrons,
defined in terms of the irreducible polarizability f(q) by
the exact equation

kinetic energy per electron ( —,'A ICF/2m, where Kz is the
Fermi wave vector) and exchange and correlation
terms. The explicit form for E& is'

EbZ
Q.

The term E2 arises from pairwise interactions, while E3
is related to triplets of atoms, etc. It is important to note
that the latter two terms are volume-dependent quanti-
ties. The two-body contribution is of particular interest
in the present work. It is given by

—CZe2 jf p &RM,
V(r)= e~

Z 1f P RM
(6) x(q) = x(q)

I+(4vre /q f)(q)
(13)

4~Ze b
q~O

q 0 0

where

1
b =4~Ze RM

CRM

Imposing the condition of charge neutrality amounts to
setting the q=O component of the Coulomb interaction
equal to zero. ' ' Thus we set

= b
q=0

0

The total energy of the crystal can be represented by a
power-series expansion in the pseudopotential, '

E =Eo +E~ +E2 +E3 +E4+
The leading terms Eo and E

&
in this expansion are in-

dependent of the atomic structure; they depend only on
the electronic density no=Z/Qo. Eo is the energy of a
uniform interacting electron gas; it contains the average

where the well depth C and the core radius RM are pa-
rameters which were determined by requiring that (a) the
total energy F. given by Eq. (5) be a minimum for the ex-
perimental value ao of the lattice constant. This condi-
tion ensures the fulfillment of the stress-free condition
given below in Eq. (22). (b) The average of the squares of
the bulk phonon frequencies over the Brillouin zone
agree with the value extracted from neutron-scattering
data.

The Fourier transform of the above pseudopotential is
such that in the small wave-vector limit

In the random-phase approximation (RPA) one has that
y =g' ', where y' ' is the well-known Lindhard function,
or density-response function for noninteracting electrons.
A simple way to introduce the effects of exchange and
correlation is via the approximation' '

(0)( )~( )
X q

1+F„,(q)y' '(q)
(14)

where F„,(q) is termed a vertex function. In the response
schemes based on density-functional theory in the local-
density approximation (LDA), we have that F„,(q) be-
comes the q-independent quantity d (noE„,/d no, s„, be-
ing the exchange-correlation energy per electron at the
density no. Our numerical calculations, and the discus-
sion given below, assume the validity of Eq. (14).

In the determination of the total energy, in the interest
of simplicity, we disregard the E3, E4, and higher terms
because the volume dependence of E2 is already sufficient
to produce a violation of the Cauchy relation. All
higher-order terms are taken into account automatically
in the next section.

By considering the ionic and electronic contributions,
the dynamical matrix to second order in the pseudopo-
tential is

g(q+&) (q+&)~(q+&)= 1

M ~
—g G Gpy(Cx),

GWO
(15)

4mZ e —
~IOI I;~'X(q) .

q QO
(16)

where the G are the reciprocal-lattice vectors and the
effective pair potential y is given by
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It is to be emphasized that the computation of the
dynamical matrix based on Eq. (15) takes into account in-
teractions arising from all the neighbors in real space.

At this point we note that a formulation of the problem
in real (configuration) space is also possible. In it the
effective pair potential for two ions located at lattice site i
and at the origin is given by the equation'

y(r, . )=U(r;)+ f d x f d x' V( x—r, )y(x, x')V(x') .

(17)

It is possible to show that for a central pseudopotential
[such as that of Eq. (6)] and with the use of the electron-
gas response function, the pair potential given by Eq. (17)
is central if Eq. (10) is terminated at second order. Thus
the interatomic-force-constant tensor N'& can be written
as

the case of central potentials, we can use Eqs. (18) and
(19) to transform Eq. (21) into the form

C
1

i2 c&4
2

i

(22)

BE
Bn

(23)

In the case of the empirical model, the stress-free condi-
tion given by Eq. (3) requires the right-hand side of Eq.
(22) to be zero, and hence Cauchy's relation is satisfied.
The pseudopotential approach, however, leads to a more
complicated stress-free condition and to a violation of
Cauchy's relations, to which we turn next.

We now discuss the stress-free condition which should
be imposed on the infinite crystal. It can be written as

a, 5 p+(p, —cr, )
rl

(18)

P =Po+P&+P2+ (24)

It is convenient to write p, as we have done for E in Eq.
(10), as a power-series expansion in the pseudopotential,

where the radial- and tangential-force constants are
directly obtained from the pair potential according to the
equations

Here we have included in the structure-dependent term
p2 the ion-ion interaction,

1 dy(r)
r dr

(19a)
dp2= — (E;;+Ez)

Q=NQO
(25)

and

d'y(r)
dr

(19b)

It is to be noted that the derivatives required in Eqs. (19)
are taken at constant volume.

From the knowledge of the response function y, we
compute the pair potential y and the radial- and
tangential-force constants for any pair of ions. We thus
construct the force-constant tensor 4'&, and from it we
evaluate the dynamical matrix D &(q) given by the equa-
tion

D &(q)=g e (20)

The computation of the dynamical matrix according to
Eq. (20) is done by summing over shells of neighbors in
real space. The number of shells is increased until the
phonon frequencies agree with those obtained from the
all-neighbor formulation [Eq. (15)] to within O. l%%uo. Typi-
cally, this requires the inclusion of eight to ten shells of
neighbors.

We note that the volume dependence, implicit in the
effective interaction y(r), prevents the fulfillment of the
Cauchy relation. To prove this, we expand the dynami-
cal matrix [Eq. (15)] in the long-wavelength limit to relate
this quantity to the elastic moduli. By following Born
and Huang, ' a lengthy calculation gives

2
1 "0 1 "o B 1

no dno,
2 g(p) 2 o Bno g(0)

(26)

where the effects of exchange and correlation are built
into the irreducible polarizability f introduced in Eq. (13)
and modeled in the present work by Eq. (14).

The term p, is easily evaluated and is given by

bZ
P&= ~2

0
(27)

To determine p2 we write E;; +E2 in terms of an effective
ion-ion interaction in real space. We substitute Eqs. (11)
and (12) into Eq. (10) and exploit the condition of elec-
troneutrality. As is shown in the Appendix, various
terms cancel and the E;; +E2 energy can be written as'

E;;+E2=—Qo g ~
V ~~y(q)+ —g g q (r; —r, )

l JXl

NZb NZ F„,(0)
Qo 200

NZ
2n~"'(0)

Now in the study of the interacting electron gas it has
been proved' that the term po related to the electronic
ground-state energy Eo can be written as

BE,
BQ A=Neo

(i) 2 (i)= 1
C(2 C44 — g [4 xxrix C xy ixriy ]

0 i

(21)

This relation is valid in general for cubic crystals. For

In order to perform the total volume derivative of
E;; +E2, we note that E2 depends explicitly on the
volume (Vz-—I/Qo) and implicitly through the lattice
vectors r; as well as through the electron density no. We
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have then equations ' of density-functional theory,

a r,. np a+
BQ ~;, ~0 3Q Br Q, no 0 Bnp r,. , n

(29) t —V' +g V;,„[r—R( 1 ) ]
I

We perform the first two derivatives of E,, +E2 appear-
ing on the right-hand side of Eq. (29) by using Eq. (28).
We note that the term (Qo/2) gq ~ Vq ~ g(q) does not de-
pend on the volume because V =1/Qo and g, when
transformed into an integral, gives (II/8m ) J dq. The re-
sult of this derivation, taking into account Eq. (19a) and
Eq. (14), is

+ d r', +p„,(r)3, 2n(r')
r —r'

with the electron-number density n (r) given by

n (r) =g f, lf. ',

(34)

(3&)

Z bZ Z F„,(0)
Y a, r + + +

where f are the electron occupation numbers which are
determined by the condition

Z=gf, . (36)
1 ~ q bZ Z

6Q, ,~, ' '
Ilo 2A~(0)

(30)

1VQp
E~= — g Vo y(G) .

Gwp
(31)

To perform the derivative with respect to n p, it is more
convenient to write E2 in the form

In the above, V;,„ is the bare electron-ion interaction, l
labels the atomic sites, v labels both the band and wave
vector in the Brillouin zone, and in the LDA p„,(r) is the
derivative of n c„with respect to the electron density n.
Using the Kohn-Sham eigenvalues and eigenfunctions,
the energy of the interacting electrons is given by

We note that E;; does not depend on the electron density
np, and so the term in p2 involving the derivative with
respect to n p can be written in the form

fd3, f d3 2n(1)ll (r )
et v V

d rn r p„r —c.„, r (37)

By(G )

o~o B&0

Collecting all the above terms, we finally obtain
r

dnp

(32) The above equations give the electronic contribution to
the total energy for a fixed set of ionic coordinates. To
determine the interatomic forces, we need an expression
for the change in energy as the ions vibrate about their
equilibrium positions. The interatomic-force-constant
tensor @ &(l, l') is related to the second-order change in
the total energy of the solid by

Z IV ', ~X(~)j
2 G~p Bnp

(33) E2= —g 4 p(l, l')u (l)up(l'),=1
1/'

(38)

The choice of the pseudopotential parameters according
to criterion (a) following Eq. (6) ensures that p =0. We
emphasize that the presence of the last two terms in Eq.
(33) leads to the violation of the Cauchy relations in met-
als as indicated by Eq. (22). Physically, the second and
third terms originate in the density dependence of both
y' '(q) and the local field correction F„,(q), which is the
origin of the density dependence of the effective pair po-
tential defined in Eq. (17).

We would like to note that in an exact treatment of the
interacting electron-gas response function according to
Eq. (13), Eq. (33) would be exact. In that case the last
term on the left-hand side of Eq. (30) would be absent and
all the exchange and correlation effects would be directly
built into g as in the case with Eq. (26).

IV. NONPERTURBATIVE
PSEUDOPOTENTIAL APPROACH

In the nonperturbative approach, ' the effects of the
ions are included in the calculation of the ground-state
energy to all orders in perturbation theory. The total en-
ergy is found by self-consistently solving the Kohn-Sham

E,= y f.(v V, ~v)

f.
2 ~ E~ E~~

V, V

(v'iH, iv)(vi V, iv'), (39)

where H& is the first-order change in the Hamiltonian,
and V, and V2 are the first- and second-order changes,
respectively, in the bare electron-ion interaction. H, is
the sum of V& and the change in the electron-electron in-
teraction due to screening. The screening has contribu-
tions from both the direct Coulomb interaction and from
exchange and correlation.

From linear-response theory, we can write the change
in the electron density as

where u (I) is the a component of the displacement of
the lth atom. If the change in energy is known for all dis-
placements of the atoms, then 4& &(l, l') can be deter-
mined. The method we use for the determination of the
change in energy is based upon linear-response theory.
The second-order change in the energy is written
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n, (r)=g
C~ C~

& 'IH, Iv&1t.'(r)g, (r) . (4O)

By linearizing the Hamiltonian in Eq. (34), we obtain the
first-order change in the Hamiltonian,

n, (r')
H&(r)= V, (r)+ J d r', +n, (r) F„,[n(r)] .

(41)

The first-order change in the electron-ion interaction is
given by

for the pressure, just as in the perturbative approach.
The second is through the contributions of three-, four-
and higher-body interactions that are included in the
nonperturbative approach, but not in the perturbative ap-
proach. The physics of the density-dependent terms has
been discussed at length in the previous section, and the
numerical consequences of the inclusion of interactions
beyond pairs of atoms are contained in the results
presented in the following section. We have found that
the @ &(l, t') calculated by the nonperturbative approach
do not correspond to central potentials and cannot be
presented by Eqs. (18) and (19).

V, (r)=g V;,„[r—R(l)]u (1) .
d

a
(42)

V. NUMERICAL CALCULATIONS
AND DISCUSSION OF THE RESULTS

These two equations are combined to form an integral
equation for n i,

n, (r)=n~(r)+ f d r'E(r, r')n, (r'),

with the kernel of the integral equation given by

(43)

&(r, r') =g P"(r)g (r')(v'l V„lv),
F~

(44)

and n is the induced electron density from V, only.
Consistent with Eq. (14), V„ is the electron-electron in-
teraction given by

V„(r,r')=, +5(r —r') F„,[n (r)] .1 ~ d
r —r' dn

(45)

After solving for n &, the second-order change in the en-
ergy is obtained, from which the force constants can be
extracted,

d
c&,p((, (')= Xf, v v„„(r—R(('(] v)5vdT dip

In this section we present and compare the results of
the calculations based on the methods outlined in Secs.
II—IV. Comparison of the predictions of these methods
with experiment and with each other reveals that the lat-
tice dynamics of Al involves forces of relatively long-
range character. This feature is consistent with the long-
range nature of the Friedel oscillations present in the sim-
ple metals. For this reason we present results with in-
teractions extending up to ten shells of neighbors. In the
phenomenological force-constant model, we include the
angular interactions 6& and 52 up to second-nearest neigh-
bors.

In the perturbative pseudopotential calculation, the
elements of the force-constant matrices @ p(l, I') are con-
sistent with central potentials of interaction; i.e., one can
express all 0& &(l, l') in the form of Eq. (18). Thus, for a
given pair of interacting atoms, the nonzero 0& &(l, l') can
be expressed in terms of just two parameters a; and P;.
In order to facilitate comparison with the empirically
determined force constants, we therefore express the per-
turbative pseudopotential results in terms of the a; and

where H, (la), is the first-order coefficient of the expan-
sion of the change in energy in atomic displacements.

For the present study, the electron-ion interaction is
taken as a nonlocal ab initio pseudopotential generated by
the method of Troullier and Martins. For the exchange
and correlation, the Wigner interpolation formula is
used. The wave functions are expanded in plane waves
with a cutoff of 12 Ry. Sixty points in the irreducible ele-
ment of the Brillouin zone were used to perform the sums
over the Brillouin zone. The static properties obtained
are 4.01 A for the equilibrium lattice constant and 74
GPa for the bulk modulus, both of which are in excellent
agreement with experiment.

There are two sources for the violation of the Cauchy
relations in the nonperturbative approach. The first is
through the density-dependent terms in the expression

In the nonperturbative pseudopotential calculation, the
elements of the force-constant matrices do not corre-
spond to central potentials of interaction. In other
words, more than two nonzero parameters are generally
required to represent the N &(l, l') for a given pair of in-
teracting atoms and one cannot characterize the @ &(l, l')
by a; and P,. alone. The values of the nonperturbative
N &(l, l') are compared directly with those obtained by
the other two methods. (The latter comparison is
presented later in connection with the discussion of Table
III.)

The force constants obtained with the 10C2A model by
means of the best-fit procedure outlined in Sec. II, togeth-
er with the perturbative pseudopotential results, are list-
ed in Table II. With regard to the radial-force constants
P, , there is a good deal of agreement between the values
obtained with the perturbative and empirical methods,
which, in particular, yield very similar values for the
leading force constants P&, Pz, and P3. For the distant
shells of neighbors, the comparison becomes difticult,
even though there is good agreement between the three
values of P6, P7, and f38 in Table II. In fact, in the empiri-
cal model the assumed finite range of the interactions in-
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TABLE II. Theoretical force constants for Al out to tenth-
nearest neighbors. The units are 10' dyn/cm.

Perturbative Empirical Perturbative Empirical
n screening method model screening method model

10

—1.26
—0.16

0.047
—0.031

0.015
0.0013

—0.0087
0.0032
0.0043
0.0043

—0.0025

0.27
0.20
0.008
0.054
0.071
0.047
0.003
0.022

—0.070
—0.070

0.004

21.7
2.60

—0.86
0.24
0.58

—0.31
0.09
0.16

—0.12
—0.10
—0.10

24.6
2.68

—0.64
0.25
0.003

—0.36
0.12
0.20
0.12
0.12

—0.38

hibits the convergence of the radial-force constants
beyond third neighbors, as one can see in Table I. With
regard to the tangential-force constants, the different
physics behind the satisfaction of the stress-free condition
in the two models renders a precise comparison impossi-

ble. In the phenomenological model, the e,. satisfy Eq.
(3), while in the perturbative pseudopotential scheme
they satisfy Eq. (22). As an example of the comparison of
the quantitative predictions of both methods, we note
that in the phenomenological 10C2A model our fitting
procedure gives c &2

—c44 =0.330X 10' dyn/cm . The
experimental value taken from Ref. 26 is 0.325X10'
dyn/cm . With the perturbative pseudopotential
method, using the data of Table II and Eq. (22) we obtain
c,2

—c44=0.251X10' dyn/cm . We stress again that
the difference between c&z and c44 in the latter case is en-
tirely due to the volume dependence of the pairwise in-
teraction. The discrepancy between theory and experi-
ment, in this case, is not very serious because it can be
imputed to the neglect of the three- and four-body contri-
butions to the total energy, which, for the sake of simpli-
city, we have not included in the perturbative scheme.

A more general comparison can be made by consider-
ing the force produced on the reference atom 0 when we
displace the ith atom. For this purpose we discuss the
force-constant tensor 4"& for the first three shells of
neighbors in the 10C2A model. Concerning the first shell
of neighboring atoms, we choose r; =(1,1,0)ao/2. In the
phenomenological method, we get

—
—,'(P, +a, )

—35, —25~

——'(p, —a, ) ——'5,
1 1 2

——'(pi —ai )
—-'5

1 1 p 1

—
—,'(P, +a, ) —35, —25~

—a —361 1

(47)

The force-constant tensor in the perturbative pseudopo-
tential framework is given by the same expression upon
setting 6& =52=0.

For the second shell of neighbors, we obtain, with
r, =(1,0,0)ao,

@(2)— 0aP

0 0

0 (48)

0 0

while for the third shell of
r, = (2, 1, 1 )a 0 /2, we have

neighbors, with

(y(3)—
aP

r —
—,'(2p3+a3)

—
—,'(p, —a, )

——'(p3 —a3)3

——'(p, —a, )3

—
—,'(p3+ 5a3)

6

——'(/3, —a, )3

——'(p, —a, )6

—
—,'(p3+5a3)

(49)

Note that in @'
&

for the 10C2A model the term contain-
ing 52 cancels out, so that @'

&
is the same as for central

potentials. Both in the phenomenological and perturba-
tive pseudopotential approaches, N'

& is related to central
potentials only. In the nonperturbative pseudopotential
approach, the N'

&
cannot be expressed solely in terms of

central potentials.

The numerical values of the nonzero elements of the
force-constant tensor (given in units of 10 dyn/cm) for
the first three shells of neighbors are presented in Table
III. The agreement between the three sets of matrix ele-
ments is very good for the first shell of neighbors. The
angular interactions 6& and 5z practically compensate the
difference in sign of the a, between the empirical and per-
turbative pseudopotential methods. For the second shell
of neighbors given in Table III, there is a difference in the
sign of the small yy and zz components of the perturba-
tive results compared to the nonperturbative and phe-
nomenological results. For the third shell of neighbors,
there is reasonably good agreement between the empirical
model and perturbative approaches. The nonperturba-
tive scheme, however, gives a value of Nzz' that differs by
more than a factor of 2 from the values given by the oth-
er two schemes.

We comment next on the previously mentioned non-
central character of the dynamical matrix obtained by the
nonperturbative pseudopotential method. The number of
nonzero, independent 4& &(l, l') for a given pair of in-

teracting neighbors depends on the particular pair. If the
number is greater than 2, one can calculate more than
one value of a using Eq. (18). Only in the case of second,
sixth, and eighth neighbors does one obtain a unique
value of a. In all other cases (first, third, fourth, fifth,
seventh, ninth, and tenth neighbors), one obtains multiple
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TABLE III. Nonzero elements of the force-constant tensors in 10 dyn/cm for the first three shells
of neighbors according to the three methods described in the text.

Force-constant
tensor element

+11 +22(1)— (1)

@(1)—@(1)
12 21
(1)

@(2)
11

+22 =+33(2)— (2)

@(3)
11

@(3)—(p(3)
12 21

q)(3) —@(3)
13 31

+22 =+33(3)— (3)

+23 =~'32(3)— (3)

Perturbative
pseudopotential

—10.220
—11.480

1.260
—2.600

0.160
0.558
0.302
0.302
0.104
0.151

Nonperturbative
pseudopotential

—9.930
—10.948

1.510
—2.141
—0.168

0.330
0.347
0.347
0.252
0.121

Phenomenological

—10.379
—10.886

2.247
—2.686
—0.198

0.424
0.216
0.216
0.100
0.108

values of a that can differ in magnitude and even in sign.
For example, for third neighbors one obtains three values
of a3: a3=+0.365 X 10 dyn/cm, a3'= —0.226X10
dyn/cm, and az" = —0. 132X 10 dyn/cm. These results
demonstrate that the inclusion of three-, four-, and
higher-body interactions in the nonperturbative method
leads to a dynamical matrix which cannot be described
solely by central potentials.

We have attempted to calculate c,z
—c44 from the

@ &(l, l') obtained by the nonperturbative approach. Us-
ing the general relations for the elastic moduli given by
Born and Huang, ' one must take differences of large
quantities involving the N &(l, l ) to yield small quanti-
ties. So far, we have been unable to calculate the
@ p(l, l') with sufficient accuracy by the nonperturbative
approach to yield convergent results for c&z

—c44.
Finally, we present the results of calculations of the

phonon-dispersion curves obtained with the force con-
stants of the three methods. Figure 4(a) corresponds to
the 10C2A model, and Figs. 4(b) and 4(c) correspond to
the perturbative and nonperturbative pseudopotential
schemes, respectively. In all cases the agreement with
the experimental neutron data is excellent over the entire
Brillouin zone. This type of agreement, particularly in
the case of the transverse phonon branches along the I K
direction which are nearly degenerate in the first third of
that direction, is due to the inclusion of long-range
forces. A nearest-neighbor model would produce a large
splitting between these two branches.

In conclusion, the pseudopotential second-order per-
turbative approach allows us to construct an effective
pairwise volume-dependent potential. The results of the
nonperturbative pseudopotential approach, however,
cannot be described by central potentials. The singulari-
ty of the dielectric function produces an oscillating tail in
the potential which cannot be neglected if one wants to
reproduce accurately both the elastic and dynamical
properties. Our calculations show that the range of the
interactions in real space extends up to eight to ten neigh-
bors. These results justify the introduction of relatively
long-range forces in the phenomenological force-constant
models in order to minimize the g of the calculated pho-

32
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24
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32.0

24.0

3 16.0
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FIG. 4. (a) Bulk phonon-dispersion curves for Al evaluated
with the 10C2A empirical model. The dots represent the exper-
imental neutron data of Ref. 14. (b) Perturbative pseudopoten-
tial calculations of the phonon frequencies from Ref. 12. The
dots as in (a). (c) Nonperturbative pseudopotential calculations
of the phonon frequencies from Ref. 13. The dots as in (a).
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non frequencies. Furthermore, the short-range angular
forces of the phenomenological model mimic very closely
the e6'ects derived from the volume dependence of the
pseudopotential as shown by the analysis of the forces
acting between atoms in the crystal. Finally, we have
shown that for aluminum the principal radial-force con-
stants derived from the phenomenological model are in
good overall agreement with those derived from the pseu-
dopotential calculations.
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APPENDIX

In this appendix we indicate the steps involved in pass-
ing from Eq. (5) to Eq. (27). The total energy of a simple
metal in the small core approximation can be written as

4 Z2 2

E;;+Ez= —g S*(q)S(q)
2 ~ q2n,

—n, ~ v, ~'q(q)

1 4vrZ e

qwo q +0

where

=—g S*(q)S(q)q(q) ——g, , (A5)
q&0 2q&0 q +o

4' e —&all' I'X(q) .
q'n,

To evaluate Eq. (A5) we add and subtract the q =0 term:

E;; +E~ = —g S*(q)S(q)y(q) ——y(0)
N

q

1 4~Z e

2q qOO
(A7)

Note that the last sum can be unrestricted since the
zeroth Fourier component of the Coulombic potential is
zero for charge neutrality. Using the above definition of
the structure factor, we get

response function for interacting electrons embedded in a
uniform background, V is the Fourier transform of the
pseudopotential, and F„,(q) is the Fourier transform of
the exchange and correlation terms.

We now write

E =E;;+E„, (A 1)

E~i =Eo+E) +E~ (A3)

The zero-order term Eo, the energy of the interacting
electron gas, and the first-order term E j are independent
of the atomic structure and depend on the electronic den-
sity no =Z/Qo. The second-order term Ez is given by

where E;; is the Coulombic energy of the ions treated as
positive charges of valence Z (Z =3 for Al) and E„ is the
energy of the electrons for a fixed configuration of the
ions. The ion-ion interaction energy can be expressed as

2 2 2 2iV~4m.Ze,
( ) ( )

1~4vrZe
q2@ 2 q Q

where S(q) = 1/iV g, exp( i q r) i—s the. structure factor.
For an sp-bonded metal such as Al, it is appropriate to
expand the electron-ion interaction energy to second or-
der in terms of the pseudopotential, as

E;;+Eq= —g g y(q)e
2

——y(o) ——g
q qQO

On defining the interaction between pairs of atoms as

y(r, —r ) =—g y(q)e
q

we write

E;;+E = —X X V(, —.)+—Xm(q)
1 1

j kWj q

——y(0) ——g2 2
q q Qo

(A8)

(A9)

XQO
E, = — g I

1' l'y(q)S*(q)S(q),
q&0

(A4)

where, in the RPA LDA [see the discussion below Eq.
(13)],

=1= —g g y(r, —r„)
j kWj

+o Ng I ~, I'x(q) ——
v (o) .

q

(A10)

y(q) =y' '(q)/[1+ [(4~e /q )+F„,(q)]y' '(q)]

is the negative of the Fourier transform of the density-
To evaluate the y(0) contribution, we use Eqs. (7), (13),
and (14) to perform the limit
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lim g( q) = lim
q —+0 q~0

4mZ e
0

q Qo

4~Ze 2

q2~ Q

x"'(q)
1+[(4sre /q )+F„,(q)]y' '(q)

(A11)

The result of this limit is

Z 2Zb Z F„,(0)
n~")(0)

The energy E;;+E2 of the crystal is then given by

(A13)

Care must be exercised in the second term, which leads
us to the expression

XZ
E;, +E2=-

2Q(g (0)
Nzb Nz 'F„,(0)

o 2&o

4~Z e
lim
q 0 qQo

1

Ao
—2Zb +

q 4m.e
Q

g ~
V

~ y(q)+ —g g y(r, —r, ) .
q l JWl

q F„,(q)x 1—
4me

q
4sre y' '(q)

(A12)
(A14)
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