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Anharmonic thermal resistivity of dielectric crystals at low temperatures
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The intrinsic thermal resistance of dielectric crystals at low temperatures due to three-phonon Um-

klapp processes has been treated theoretically, taking account of the restrictions imposed by wave-vector
selection and frequency conservation rules, as well as the known phonon-dispersion curves. Since low-
frequency phonons cannot interact directly with zone-boundary phonons, the transfer of excess momen-
tum takes place in two steps: a normal process with modes of intermediate frequency, followed by an
Umklapp process of intermediate-frequency phonons with phonons near the zone boundary of two
different polarization branches with different frequencies. The intermediate frequency is given by that
frequency difference. The second step can also be scattering by point defects, so that the apparent Um-

klapp resistance can be modified by point defects, which scatter the intermediate-frequency phonons
much more strongly than the thermal phonons. The important processes in different frequency ranges
depend on the dispersion curves and on the residual point defects; various cases are discussed. The
theory has only one adjustable parameter, the Gruneisen constant. The point-defect scattering strength
is deduced from the departures of the thermal conductivity in the boundary scattering regime at very
low temperatures from a T dependence. The theory has been compared to measurements on LiF, NaF,
diamond, Si, and enriched Ge. Reasonably good agreement with experimental data can be obtained
without invoking an adjustable exponent in the Umklapp resistance.

I. INTRODUCTION

The intrinsic thermal conductivity of dielectric crystals
is controlled by three-phonon Umklapp processes, i.e.,
processes in which the sum of the wave vectors is not
conserved but changes by a reciprocal-lattice vector.

For thermal modes at low temperature to participate in
such a process, the thermal mode of frequency to-kT/A,
must combine with a mode near the zone boundary of
frequency co, . This requires the prior presence of a pho-
non in that mode, and at low temperature this has a low
probability of the order exp( —A'co, /kT) Peierls' thu. s

predicted that the intrinsic thermal conductivity should
vary as exp(8'/T) where 0' is an exponent of the order
of the Debye temperature O. In Peierls' pioneering work
0' was not specified further.

Subsequent workers have assumed that kO'=Ace„
where co, is the frequency of the lowest-frequency mode
at a zone boundary. Leibfried and Schlomann attempted
in this way to obtain an estimate of the intrinsic low-
temperature thermal conductivity, and noted that this at-
tempt did not agree with such observations as then exist-
ed. This contrasted with their results at temperatures
near or above 0, where their analysis produced conduc-
tivity values in good agreement with data. How good
that agreement has since turned out to be is evident from
a later review by Slack.

At low temperatures the intrinsic Umklapp or U pro-
cesses act in combination with boundary scattering, with
point-defect scattering, and with three-phonon "normal"
processes, i.e., processes which conserve the phonon wave
vector (N processes). The N processes play a different
and indirect role in producing thermal resistance, as
pointed out by Peierls, and methods of combining them

with the other processes have been proposed by Kle-
mens, Ziman, Callaway, and Armstrong. Callaway's
procedure, which combines those of Klemens and Ziman,
and uses the principle that normal processes do not
change the total quasimomentum of the phonon gas, has
been favored in the analysis of experimental data, since it
yields correctly the known limiting cases of strong N pro-
cesses, and frequency-independent R processes (resistive
processes, the combination of defect scattering, boundary
scattering, and U processes).

Using the Callaway analysis, it has been possible to fit
the observed thermal conductivities in terms of boundary
scattering, point-defect scattering, X processes, and U
processes, in a number of cases, notably diamond, lithi-
um Auoride, ' '" and sodium fluoride. ' The case of lithi-
um fluoride was particularly instructive, since it was pos-
sible to change the isotopic composition and thus control
the point-defect scattering. The fitting procedure was
constrained to use the same expression for X processes
and U processes for all the samples. The fitting pro-
cedure was confirmed by the fact that the required
strength of the X processes agreed both with theory' and
also with observations of ultrasonic attenuation at very
high frequencies, albeit at much lower frequencies than
that of the thermal phonons. '

It is thus significant that the exponent 0' thus obtained
is substantially lower than %co, /k, where co, is the lowest
zone-boundary frequency. At that time the experimental
values of ~, were not yet available, but now that
phonon-dispersion curves for many dielectric crystals
have been obtained, there is a clear discrepancy, as can be
seen in Table I.

It has been pointed out by one of us' that the simul-
taneous requirements of frequency conservation and the
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TABLE I. Umklapp Exponents. Values of 0,„~ were derived
from a fit to experimental data of the form W„~ exp( —8,„~/T);
kO, =%co„where co, is the lowest zone-boundary frequency.

II. TWO-STEP PROCESS

A. General scheme

Crystal

LiF
NaF
NaF
(with point defects)
KCl
(with point defects)
Si
Ge
Diamond

g,„p (K)

170
140
98

40

225
132

300—900

8, (K)

350
210
210

95

350
90

1,200

Let us consider an N process which links a low-
frequency mode to high-frequency modes near the zone
boundary. The selection rules (in an extended zone) are

q+q'=q"

CO+CO =CO (2)

When co «m'-co", the q' mode and q" mode must be-
long to the same polarization branch. Since q «q'-q"
and from the selection rules (1) and (2) become

wave-vector selection rule cannot be satisfied in a three-
phonon interaction linking a low-frequency mode with
two modes in the vicinity of the zone boundary. Only a
mode of some minimum frequency co; can undergo a U
process; the two high-frequency modes then lie on
different polarization branches, and cu;, a mode of inter-
mediate frequency, is approximately the difference in fre-
quency of these two branches. The transfer of phonon
momentum from the thermal modes then proceeds in two
steps. The first step is an N process linking the thermal
mode to modes of frequency co; or higher. The second
step is a U process linking those intermediate-frequency
modes to the zone-boundary modes. In parallel to that
second step, the intermediate modes can also be scattered
by point defects, a process which is much stronger at in-
termediate frequencies than at thermal frequencies (see
Fig. 1).

If that point-defect scattering is strong enough, the ap-
parent exponent 8' will be equal to Ace;/k. In very pure
crystals, 8' should be equal to A'co,'/k, where co,

' =co, +co;
is the second-lowest zone-boundary frequency. In be-
tween those two extremes, the thermal conductivity
should be very sensitive to small amounts of point de-
fects.

This paper aims to develop this idea in as quantitative
a manner as possible, considering both the complexity of
the problem and the uncertainty of the anharmonic pa-
rarneters needed. One factor which is no longer uncer-
tain are the phonon-dispersion curves, which are now
available for many crystals, ' and which are considered
in the present treatment.

where v' is the group velocity of q' mode. Since co= v q,
where v is the phase velocity of q mode, the selection
rules are satisfied only if v v'. But v' is very small near
the zone boundary because of dispersion, therefore the
direct interactions between low-frequency modes and
zone-boundary modes are forbidden. Thus the momen-
tum transfer from low-frequency modes cannot proceed
directly but in two steps. The first step is an N process
which can transfer momentum from the low-frequency
modes to those higher-frequency modes or modes of in-
terrnediate frequency which can interact with zone-
boundary modes directly; the second step is then an al-
lowed U processes.

If we assume that phonons reside mostly in the trans-
verse branch at very low temperatures, the N process
which satisfies the condition co «co'-~" is a process of
the type T+L~L, where T,L represent modes of trans-
verse and longitudinal polarization. The U process in the
second step is a process of the type L + T~L or
L + T+-+0, where the first longitudinal mode is the
intermediate-frequency mode and 0 represents the opti-
cal mode.

The first step is an N process and has a total relaxation
rate calculated by a Landau-Rumer process, ' i.e.,

(4)

where C= jo x exp(x)/I exp(x) —1] dx. The relaxation
rate of those N processes which connect low-frequency
phonons to intermediate-frequency range cu& ~~~coj is
only a fraction, namely,

where

7C wLR

x exp(x)
C; = dX, X;=, Xj=

I exp(x )
—1]

FIG. 1. Schematic representation of dispersion. Here co~, coL

are the transverse and longitudinal frequency at the zone
boundary, respectively. co; is the lowest frequency that can un-

dergo a U process in the direction.

B. Total relaxation time of two-step process

Let us consider two frequency reservoirs, one is the
thermal frequency (co) reservoir and the other is the
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where A. /A is a velocity parameter, the drift velocity in
the direction of heat Row. In a quasiequilibriurn state,
there should be no net momentum exchange between the
thermal reservoir and the intermediate reservoir, so that

dP
dA, +N

dP

N

where A, is the anisotropy parameter of the intermediate
reservoir. One can find that (dP/dA, ) is proportional to
heat capacity C due to thermal modes and (dP/dk, ), is
proportional to C, , the heat capacity due to those modes
only whose frequency is above co;. From Eq. (7),

+N
(8)

In steady state with a temperature gradient, the
momentum rate which the intermediate reservoir receives
from the thermal reservoir is equal to the rate at which
the intermediate reservoir loses momentum by resistive
processes, i.e.,

N
(9)

Equating the rate of loss of momentum of thermal modes
to the rate of transfer of momentum to the intermediate
reservoir,

+N
(10)

intermediate-frequency (co;) reservoir. I.et the relaxation
rate for the N process from the thermal reservoir to the
intermediate reservoir from the point of view of the
thermal-frequency mode be 1/r&, the relaxation rate for
the 1V process from the intermediate reservoir to the
thermal reservoir from the point of view of the
intermediate-frequency mode be I /rtIt, and the relaxation
rate of the resistive or R process for the intermediate fre-
quency be 1/rz. Under the action of the N processes
alone, the displaced phonon distribution is given by

1N=
exp(A'co —

A, q)/kT —1

III. ESTIMATION OF THE UMKLAPP PROCESS RATE

The Urnklapp process is the intrinsic thermal resistive
process in a crystal. This momentum-nonconserving pro-
cess cannot occur in a continuum, but only in discrete
lattice structure. Its most important effect is always to
"Aip over" the component of energy Aux parallel to the
relevant reciprocal-lattice vector and thus contributes to
thermal resistance. In a reduced zone picture

q+q'=q" +b . (13)

In reciprocal space, the first Brillouin zone is the irre-
ducible representation zone for all quasimomentum vec-
tor q. The boundaries of that primitive cell are the per-
pendicular bisectors of the shortest reciprocal-lattice vec-
tor b's. In the case of the fcc crystals which are con-
sidered in this paper, there are 14 such principal
reciprocal-lattice vectors or directions. We evaluate the
relaxation rate for a thermal phonon q parallel to a prin-
cipal direction.

At low temperatures the important U process is the
combining process (13) where q is small, because the ma-
jor contribution to thermal conduction comes from low-
frequency thermal phonons. The interacting modes q'
and q" are high-frequency modes near the zone bound-
ary. The single-mode relaxation rate of a thermal or
intermediate-frequency mode q, defined as the rate when
only mode q departs from equilibrium, can be written
as"

7 U

= g 2
~ Ci i ~5, (co+ co' —cv" )(No —No' ),

M Q)co co

and Xo Xo are the equilibrium occupation of mode
q', q", respectively. Now No No =exp( —x—'), since
exp( —x')))exp( —x") and the summation can be re-
placed by integration as g~~ =il[Ga /(2n ) ]fdq',
where g represents the number of polarizations of the in-
teracting mode q'. Thus Eq. (14) becomes

(14)

where ~C3~ =(4y /3G)(M /v )co co' to", y is the
Gruneisen parameter, G is the number of atoms per unit
volume, v is the sound velocity, M is the atomic mass,

r

+, „) d 1 cosAcot—

From Eqs. (8), (9), and (10), we find the expression of the
effective total relaxation time ~ of the thermal modes to
be

Cr(tv)=r~(to)+ r~(cv;),

+U I dS' f coco'to"5, (b,tv)exp( —x'),y A, deco
3' pv g Vg

(15)

Cr(co)= [&„R(tv)+a~(to;)],
rJ

(12)

and if the upper limit of the intermediate reservoir is high
enough, C; is replaced by C;.

where r& is given by Eq. (5). If the intermediate-
frequency reservoir has a range between co; and co, Eq.
(11)becomes

where p is density of crystal, h~ =~+u' —co",
v =jBhco/Bq'~„ is the group velocity perpendicular to
surface S' which is the locus of q' satisfying the restric-
tion b,to=0, and x'=fico'/kT. To evaluate the single-
mode relaxation rate of mode q, one integrates over all
possible q' modes. But to integrate through the surface
S' one must consider dispersion at the zone boundary.
Considering the actual dispersion relation, the conserva-
tion of energy co+co'=co" and the quasirnomentum selec-
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tion rule q+q'=q" +b, several types of U processes are
possible, such as T+ T~L, L +T~L, T+ T~O, and
L+ T~O. Their relative importance will be discussed in
Sec. IV. To evaluate a relaxation rate, we proceed by the
following scheme: (1) The thermal mode q is taken paral-
lel to a reciprocal-lattice vector b and only this
reciprocal-lattice vector is considered, so that energy con-
servation is satisfied approximately in the vicinity of the
corresponding zone boundary. (2) The known dispersion
curves in degeneracy directions ( 1,0,0 ) 's and ( 1, 1, 1 ) 's

of the fcc crystals are considered here, and are approxi-
mated by sine curves in case of transverse and longitudi-
nal branches and by straight lines in case of optical
branches. In each degenerate direction, one can find a
frequency range co; to co. of the modes which can undergo
a U process directly. (3) The strength of the U processes
is uniform for all modes in this frequency range.

We now estimate the relaxation rate of the type
L+T+ L for a longitudinal mode of frequency co; and
wave vector q, parallel to the reciprocal-lattice vector b
and thus of magnitude b /4~sin '(co, /coL ) where
b~ =4m/a for (1,0,0) and 2&3vr/a for (1,1, 1), and col

is longitudinal zone-boundary frequency. We assume fre-
quencies co'=coT and ~"=co;+coT on the integral surface
S', where coT is the transverse zone-boundary frequency.
Thus

co;coT(co;+coT)exp( Acorlk—T)f dS' .
y2$

3& pV Vg
q'

boundary area, i.e., R =n/(&2a) for (1,0,0) direction
and (&3')/(&2a) for (1,1, 1) direction. Finally, the ex-
pression of the relaxation rate of the U process of the
type L+T+ L becomes

2y A'

co,.coT(cg, +coT )r, exp( fico—T/kT ),
37TpV Ug

(18)

where v =~Bee'/Bq'~„at co'=coL —co;. The expressions
for processes of the type T+L~O, T+ T~O are basically
the same as the above, but with a reduction parameter p
and some uncertainty in the value of v = ~Bbco/Bq'~.
This will be discussed in Sec. V.

IV. APPLICATION OF TWO-STEP THEORY

A. Two frequency ranges

where v is the sound velocity of the thermal mode and

vs
= ~Bc'"/Bq"

~
at co"=co;+coT in the direction of the

reciprocal-lattice vector b, i.e., perpendicular to integral
surface S'. While r, could be used as an adjustable pa-
rameter, in the present treatment it is fixed by Eq. (17).

The expression for processes of the type T+ T~L is
the same as Eq. (18). The expression for processes of the
type T+L~L, which are important U processes in the
case of silicon and germanium, is given as

y A'

co, (co~ —co; )cou r, expI —A(col —co; )/kT],
37TpU Vg

b
r, =R ——

q;
b

2
(17)

where R is the radius of a circle inscribed in the zone-

The problem is to determine the magnitude of the surface

IdS' The . integral surface must be near the first
Brillouin-zone boundary, thus one approximates the in-
tegral surface S' by the plane zone boundary which is
perpendicular to reciprocal-lattice vector b. Let
JdS'=err, . The effective radius r, from center of the
zone boundary is chosen so that the interacting mode q'
on the integral surface satisfy the momentum condition
(13) with the unique reciprocal-lattice vector. Using the
geometric diagram of Fig. 2, one can get the optimum
value of r, as

If the only resistive processes were U processes, one
would divide the frequency range at co;, the threshold fre-
quency at which a phonon can undergo a U process. A
phonon ~ (co; then reaches equilibrium by two steps: an
X process transferring momentum to frequencies above
co; (or just above co, , since the heat capacity drops rapidly
with frequency) followed by a U process. However, in
many crystals the scattering by point defects is strong
enough to be more important than U processes near co;.
The second step is then point-defect scattering, and can
also be important below co;. One needs a criterion divid-
ing the frequency range into m) cuz, where the second

1
&N

b

R (OU MR COp

FIG. 2. Geometrical diagram to determine the integral sur-
face at the zone boundary. Here r, is the optimum radius of the
integral surface in the process q+ q' =q"+b, where q is
thermal mode parallel to the principal direction.

FIG. 3. Schematic representation of relaxation rates as func-
tion of frequency in case of co& & cop. Here 1/~~ is point-defect
scattering, 1/~~ is the N process, 1/~U, is the U process of the
transverse mode, and cuU is the onset frequency of the U pro-
cess.
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&Ut

0)p COU

FIG. 4. Schematic representation of relaxation rates as func-
tion of frequency in the case of Ng cop.

step (R processes, combining U processes and point-
defect scattering) is significant and co (co~, where
momentum is transferred mainly by N processes into that
upper frequency range.

We divide the thermal phonons into two such groups
by using the following:

1 1
(co& ) = (co& ),

+N R
(20)

1 1
(cop)= (cop) .

Vp

We assume that most low-temperature thermal pho-
nons are transverse mode. Thus we consider only trans-
verse U processes and point-defect scattering as impor-
tant direct resistive processes (R process), and transverse
phonon N processes, as discussed by Landau and Rumer,
as the important N processes. Equation (20) becomes

where 1/~N is the relaxation rate of the normal process
and I/rz can be all other resistive process. In the first
group N processes are stronger than R processes and in
the second group R processes are stronger.

Let cop be the frequency at which the relaxation rate of
the N process is equal to that of point-defect scattering,
that is

C«~) =
C I rLR(~)+rp(~P) j

Pi

where co (co+. Range (8);

C
r(co) = [rLR(co)+rR (co; )],

lj

where

(23)

(24)

1 = 1
(co;)= (co;)+ (co; ),1

+R +U1 +P

provided co & coR if ~R & co; or ~ & ~, if uR ) co, . Range
(C);

C
«co) = [rLR(co)+r(co, )] .

C;
(25)

cop ~co; ( Fig. 4), where co, is the lowest frequency which
can undergo a longitudinal U process of the type
L+ T~(L or 0).

In case of (i), i.e., cop (co;, we have three kinds of
second-step processes for the three frequency ranges A,
B, and C:

(A) In the frequency range from cop to co, only point-
defect scattering is considered, approximated by a con-
stant relaxation rate I /rp(cop).

(8) In the frequency range co; to co, U processes can
occur; hence point-defect scattering and U processes are
considered in this range, approximated by a constant re-
laxation rate ( I /rp )(co; ) + ( I /r U, )(co; ), where I /r U,
represents longitudinal U process of the type L+ T~(L
or 0).

(C) In the frequency above co., only point-defect
scattering can occur, with a constant relaxation rate
( I /rp )(co, ).

In the case of (ii), i.e. , cop co;, point-defect scattering
is neglected in the range co &co; because it is quite weak
compared to N processes. In the range above co; both U
processes and point-defect scattering are considered
(range 8) and above co (range C) only point-defect
scattering occurs.

Thus the relaxation time of two-step processes for each
frequency ranges are given as follows: Range (A);

1 1

+LR +Ut VP
(22)

Here C denotes the total specific-heat integral, C; is the
part above co;, and Cp; and C; are the parts between cop

and co, respectively.
where 1/~U, represents the relaxation rate of the U pro-
cess of the type T+ T~I., O and T+L+ I,O, where the
first branch is the thermal mode. The frequency coR

changes as temperature changes, since 1/&LR~ T and
I /rz, ~ exp( —1/T ). Two typical cases are shown
schematically in Figs. 3 and 4.

B. Classification of second steps

In the two-step process, we consider only point-defect
scattering and the U process in the second-step process
and follow the simplification described below.

We classify the second step as follows. The frequency
coR is never greater than cop, hence it is convenient to
consider two difFerent cases: (i) cop (co; (Fig. 3) and (ii)

C. Use of isotropic continuum approximation

In the isotropic continuum approximation, the integral
surface of q space is the surface of a cone of which half
angle is generally cos '( v T /vL ) =48.2 ' because of
vT/vL -2/3 for the most crystals. We want to use the
isotropic continuum as an approximation to the fcc struc-
ture for the first-step process (Landau-Rumer process).
The angle between (1,0,0) and (1,1, 1) is 54.7'. Since
we choose the 14 principle directions for thermal pho-
nons, the majority of phonon in the (1,0,0) directions
are scattered into ( 1, 1, 1 ) directions and the majority of
phonon of (1,1, 1) directions are scattered into (1,0,0)
directions by the N process (Landau-Rumer process) in



6038 Y.-J. HAN AND P. G. KLEMENS

the approximation. Thus we have two different values for
co~ for each direction of ( 1,0,0) 's and ( 1, 1, 1)'s, to be
called ~R &1 0 0& and coR &1 1». The ~R &1 0 0& is deter-
mined by the equation I /rLR= I /rU, (, o o&+ I/rp
and the co~ &»» is determined by the equa-
tion I/rLR=1/rU, && & && + I/1 p where I/rU, (, o o&,

I/rU, (, , » refer to transverse U processes for the direc-
tions of (1,0,0), (1,1, 1), respectively. Thus the total
relaxation time of the two-step process is divided into two
different relaxation times as, for example, for frequency
range 8,

C
r2( i,o, o & C [rLR+ rz ( &, i, i & 1

lJ

for the thermal phonon of the ( 1,0,0) direction and

and

+R
& 1,0,0& ~U1&1,0, 0&

~U1&1, 1, »

(~;)+ (~;)1

7 p

(~;)+ (~;) .1

7 p

V. APPLICATIONS

K =E1+K2,
where

(26)

We use the Callaway's expression to calculate thermal
conductivity. Callaway's expression for thermal conduc-
tivity can be written

C
r2(i, i, i& C [rLa+rz(i, o, o&]

EJ

where and

'3 4
o~T r, x exp(x )

K, = — T
2

dX
2m. v & o [exp(x ) —1]

(27)

f (r, /r~) Ix exp(x)/[exp(x ) —1] I dx
3 . 0

K2 —
2

T O/T 42m v & f" (r, /r&rz )[x exp(x)/[exp(x) —1] Idx
0

72

1 6
14 ~2&1 0 0&

Here we consider the two-step processes as pure resis-
tive processes though they contain an N process in the
first step. In the first step, N processes are very restricted
for the specially chosen frequency range, i.e., ~ & coR, and
cuR is proportional to temperature. Thus at low tempera-
tures, we neglect the double counting of X processes.
Also 1/~Ut is the relaxation rate of the U process for
transverse modes of thermal phonons, taking the mean
value as

The combined relaxation time ~, is defined by
I/r, =i/ran+ I/r~. Now, the N process T+L~L is
considered an important normal process at low tempera-
tures. Thus I/r~= 1/rLR. The relaxation rate of resis-
tive process is

1 1 1 1 1 1=—+ + + +
+R +2 +Ut +P +B +op

where 1/~2 is the relaxation rate of the two-step process,
which is taken as the mean value for the 14 principal
directions, i.e.,

adjustable reduction parameter p is used. We choose
p= —,

' from the average polarization factor between the
acoustic mode and the optical mode in a one-dimensional
crystal. We also need to know the value of the group ve-
locity of the optical mode. We replace it by an average
value,

co, (0)—co, (q, )

Where the values of co, (0) and co, (q, ) are uncertain, we
choose values within experimental limits which give the
best fit. Generally the contribution of the interaction
with the optical mode is not strong.

The sound velocity U is determined by taking the har-
monic average of transverse and longitudinal modes in

TABLE II. Parameters used in the calculations as adjustable
constants: Griineisen y with thermal-expansion values in
parenthesis; point-defect scattering parameter a, derived from a
fit at low temperatures, with isotope values in parenthesis; L
smallest external dimension.

+Ut

1 6
14 ~Ut &100&

L

+Ut&1, 1, 1&

1/~p is the point-defect scattering, and 1/~B is the
boundary scattering; scattering by dislocations has been
disregarded. Also 1/~, is the interaction with the opti-
cal mode (see the Appendix). In the interaction with the
optical mode of the T+ T~O or L+ T~O processes, an

99.99'Fo LiF
97.2% LiF
92.6% LiF
NaF
Diamond
Si
Ge

392
1778
512
297

1.55(1.5)
0.52(0.9)
0.56(0.56)
0.76(0.76)

583 1.4 (1.5)

0.021(0.0005)
0.126(0.126)
0.318(0.318)
0.20(0.08)

0.031(0.004)
0.5(0.47)
0.7(0.45)

1.10
0.75
0.66
0.58
0.165
0.25
0.25

a (sec 'K ) I. (cm)
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TABLE III. The types of U processes used in the calculations in the frequency ranges, indicated in
units of 10' rad/sec.

LiF

NaF

Diamond

Si

Type of process

L+T=L
T+ T=L
L+T=O
T+ T=O

L+T=L
T+ T=L
L+T=O
T+ T=O

L+T=L
T+ T=L
L+T=L
T+ T=L
T+L =L
L+T=L
T+T=L
T+L =L

(100) direction

1.57-1.98
1.45 —2.39

The same as L+ T=L
The same as T+T=L

1.86—2.64
1.46—2.76

The same as L+ T=L
The same as T+T=L

6.22—8.15
5.56—15.2

3.96—6.06
2.18-2.83
1.80-2.83

2.36—6.32
1.21-1.51
0.91-1.51

(111) direction

2.83—4.06
2.17—3.90
Neglected
1.80—3.90

2.02—2.84
1.64-3.30
Neglected
Neglected

7.57-10.9
5.79—10.4

3.52—5.42
1.75-2.16
1.75-2.16

2.30—3.55
1.01-1.19
0.63—1.19

the principal directions of (1,0,0), (1,1,0), and (1,1, 1)
as 1/u = 1/3(2/uT+ 1/uI ) and where the transverse ve-
locity UT and the longitudinal velocity UL are given by the
following average over directions:

6UL&1, Q, Q&+ 12UI &1, 1,Q&+8UL&1, 1, 1&

L

and

6UT& 1 p p& + 12U1T& 1 1 p& + 12U2T& 1 1 1 &
+ 8UT

UT—
38

To determine the sound velocity of each mode, we use
data of elastic constants. '

The calculations are compared with existing data of
LiF, NaF, diamond II-a, Si, and enriched Ge. These
materials were chosen because thermal-conductivity mea-
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FIG. 5. Thermal conductivity of LiF. FIG. 6. Thermal conductivity of NaF.
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FIG. 9. Thermal conductivity of Ge.
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FIG. 7. Thermal conductivity of diamond.

surements have been made on good crystals. In order to
fit the existing thermal-conductivity data, we use the
Gruneisen parameter y, the point-defect scattering
strength u, and the smallest dimension of the crystal as
adjustable parameters. The experimental and theoretical
values of Gruneisen parameter and Debye temperature
are from Ref. (4), where the Debye temperatures are tak-
en for acoustic branches only. The characteristic param-

eters are given in Table II.
(i) LiF: We are comparing calculations with the exper-

imental data of Thacher" for 99.99%, 97.2%, and 92.6%
isotope Li as shown in Fig. 5. The most important U
processes that are considered are shown in Table III.

(ii) NaF: The calculations are compared with the ex-
perimental data of Taylor, Albers, and Pohl' (Fig. 6).
The value of point-defect scattering in parenthesis is for
the eff'ective extra point defect to fit pure crystal data
used by Walker.

(iii) Diamond: The type II-2 is one of the purest non-
conducting diamonds which has the highest thermal con-
ductivity. Thus our calculation is compared with the
data of diamond II-a. The calculation is compared with
the data of Berman, Foster, and Ziman as shown in Fig.
7.

10—
V 9-

8-

O

rY
crime nt

(iv) Si and enriched Ge: These crystals are insulators
and there are no carriers to scatter phonons. In the case
of Si and Ge, the U processes of the type T+L~L have
to be considered as important processes as well as that of
the type T+ T~L because the threshold frequency of the
U process is lower than that of the type T+ T~L. The
calculations are compared with the data of Glassbrenner
and Slack and Geballe and Hull, respectively, for Si
and Ge as shown in Figs. 8 and 9.

As the temperature increases, calculations deviate from
the experimental data because the 1V process is cut at the
transverse zone-boundary frequency.

VI. CONCLUSION

h 0 A h l

10
Temperature (K)

FIG. 8. Thermal conductivity of Si.

The present treatment of Umklapp processes clarifies
their role in the thermal resistive process. Only modes
above some minimum frequency co; can interact with
modes near the zone boundary. The resistive process is a
two-step process. Thermal modes interact by % processes
to modes co) co~, followed by either a U process, by
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APPENDIX: RELAXATION RATE OF INTERACTION
KITH OPTICAL MODE

In the case of LiF and NaF, the optical dispersion
curve intercepts all longitudinal modes in all
directions —(1,0,0), (1,1,0), and (1,1, 1). Thus a nor-
mal process of the type T+I.~O can be considered as a
resistive process because the group velocity of optical
mode is so small that the optical mode almost cannot
contribute to thermal conduction.

For simplicity, let us assume that optical mode has the
same frequency, i.e., the optical branch is completely Oat.
If the optical-mode frequency is constant in all directions,
the selection rules of the process can be written

CO+ CO
—

CO~ (A1)

point-defect scattering, or by these processes in combina-
tion.

Using a strength of point defects derived from fitting
the region below the conductivity maximum, and treating
the anharmonicity parameter y as adjustable, good fits
were obtained to experimental thermal-conductivity
curves for a number of crystals. The quality of the fits is
not in itself remarkable, however, it was not necessary to
invoke the exponent in the Umklapp resistance as an ad-
justable parameter. Instead the shape of the phonon-
dispersion curves, which are now known, were used in
the calculations.

The thermal conductivity is quite sensitive to point-
defect scattering and it is expected that as crystals of
higher purity become available, their thermal conductivi-
ty in the "Umklapp" regime will be substantially larger.

q+q =q (A2)

where co, is the frequency of optical mode, which is the
average value of the maximum and minimum value of the
transverse-optical frequency. In nondispersive continu-
um approximation, (A1) becomes

Uz-q+ UL g =CO+p

Thus,

(A3)

CO CO&P

UL

The single-mode relaxation rate is

(A4)

7
Qp

= g 2~pC3 5, (co+co' —co")[No No']-,
M COCO CO

(A5)

where v~= ~c)bco/c)q'~ at co'=co,
~
—co, thus we take the

group velocity as UL. Now the integral surface in q'
space can be taken as a sphere with radius (co,~

—co)/vI .
Then the integration can be reduced as follows:

where p is a reduction parameter —here p= —,'. Since
co &co'&co" in the case of LiF and NaF at low tempera-
tures, No No =e—xp( —x,~ ) [exp(x )

—1]. Thus,

, @2'=p fdS' f db, co6, (b, co) coco' co"ex p
+pp 3m P Ug U&

X( —x, )[exp(x) —1],
(A6)

fdS' f db, co5, (b,co)coco'co"exp( —x, )[exp(x) —1]=4'
2

CO
p

CO

co(co, —co)co, exp( —x, )[exp(x) —1] .

Thus the relaxation rate of interaction of the type T+I.~O can be written as

1 my% 1
4 coco,p(co,p

—co) exp( —x,p )[exp(x )
—1] .

&()p 3' P Uz-UL
(A7)
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