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Experimental spectroscopic and time-resolved luminescence measurements of the Ti'+:A1203 crystal-
line system have been performed. The absorption and Auorescence spectra obtained have led to a recon-
sideration of prevailing theoretical models for the radiative relaxation process in Ti:sapphire crystals. A
realistic, two-dimensional configuration-coordinate space model has been constructed to describe the
Jahn-Teller distortion of the system. Consideration of the nonlinear contributions to the electron-lattice
coupling potential was found to contribute little to the second luminescence emission maximum, thus in-

dicating that the electron-phonon interaction is essentially linear in the ground state. The main effect of
the nonlinearity was found to be in the value of the nonradiative activation energy. The spin-orbit cou-
pling was also incorporated in the model and was shown to be responsible for the nonradiative transi-
tions in Ti +:A1203, while the phonon structure of the ground ( T2) state of the system results from both
spin-orbit and nonlinear coupling with the lattice.

I. INTRODUCTION

Since sapphire doped with Ti +, Ti:A1203, has been
demonstrated as a solid-state tunable laser system, '
efforts have been undertaken to investigate the energetic
structure and the radiative as well as the nonradiative
processes in this material. ' The electronic structure of
octahedraly coordinated Ti + is a closed shell plus one 3d
electron. The d-electron level splits (omitting the spin)
in the crystal field into triply degenerate T2 and doubly
degenerate E states. Although the basic spectroscopic
properties of Ti:sapphire have been known for 30 years,
there are still some controversies related to the inhuence
of electron-lattice interaction on the absorption and emis-
sion line shape and the emission kinetics. It is known
that the large, static, Jahn-Teller, E-symmetry lattice dis-
tortion of the system in the excited E state is responsible
for the emission-absorption Stokes shift and also for the
internal conversion-induced quenching of the fluores-
cence at high temperatures. ' On the other hand, the
simplified one-dimensional configuration-coordinate
models proposed by Albers, Stark, and Huber and Ryvik
and Buoncristiani cannot describe quantitatively the ra-
diative as well as the nonradiative processes. For in-
stance, the predicted value of activation energy for the
nonradiative deexcitation of the system, ENR, depends
very strongly on input assumptions, especially the values

of elastic constants in the ground and excited states. As-
suming linear coupling with the lattice in both ground
and excited states, Albers, Stark, and Huber obtained
ENR =7786 cm '. The assumption of greater elastic
constant in the excited state (nonlinear coupling) yields
EN~ = 11 826 cm '. Taking into account the rapid de-
crease of the emission lifetime at temperatures above 300
K, these values seem to be too large.

The aim of this paper is the detailed analysis of radia-
tive and nonradiative transitions in Ti + in sapphire.
Based on the spectroscopic data (absorption, emission,
and fluorescence kinetics), we formulate an empirical
configuration-coordinate model of the Ti + ion in an
Alz03 host, presented in Secs. III and IV. Our approach
differs significantly from previous approaches ' since we
considered a more realistic two-dimensional
configuration-coordinate space for describing the Jahn-
Teller distortion of the system. Moreover, following
Bill, who considered the contributions of unharmonicity
and second-order coupling terms to the excited E state,
we also consider the nonlinear contributions to the
electron-lattice coupling. Furthermore, owing to its im-
portance to nonradiative transitions, we also discuss the
second-order coupling term in the case of the T2 ground
state. This paper addresses mainly radiative transitions.
In the companion paper, ' the detailed analysis of nonra-
diative processes is presented.
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FIG. 1. Experimental setup for time-
resolved Auorescence measurements of
Ti +:A12O3 crystal samples. See text for de-
tails.
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II. EXPERIMENTAL TECHNIQUE

The experimental setup utilized in the time-resolved
Auorescence measurements of the crystal sample is shown
in Fig. 1. As seen from the schematic, the main pump
laser was a pulsed excimer laser (model Heperex 400, Lu-
monics), which was set to lase at 308 nm (XeC1). This
laser was generating pulses approximately 15 ns wide [full
width at half maximum (FWHM)) at a repetition rate of
60 Hz and energies of 150 mJ/pulse. This excimer laser
was used to pump a pulsed dye laser (model HyperDye
300, Lumonics) with a dye medium of Coumarin 480 (Ex-
citon Chemical Co.). This dye dissolved in methanol al-
lowed a tuning range of the dye laser between 465 and
500 nm and energies in excess of 15 mJ/pulse. The pulses
coming out of the dye laser were measured to be approxi-
mately 10 ns wide. The laser beam out of the dye laser
was directed in the sample chamber where it was focused
through the sample with a long-focal-length lens (this al-
lowed all the beam to pass through the crystal sample).
Part of the laser beam, before it reached the chamber,
was refiected onto a fast photodiode whose signal was
used to trigger the data-acquisition system. In the sam-
ple chamber, the fluorescence from the sample was col-

lected with a lens and directed into a spectrometer and,
finally, onto a photomultiplier. The signal from the pho-
tomultiplier was fed into a gated integrator and boxcar
averager (model SR250, Stanford Research Systems Inc. )

and then into a computer through a computer interface
module (model SR245). In this manner the luminescent
decay of our crystal was measured to be purely exponen-
tial, as expected, with a metastable state lifetime ~=3.85
ps. Ti:sapphire absorption spectra in the 300—700-nm re-
gion were obtained using a spectrophotometer in the
standard transmission mode.

The broadband fluorescence spectra from the sample
were obtained using a similar experimental setup (see Fig.
2). However, the source of excitation was a cw argon-ion
laser generating 1.5 W average energy at 488 nm. Just as
in the time-resolved measurements, the laser beam was
directed into the sample chamber where a lens was uti-
lized to collect the fluorescence signal from the sample.
The fluorescent light was then directed through a spec-
trometer and finally into a silicon detector. The signal
from the detector was synchronized with the spectrome-
ter wavelength setting through a computer data-
acquisition hardware and software. This synchronization
made intensity measurements of Auorescence as a func-
tion of wavelength possible.

488 nm

Argon-ion cw ]Asar

Data aapxisition system

)Flllorescence ) )siunal

wRvelength
setting

Bpectrcxneter
U

Silicon teder

8ample
c bnrnber

FICs. 2. Experimental setup for Auorescence
spectra acquisition of Ti:A1203 crystal sam-
ples. See text for details.
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FIG. 3. Configuration-coordinate diagrams for Jahn-Teller
eft'ect. (a) E-electronic state and E-symmetry distortion; (b) T, -

electronic state and E-symmetry lattice distortion. Q, and Qe
represent the normal coordinates related to E-symmetry distor-
tion.

III. BASIC ASSUMPTIONS
AND HAMILTONIAN OF THE SYSTEM

The octahedrally coordinated Ti + ions in sapphire
compose a system wherein a d ' electron is in a E excited
or T2 ground state. We have assumed that the dom-
inant lattice distortion has E symmetry, and so the
electron-phonon interaction causes the Jahn-Teller split-
ting of both E and T2 states. The typical
configuration-coordinate diagrams for both cases are
presented qualitatively in Fig. 3."

To consider also the possibility of nonradiative transi-
tions, we have performed calculations including the spin-
orbit interaction in the electronic part of the Hamiltoni-
an. It has been postulated' that the spin-orbit coupling
of the I 8 component of the T2 ground state with E ex-
cited state is responsible for the radiationless deexcitation
of Ti +. The spin-orbit interaction is also important as
long as one is interested in the splitting of the zero-
phonon line and the phonon structure of the ground
state.
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FIG. 4. (a) Absorption and (b) fluorescence spectra for
Ti +:sapphire. Solid curves correspond to the experimental
emission and absorption spectra; dashed curves correspond to
the calculated spectral line shapes.

To perform detailed calculations, we have analyzed the
absorption (transmission) and fluorescence spectra of
Ti + (see Fig. 4). We have assumed that the positions of
the maxima of the absorption and Auorescence corre-
spond to the Frank-Condon transitions (transitions
without changing the value of the configuration coordi-
nate). The absorption coefficient p(AO) and the emission
intensity I(A'0) are related to the line shape of the spec-
trum, which, in our case, is defined by vibronic overlaps
I„;„(fiQ)as follows

p(fiQ) ~ I„„(A'Q)A'0,

TABLE I. Maxima in the absorption and emission spectra of Ti:A1203.

Absorption (cm ')

AQi
AQ2
Emission (cm ')
AQ3

Refs. 13,8,5

20 476
17 987

14 380

Ref. 3

20 618
18 182

13 158

Ref. 4 Ref. 7

13 333

20 600 20 300 20 492
18 180

20 366
18 180'

13 387 12 740

Present work
Intensity Line shape

'Since the absorption line shape differs only little from the absorption coefficient, we assumed the same
position of the second absorption maximum for the line shape and the absorption coe%cient.
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I(A'0) 0- (iriQ) I„;b(A'0) . (2) TABLE II. Clebsch-Gordon coefficients for the E state
(u =(3z —r )/2, V=3' (x —y )/2,

crystal-field

basi).

(4)

The electron-phonon interaction Hamiltonian can be ob-
tained by considering the changes of total potentials re-
lated to ionic motion. One obtains

t)V(q, g) I + 1) (q, g) g gag, ' 2 „ag,ag,

+O(Q, Q Qk) . (5)

In Eqs. (4) and (5), Q is in units of (fi/Mco)'/, where M is
the reduced mass of the ions involved. The phonon ener-

I

Here 0 is the frequency of the absorbed-emitted photon.
Since the Frank-Condon rule concerns the vibronic line
shape rather than the absorption coefficient and emission
intensity, we have calculated the spectral line shapes first
according to Eqs. (1) and (2), and then we used the ener-
gies of their maxima as input parameters for calculations
of configuration-coordinate diagrams. The respective
data are listed in Table I. We have used an empirical ap-
proach in which matrix elements of the electronic part of
the Hamiltonian of the system have been scaled to the en-
ergies of the Frank-Condon transitions with free parame-
ters defined by the matrix elements of the electron-
phonon interaction Hamiltonian.

The total Hamiltonian of the system is given by

H (q, Q) =H, (q)+HI(Q)+H, &(q, Q),
where H, (q), H&(g), and H, &(q, g) are the electronic,
vibronic, and electron-phonon interaction Hamiltonians,
respectively. q and Q correspond to electronic and ionic
coordinates, respectively. The lattice Hamiltonian can be
approximated by the harmonic term and is given by

84'-2/2
80—1/2

8
41/2

8
A/2

Q 1/2

0
0

—1

0

U —1/2

0
0
0

—1

U1/2

gy is given in units of %co. However, it should be men-
tioned that %co is only the unit of energy, and since our vi-
bration problem is not a simple one-dimensional harmon-
ic oscillator and we assume nonlinear coupling with lat-
tice vibrations, Ace may not be equal to the phonon ener-
gy. i and j label the normal configuration coordinates.
In the case of the E mode, we have two independent
configurational coordinates: Qs and Q, . It should also
be mentioned that, included in the second-order contribu-
tions in Eq. (5), we consider the changes of the elastic
constant of the medium as related to the various electron-
ic rearrangements when the system is in di6'erent elec-
tronic states. We also consider the spin-orbit interaction,
and thus it is useful to use the total angular momentum
wave-function basis IP"I, where n corresponds to the ir-
reducible representation of the crystal symmetry point
group and J is the total angular momentum quantum
number. The relations between the I PJ I and the crystal-
field basis functions can be obtained using the Clebsch-
Gordon coefficients. For the case of octahedral symme-
try (Oh point group) the coefficients are listed in Tables II
and III.'

Considering that the above-mentioned interactions in
Eq. (3) do not remove the Kramers degeneracy, one takes
into account two functions for the E and three functions
for the T state. Thus the electronic part of the Hamil-
tonian in the angular momentum wave-function represen-
tation has the form

E,

&3/&zp

0

0

V'3/v'2P

E2 +P
T2

&3/&op

E2 —P/2
"2

&3/&zp

E2 —P/2
2

Here p is the spin-orbit coupling constant. Since E2 and Ez correspond to zero-phonon energies of the excited and
E 'T2

TABLE III. Clebsch-Gordon coefficients for T2 state (g=yz, 2)=zx, g=xy, crystal-field basis).
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8
3/2
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0
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—i /&6

0
—i /&2

0
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0
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0

i /&6
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0
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0
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0
0
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0
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0
0
0
0
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0
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0
0
0
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ground states, respectively, the lattice Hamiltonian should include the Jahn-Teller stabilization energies Ei~(E) and
EJr( T) for the excited and ground states, respectively. ' This gives the diagonal components of H&

E E
H, T =Eir T +—(Qg+Q, ) . (7)

Since E-symmetry distortion does not mix the E and T2 electronic states, the electron-phonon interaction Hamiltonian
matrix element of arbitrary components, the first of the E state and the second of the T2 state, is zero. Thus the
electron-phonon Hamiltonian is represented by a diagonal block matrix with a 2 X 2 matrix for the E and a 3 X 3 ma-
trix for the T2 state:

H, i( E)=L~
—,'(Qg —Q', )

—QgQ,

—QgQ,

1(Q2 Q2)

and

0 &2Q, —&2gg

H, i( T~)=Lr &2Q, Qg
—Q,

—+2gg —Q, —
Qg

+Kr &2g, gg

(Qg —Q,')/&2

&2g, gg
—(Qg —Q,')/2

(g'. —g', )/&2
—Q, Qg

(Qg —Q,')/2
(9)

Here:"

LIg 0 D + U U ~ Eg 0
2

0 + U
2

v

(10)

IV. CALCULATIONS

and

EJr(E)= ,'L~l(1 KF)——
Ei~( T) =2Lz /(1+2K' ) . (12)

To consider the positions of the energy minima on the

The spin-orbit coupling significantly changes the elec-
tronic manifold energies only for the region where
configurational surfaces cross over or are close to one
another. Therefore, since the minima of the
configuration energies of the E and T2 states are well
separated by an energy equal to the zero-phonon line
transition, —AE =16200 cm ', the values of the param-
eters Lz[Eir(E)], Lr[Ei~(T)], KE, and Kz- can be ob-
tained assuming P=O. Actually, performing calculations
assuming P =0 and 200 cm ', we have found the
differences between the values of these parameters were
less than 1%. By omitting the spin-orbit interaction, we
can get compact, analytical expressions. Therefore we
present here only the formulas obtained using this
simplification. Furthermore, we present the
configuration-coordinate diagrams obtained using the
electron-phonon coupling defined by constants I.z, I.~
and KE,Kz. calculated under the assumption P=0 and in-
cluding the nonzero spin-orbit coupling given by the
Hamiltonian [Eq. (6)]. Using Eqs. (7)—(9), one can calcu-
late the Jahn-Teller stabilization energies. The results
are

Qg, Q, plane, one can use the new coordinate set (a and

p) defined by

Qg/Q, =cota (13)

and

(Q2 +Q2 )1/2 (14)

p=Lz/(1+K+) and a=O, 2m. /3, and 4m/3 . (16)

It is evident that the minima become the saddle points
and vice versa if Kz becomes negative. For the T2 state,
we have three minima placed at

p=Lr/(1+2K&) and a=O, 2m/3, and 4'/3 . (17)

It has been found that in order to fit the configuration-
coordinate diagram to the experimental Frank-Condon
transitions, we had to assume that the minima of the
ground state are placed under the saddle points of the ex-
cited state. The configuration-coordinate diagrams can
be calculated via the roots of

detiH(Q) —Ei =0,

For the E state, one obtains three equivalent minima at
the positions

p=Lzl(1 Kz) and a=—m/3, m. , and 5'/3 .

In addition, three saddle points, characterized by the re-
laxation energy ,'LF l(1+K@), a—replaced at



48 SPECTROSCOPY AND ANALYSIS OF RADIATIVE AND. . . 5927

where H(Q) is the total Q-dependent Hamiltonian given
by the sum of Eqs. (6) and (7) and the block matrices
given by Eqs. (8) and (9).

We fitted the values of parameters of the
configuration-coordinate diagrams considering the ab-
sorption and emission spectral line shapes. We have two
maxima in the absorption spectra corresponding to the
Frank-Condon transitions from the minimum of the
ground state to two components of the excited state.
Choosing the zero energy at a minimum of energy of the
Tz electronic manifolds and considering a particular

minimum of energy of the T& state —for instance, one
corresponding to p=2Lz. /(1+2K&) and a=O (or one
can consider another equivalent minimum [see conditions
(17)] and obtain the same results) —one obtains two
equations:

AQ, =E+,
A'0 =E

(19)

(20)

+2L~Lr /(1+2-Kz. )+b E . (21)

Here fiA, and A'Qz (listed in Table I) are the energies of
photons corresponding to the transitions to upper (+)
and lower ( —) component of the excited state:

E+ = ,'LJ /(1 K~ )—+2Lr(—1+K~ )/(1+2Kr )

AA3 =AE —E

where the energy of the ground state is given by

(22)

E =2Lr/(1+2K@)+ —,'(1 —Kr)[L~/(1 K~)]—

Lz.L~ /( —1 —K~ ) . (23)

It is seen that we have three equations [(19), (20), and
(22)] and four free parameters Lz, Kz, Lz-, and Kr.
Therefore the value of one of those should be obtained in
some other way. Here we discuss the value of K~. For-
mally, the value of Kz- can be calculated if one knows the
potential energy in the vicinity of the minimum of the

T~ manifold. Considering the particular minimum at
Qs =2Lz /(1+2K&), Q, =0, one can obtain the potential
energy in the form

AE is the energy of the zero-phonon line deduced from
the experimental spectra: AE =16200 cm '. A third
equation can be obtained from the fluorescence maximum
Ajj3 12 740 crn '

~ This band corresponds to the
Frank-Condon transition from the minimum of the excit-
ed state with energy AE placed at p=Lz/(1 —Kz) and
a=~ [or any other equivalent point; see conditions (15)]
with respect to the ground state. Thus the third equation
has the form

V(Q) = V[Qs =2Lr/(1+2Kr ), Q, =0]+—,
' (1+2Kr )[Qg 2Lz/(1—+2K.r )] + —,'(1 2Kr )Q, .— (24)

Gachter and Koningstein have recognized two different
phonon energies in the ground state of Ti +:A1~03.
Scag& =257 cm ' and %cog&=220 cm '. Assuming that g1
corresponds to the c mode and g2 to the 0 mode or vice
versa, Eq. (24) allows the calculation of the absolute value
of Kz (=0.077) and of the average phonon energy in the
ground state (A'co =239 cm '). This is the phonon ener-

gy under the assumption of linear coupling, i.e., K&=0.
Although this result seems to be reasonable, it may be
fairly incorrect, given that spin-orbit coupling can also
cause the splitting of phonon modes (see the Appendix).
Therefore, in this work, we cover all possibilities and
present the configuration-coordinate diagrams for
K~ =0.077, Kz- = —0.077, K~ =0, and Kz- = —0.043.
The first two cases correspond to the situation when the
phonon energy "splitting" is related only to the nonlinear
electron-lattice coupling amd the third case when it is re-
lated only to the spin-orbit interaction. The fourth case
corresponds to the situation when the phonon energy
"splitting" in the ground state depends on both effects. It
should be mentioned here that the set of parameters re-
lated to K~= —0.043 corresponds to the best reproduc-
tion of the fluorescence kinetics in Ti +:Alz03 (see com-
panion paper' ).

Since Lz and EJr(E), and Lz. and EJ~(T) are pairwise
directly related to each other by means of Eqs. (11) and
(12), we calculated the Jahn-Teller stabilization energies
and the Kz coefficient. The obtained values of the fitted

I

parameters are listed in Table IV. The corresponding
configuration-coordinate diagrams are presented in Fig.
5. Here the sections along Qs are presented with Q, =O.
One can see the anticrossing behavior of the lower com-
ponent of the E state with the upper component of the

Tz state. In this region the electronic parts of the wave
functions are well mixed. As has been suggested' that
this effect is mainly responsible for the nonradiative deex-
citation of Ti +. One can obtain the energy barrier for
nonradiative transitions ENR, measured as the energy of
E- T& "crossing" with respect to the minimum energy of

the excited state. The other parameters which can be ob-
tained are the stabilization energy of the excited state (the
relative energy of the minima and saddle points, b, &) and
the energy of the second fluorescence band with the max-
imum —RQ4 (energy of the transition between the
minimum of the E state and the upper component of the

Tz state; see Fig. 5). The second maximum in fluores-
cence is expected to appear when the system in the excit-
ed state is stabilized in an individual minimum, which is
created due to the second-order contribution in the
electron-phonon interaction Hamiltonian (Kz&0).

In Fig. 6 the configuration-coordinate energies of the
lowest components of the E and Tz states are presented
as a function of Qs and Q, . Here the processes of ab-
sorption, relaxation, and Auorescence are shown.

It seems that positive Kz values are rather unphysical,
since they cause a relatively low barrier for nonradiative
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TABLE IV. Calculated spectroscopic parameters of Ti:A1203.

KT

K~
EJT(E) (cm ')
EJT(E) (cm ')

Ag (cm ')

AQ (crn ')
ENR (cm ')

AN]( E) (crn ')
AN2( E) (crn ')

0.077

0.385
2879

223
1605

8401
985
187
185

—0.077

0.195
2993

113
966

11 830
7171

214
202

0

0.289
2909

158
1311

10 351
2633

202
200

—0.043

0.236
2924

132
1125

11 225
4507

208
202

Experiment

above
10 500

-200 (Ref. 3)
-200 (Ref. 3)
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FIG. 5. Configuration-coordinate diagrams for Ti'+ for four different parameter sets fitted to the spectroscopic data. Here the
section of configuration surfaces along QII is presented assuming g, =0: (a) for the parameter set generated by Kz =0.077, (b) for
KT= —0.077, (c) for KT=O, and (d) for Kz. = —0.043. To obtain these plots, the spin-orbit couplings have been assumed to be 200
cm '. The Frank-Condon transitions are indicated by arrows.
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a v
V (Q)= V (Q )+—g Q;Q, ,

ag, ag,
(25)

where i =O, c and j =O, c.. Neglecting the spin-orbit in-
teraction, one obtains

V (Q)= V (Q )+ —,'[(1—KE)e +(—,
' —

—',K~+2KE)e ],
(26)

0
CO

N

0

1l 0
K

where

e=gs ge(E—) and e=g, —Q, (E) . (27)

FIG. 6. Fu11 configuration-coordinate diagrams for the
lowest component of the T2 state and lower component of the
E state. The Frank-Condon transitions are indicated by ar-

rows.

Since a V/ag&ag, =0, the 8 and E variables are separ-
able. Thus each minimum of the E state can be charac-
terized by two independent modes with energies iiico, ( E)
and A'co&( E). ' The calculated energies of these modes
are presented in Table IV. One can see that for each case
the energies of phonons in the excited state are smaller
than in the ground state and in good agreement with ex-
periment. '

The lower states to which transitions are probable are
given by three two-dimensional harmonic oscillators with
the minima of energy at the points given by conditions
(17). Assuming that the ground state is characterized by
linear coupling with the lattice (Kr =0), one obtains the
potential energy of such a system as follows:

3

V (Q)= —g (8,'+E';),
2 ' ]

(28)

transitions (985 cm ). Experimentally, small nonradia-
tive transition rates for small and intermediate tempera-
tures have been found. Usually, the nonradiative decay
becomes important for temperatures greater than 300
K. Negative and rather small ICz (with absolute value
smaller than 0.077) is much more reliable, since it gives,
in addition, a very good prediction of the energy of the
second band in the emission spectra. An additional argu-
ment for small Kz- is the specific structure of the first ex-
cited phonon state of the T2 state obtained including
only the spin-orbit coupling. For these reasons further
calculations have been performed assuming Kz-=0 and
E~= —0.043.

V. QUANTITATIVE ANALYSIS
OF THE EMISSION LINK SHAPE

It was shown in the preceding section that the non-
linear coupling with the lattice vibration in the case of
the Ti:sapphire system in the excited state ( E state)
causes the stabilization of the system at individual points
on the configurational plane. This is the reason for which
one can reproduce the Auorescence spectrum in a rela-
tively simple way using a two-dimensional oscillator
model. Being in the excited state, the system can be de-
scribed by three individual two-dimensional oscillators
with the minima of the energy at three points in the
configurational plane [Eq. (15)]. Let us focus at the
minimum placed at Q&(E)= Lz/(1 ICE), Q, (E—)=0. —
The potential energy around that minimum can be given
as follows:

where

8;=Qs —Qs;(T) and s;=Q, —Q„.(T); (29)

i labels the minima.
This allows the calculation of the emission intensity

I(A'0) using relation (2), where the vibronic reduction
factor I„;b(iiiQ) corresponding to the line shape of the
spectrum can be calculated from the expression

I„;b(A'A) =5[iriA —(5E —mRcog )]
3 m

x y y )(E'8~T"e ) )'{(E"~T--"8 ) ['
i =i k=o

(30)

If one takes into account the nonlinear coupling with the
lattice in the ground state [see Eq. (24)], one should con-
sider two difFerent phonon energies Ace, and Ace 0 related
to E and 8 modes, respectively. Thus Eq. (30) ca,n be re-
cast in the new form

3 3

I„;b(iris')= g g 5{%'co—b,E+[kRcogs +(m —k)iricog, ]]
i =1 k=O

X[(E'e~T"8 )[')(E'E~T "e, )['.

Here 5 is the Dirac delta function, (E 8~T"8; ) and
(E e~T E;) are the overlap integrals of the vibronic
functions in the E and T2 states, k, m —k are vibronic
quantum numbers, i labels the components of the ground
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FIG. 7. Vibronic overlap spectral line shape for the emission
spectrum of Ti + in A1203. Dashed curves correspond to the
components of the spectrum; the solid line corresponds to the
resulting line shape. Asterisks correspond to the experimental
line shape at room temperature. (a) Calculations performed for
two-dimensional oscillators defined by parameter set corre-
sponding to K&=0; (b) calculations performed for oscillators
defined by parameter set corresponding to KT= —0.043 (see
Table IV). In both cases the reproduced line shapes have been
normalized to the maximum in the experimental emission spec-
tral line shape.

( Tz) state (the minima of the potential energies), and A'co

is the energy of the emitted photons.
Since the vibronic wave functions I E ) and

I
T ) are

harmonic-oscillator wave functions, the overlap integral
can be calculated by the Manneback recurrence formu-
las. ' For performing calculations the one value of the
phonon energy in the ground state, ficog =239 cm, ' the
same for the 0 and c. modes, has been taken for AT=0,
whereas A'co, =249 cm ', fico s=229 cm ' (Ref. 10) have
been used to reproduce the spectrum for KT= —0.043.
The results of the calculations are presented in Figs. 7
and 8. In Fig. 7 the emission line shapes I„;b(iiiQ) are

l

FIG. 8. Reproduced emission spectrum for Ti + in A1203.
Dashed curves correspond to the components of the spectrum;
the solid curve corresponds to the resulting intensity. Asterisks
correspond to the experimental emission intensity. (a) corre-
sponds to results obtained assuming KT =0; (b) KT = —0.043.

presented. In Fig. 8 the emission intensities are calculat-
ed according to relation (2). One can see from Fig. 8 that
for both sets of parameters there is a pronounced redshift
of the calculated main maximum of the emission intensity
with respect to the experimental spectrum. In fact, the
spectra have been fitted using the Frank-Condon rule for
the spectral line shape. Since the experimental line shape
is significantly broader than the theoretical one, the
respective shifts of the maxima of the emission intensity
must be different (the shift for a broader line shape is
greater). This effect is related to temperature: The calcu-
lations have been performed for 0 K, whereas the spec-
trum has been measured at 300 K. It is also possible to
reproduce the spectra for any reasonable temperature by
considering the emission from higher vibronic levels of
the E electronic state. Considering the Boltzmann occu-
pation of the vibronic levels, one can calculate I„;b(iriQ, T)
according to the formula

3 m n

I„;b(fiQ, T)=QS(n, T) g g g 5IiiiQ —hE+[khco s+(m k)Icos, nhco—,]]—
i =1 k=O t=0

X I
(E'Ol T"8; ) I'1(E" 'El T- (32)
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where the Boltzmann occupation factor S (n, T) is given by

S(n, T) =exp( nR—co, /kT) g p(n')exp( —n'fico, /kT)
n

(33)

where n, n ', t are the vibronic quantum numbers of the ex-
cited electronic state and p(n') =(n'+1) is the density of
states. ' To obtain Eqs. (32) and (33), we have assumed
the same phonon energy %co, for both modes (E and 8) in
the excited state. For calculations, %co, =201 and 205
cm ' have been taken for AT=0 and —0.043, respective-
ly. The emission spectra reproduced for T=300 K are
presented in Fig. 9. Figure 9(a) presents the results ob-
tained assuming KT=0. Figure 9(b) presents the results
obtained assuming Ez= —0.043. One can see that the
correspondence between the theoretical results and ex-
periment is quite good in both cases (slightly better for
Xr = —0.043).
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FIG. 9. Reproduced emission spectrum at room temperature.
Dashed curves correspond to the components of the spectrum;
the solid curve corresponds to the resulting intensity. Asterisks
correspond to the experimental emission intensity. (a) corre-
sponds to results obtained assuming KT =0; (b) ET= —0.043.

VI. COMPARISON WITH THE RESULTS
OF OTHER MODELS AND CONCLUSIONS

Albers, Stark, and Huber used the single-
configuration-coordinate model for describing the nonra-
diative transition in Ti in an Al203 host. However, the
base model used by those authors was the two-
configuration-coordinate model. ' That model includes
only the linear terms of electron-phonon interaction. In
that case the system in the E state is not stabilized at
particular g& and Q, [see Fig. 3(a)], and therefore the
second Auorescence band does not exist. Albers, Stark,
and Huber have obtained the Huang-Rhys energy
SAco =4410 cm '. This quantity corresponds to
Eir(E)+EiT( T) in our model. The second quantity
which one can deduce from Ref. 3 is ENR =7787 cm
These values for SAco and ENR are greater than those ob-
tained in the framework of our model. This results
directly from the assumption of linear coupling with pho-
nons in the E state performed in Ref. 3. In this paper we
have shown that nonlinear coupling yields smaller pho-
non energy in the excited state. This effect has been ob-
served by Gachter and Koningstein, but also by Albers,
Stark, and Huber. The second model, which has been
published by Ryvik and Buoncristiani, is the single-
configuration-coordinate model. They postulated that
the elastic constant in the excited state is greater than in
the ground state. This assumption produces a much
higher, unrealistic, energy barrier for nonradiative transi-
tions: ENR =11826 cm '. Our model predicts ENR be-
tween 985 and 7171 cm ', depending on the second-
order contribution to the electron-lattice coupling in the
ground state.

The estimated value of EF (ICE =0.195—0.395; Table
IV) suggests that the second-order contribution to the
electron-phonon interaction plays an important role
when the system is in the E state. In general, nonzero
KE causes stabilization of the system for particular ion
displacements. The displacements of ions corresponding
to configuration coordinates in the particular point on
the O, c. plane are presented in Fig. 10.' It is seen that
the positions of the ions for the minimum energy of the
system in the excited state correspond to the stress of the
octahedron along one of the axes (x, y, or z). On the oth-
er hand, being in the ground state, the system reaches the
minimum energy for the octahedron spread along ade-
quate axes (x, y, or z).

It is interesting to consider whether the second-order
terms in the electron-phonon interaction Hamiltonian
also play an important role for the system in the ground
state. The predicted energy of the second maximum in
the fluorescence band obtained using only the linear term
or a very small second-order term for the ground state is
quite accurate. Therefore it seems that the electron-
phonon interaction is almost linear in the ground state.
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FIG. 10. Octahedron distortions and corresponding direc-
tions in the Qs, Q, plane. Open circles correspond to the posi-
tions of the minima and to the saddle points of the configuration
energies. Adequate distortions of the octahedron consisting of
the central Ti'+ ion and ligands are graphically presented near
each point.

The two different phonons in the ground state are related
to the nonlinear coupling with the lattice vibrations as
well as the spin-orbit splitting of the T2. Nevertheless,
even very small nonlinearity of the electron-lattice in-
teraction for the system in the ground state influences
very effectively the value of the nonradiative activation
energy (see Table IV and Fig. 5).

The spin-orbit coupling is important for two reasons:
(a) It allows nonradiative transitions due to the mixing of
the electronic parts of the wave functions of the ground
and excited states. ' (b) It yields the splitting of the T2
state (the zero-phonon line as well as the phonon replica).
It should be mentioned here that the value of the spin-
orbit coupling parameter /3=200 cm ' used through out
this paper is rather overestimated. The more reliable
value @=80 cm ' has been obtained from the spin-orbit
splitting of the zero-phonon line of the ground state.
Nevertheless, we have used this overestimated value to
describe successfully the anticrossing behavior of the E
and T2 states in configuration-coordinate diagrams.
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approach similar to the one proposed by Sturge' and
Ham. Actually, the case of Ti +

T2 zero vibronic state
splitting has been discussed in a number of papers. '

It is known that the trigonal crystal field and the spin-
orbit interaction yield the splitting of the Tz state into
2E, /2, ,E&/2, and E3/2 Kramers doublets. The effect of
the TXc Jahn-Teller distortion, which produces addi-
tional crystal field, is usually taken into account by con-
sidering the quenching of the electronic Hamiltonian ma-
trix elements by the respective overlap integrals of the
vibronic wave functions. A detailed analysis of the struc-
ture of the zero vibronic states has been performed by
Macfarlane, Wong, and Sturge and by Bates and Bent-
ley. These authors have obtained the "bare" electronic
matrix elements related to the spin-orbit interaction (P)
and the trigonal field (v): P=120 cm ' and v=790
cm ' under the assumption of a medium Jahn-Teller
effect in the T2 state. Since the analysis of the absorp-
tion and emission spectra presented in this work predicts
rather small Jahn-Teller splitting of the ground state in
the case of Ti +:A12O3, we give here a more comprehen-
sive analysis of the vibronic structure of the T2 state.
We have considered the zero vibronic states as well as the
one-phonon excitation states related to the T2 electronic
manifold. Thus our basis consists of 18 adiabatic wave
functions related to three electronic manifolds described
by g, g, and g, which are represented as follows:
y+~0, 0), p+~1, 0), and y+~0, 1). y is the electronic part
of the wave function' , g, t), and g (+ and —correspond to
projection of the spin) and ~n, m ) are the vibronic wave
functions corresponding to n and m phonon excitations
related to the 0 and c, modes, respectively. Considering
that the perturbation Hamiltonian H' is given by the
spin-orbit interaction H, , and the trigonal crystal field
Ht g

one may calculate the nonvanishing, first-order ma-
trix elements. Considering the electronic part of the
wave functions, one obtains

(Al)

(A2)

(A3)

(A4)

y"" ™m~=a&&n, m ~n', m'))a' . (A5)

Here & ) corresponds to integration over the electronic
coordinate. Since the Jahn-Teller effect yields the split-
ting of the T2 state in the configuration-coordinate space
into g, g, and g electronic manifolds, each matrix element
defined by (Al) —(A4) is quenched by the respective over-
lap integral related to the vibronic wave functions:

APPENDIX: PHONON STRUCTURE
OF THE T2 STATE IN Ti:A1203

%'e have considered the phonon structure of the
ground T2 electronic manifold in Ti:A1203 using an y".Oo =exp( —S/2) (A6)

In Eq. (A5), « )) corresponds to integration over ionic
(configuration) coordinates in two-dimensional space (8
and e). In our case it is easy to obtain
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FIG. 11. Dependence of the energy structure of the zero- and
one-phonon excited states of T2 electronic manifold on the pa-
rameter S obtained for P=200 cm ' and v=500 cm '. Dashed
curves represent energies of the zero vibronic states obtained by
omitting the influence of the upper vibronic states (see text for
detailed description). In both cases the phonon energy has been
assumed to be Ace=239 cm

01, 10 01, 10

3 1/2—yol, 10— yol, 10— S exp( S/2)4n N 4
(A16)

gn 1r" =r"= '"P y [3(n —S)'+5n]
4 „2n!(n —1)

(A23)

M (2)—
aa

2 2p+ r...
Ace 4 9

(A17)

where

I,, ~ ~ ~ l&&ajl ', kn —k))I
2 k=o (n —2+i+J)

In Eqs. (A6) —(A16), S is the parameter related to the
Jahn-Teller stabilization energy of the system in the T2
state: S =3E&T(T)/fico. The influence of coupling with
higher excited vibronic states has been considered as a
second-order perturbation. In the case of the
Ti:sapphire, the corrections to the energy are given by di-
agonal terms:

It is interesting to mention that if we restrict our problem
to zero vibronic states, while the remaining excited vib-
ronic states (including l01 ) and

l
10 ) ) are considered as a

perturbation, our model is equivalent to that proposed by
Macfarlane, Wong, and Sturge and Bates and Bentley.
Thus the calculations performed under these assumptions
give results identical to Ref. 23. One can reproduce the
proper structure of the lowest three Kramers doublets re-
lated to the T2 state, using quite large v and p, assuming
a medium Jahn-Teller effect. The results obtained for
P=200 cm ' and v=500 cm ' are presented in Fig. 11
(dashed curves). A slight underestimation of the energy

In Eqs. (A17) and (A18), a' and a correspond to g, i), and
g; i and j are the vibronic quantum numbers. The sums
over the higher excited vibronic states in I ' can be re-
duced as follows:
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2 n!n

for any a and
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FIG. 12. Dependence of the energy structure of the zero- and
one-phonon excited states of T2 electronic manifold on the pa-
rameter S obtained for P=80 cm ' and v=200 cm '. The pho-
non energy has been assumed to be Ace=239 cm
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5& with respect to 5z in comparison with the original re-
sult of Macfarlane, Wong, and Sturge appears (see Fig.
12), since we have not considered the second-order
correction to the off-diagonal matrix elements.
However, if one performs the full calculations taking into
account also the one-phonon excited states as described
here, the resulting structure is quite difterent (see solid
curves in Fig. 11). One can see that in the energy region
under consideration (52=-0. 5fico), for S—=3, we have
states which are originally related to the first phonon ex-
citation. Actually, owing to the fact that the vibronic
overlap integrals related to the wave function of the zero-
and one-phonon states, and the one-phonon states of the
di6'erent electronic manifolds, for large p and v, are large,
we have no well-separated phonon structure for the medi-
um Jahn-Teller energy range. On the other hand, the
analysis of the emission spectra of Ti +:sapphire yields a
smaller Jahn-Teller effect than suggested by Macfarlane,
Wong, and Sturge (our prediction is S=-1.4). This is
the reason for which it can be asserted that the spin-orbit
interaction and the trigonal field distortion are much
smaller than earlier calculations. We have performed
calculations using P on the order of 100 cm ' and v on

the order of 200 cm '. The results for p=80 cm ' and
v=200 cm ' are represented in Fig. 12. For S =1.4 we
have obtained 5&=35 cm ' and 5@=107 cm '. These
values are reasonable when compared with far-infrared
spectroscopic data (5,=37 cm ' and 52=108 cm '). '
In addition, we have been able to predict quite accurately
the structure of the first vibronic state. We have found
three main components of the first vibronic state with en-
ergies: 5&

=Am+ 38 cm ', 52 =Ac@+73 cm ', and
5&=Ace+103 cm '. The next higher components should
give a broadband of energy 54=%'co+130—150 cm ' since
they are almost degenerate. Such a structure has been ex-
perimentally observed by Gachter and Koningstein in
the low-temperature emission spectra of Ti +:sapphire.
In general, one may conclude that the specific phonon
structure of the T2 state results mainly from the spin-
orbit coupling and the existence of the trigonal crystal
field. The nonlinear coupling with the lattice, if it exists,
is rather small, and its contribution to the phonon struc-
ture of the ground state is negligible. Nevertheless, we
considered nonlinear coupling in the main body of this
paper since, albeit small, it can effectively control the
nonradiative processes in the Ti + ion.
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