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A symmetry-based model for betaine calcium chloride dihydrate (BCCD) is presented. BCCD is

a crystal with many modulated phases that can be commensurate or incommensurate. In our model,
BCCD is viewed as formed of layers, perpendicular to which the crystal is modulated. The free energy
is expanded in terms of amplitudes of symmetry modes of these layers. Which symmetry modes must
appear in the free energy is determined through experimental data on the phonon-dispersion relation.
For a previous related work, the phonon-dispersion relation was not yet available and the necessary
assumption of which modes should be included proved to be incorrect. In the free energy, competing
interactions between the symmetry modes lead to difFerent phases. The phase sequence derived
from this model corresponds fairly well to what is found in experiment, but incommensurate and
higher-order commensurate phases are overemphasized. The polarity of the phases determined by
the model agrees with experimental data.

I. INTRODUCTION

The crystal betaine calcium chloride dihydrate
(BCCD) shows an exceptionally large number of mod-
ulated phases, which are commensurate or incommensu-
rate with the underlying lattice. This paper presents a
model for BCCD which describes the dispersion relation
of the low-lying phonon modes in the normal phase and
the phase sequence and phase symmetry of the modu-
lated phases.

Previous studies of modulated crystals have used a
number of different approaches. The most basic of these
approaches makes use of rigid-ion-type model poten-
tials as a basis for lattice-dynamical calculations of the
phonon-dispersion relation, including the identification
of the soft mode (see, e.g. , Ref. 2). However, such cal-
culations have not yet been done for BCCD. In another
class of simplified models, there is only one variable per
unit cell, and only a small number of neighboring unit
cells interact. Competing interactions in such models
result in phase diagrams with a large number of modu-
lated phases. Such models have had success in account-
ing for the wave-vector sequence observed in a wide vari-
ety of materials, but have not been successful in describ-
ing situations in which difFerent space-group symmetries
are possible for each wave vector. Models of this type
that have been adapted to BCCD include the axial next-
nearest-neighbor Ising (ANNNI) model and the discrete
frustrated P (DIFFOUR) model. s Landau-type theories
have also been successful in accouting for phase transi-
tions to modulated phases. However, this appraoch be-
comes impractical in cases where a large number of com-
mensurate phases must be accounted for, since a different
"lock-in" term in the free energy is required to stabilize
each phase. This type of model, too, was adapted to
BCCD.~

This article makes use of symmetry-determined layer

variables, following an approach introduced for the
A2BX4 modulated structures by Chen and Walker. We
visualize BCCD as being formed of layers, perpendicu-
lar to which the crystal is modulated. We analyze the
symmetry of the layers and find their symmetry modes
(Secs. II A and IIB). The free energy is expanded in
terms of amplitudes of these so-called "layer modes. " We
consider the free energy as a function of temperature
only. Competing interactions between the layer modes
lead to different phases at different temperatures. The
symmetry of the soft mode in the experimental phonon-
dispersion relation allows us to determine which of the
layer modes possible must appear in the free energy
(Secs. IIC and IID). From the expression for the free
energy we obtain the theoretical dispersion relation and
the phase diagram (Sec. III). Because the model is built
upon a symmetry analysis of BCCD, it not only predicts
the phase sequence but also the symmetry and thus a
possible spontanous polarization of each phase.

The model presented here is an extension of earlier
work. ' For the earlier model it was necessary to make
assumptions about the relevance of each layer mode
for the free energy, because the experimental phonon-
dispersion relation was unavailable. However, when the
dispersion relation was published, it became evident that
the original choice of layer modes was incorrect. This was
also suggested from an interpretation of a detailed struc-
tural analysis for the fourfold phase of BCCD. ' We
here present a new model based on the correct modes.

II. DEVELOPMENT OF MODEL

A. Description of BCCD

BCCD is a transparent, insulating crystal. Above the
temperature T = 165 K, at normal pressure and zero
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electric field, it is in a normal unmodulated phase. As
a function of temperature, pressure, and electric field,
BCCD attains diferent commensurate and incommen-
surate phases (see, e.g. , Refs. 14—21). The structural
change responsible for the phase transitions is an inter-
nal distortion in the x-y plane, modulated along the z
axis. The modulation of each phase is described by a
wave vector k = o. c*, where c* is the reciprocal-lattice
vector in the z direction. The wave number n decreases
monotonically with decreasing temperature, following an
incomplete devil's staircase: n locks in at simple frac-
tions n/m (commensurate phases) and either jumps be-
tween or continuously moves through nonsimple fractions
and irrational numbers (incommensurate phases) until it
reaches zero. The value 0, = 0 corresponds to an unmod-
ulated phase, having a lower symmetry than the nor-
mal phase. Figure 1 shows the function n(T), summa-
rizing experimental data. ' Commensurate phases are
labeled by the value of n/m in k = (n/m) c*, where n/m
is an irreducible fraction.

The experimental phonon-dispersion relation in Fig. 2
shows that a soft mode causes the normal to incommen-
surate phase transition: The lowest mode of the phonon
spectrum along k = (0, 0, k, ) develops a minimum that
approaches the u = 0 axis as the temperature is lowered
towards the transition temperature. The symmetry of
the soft mode determines the symmetry of the incom-
mensurate phase. Moreover, we assume that this soft
mode also determines the symmetry of all other modu-
lated phases which appear when the temperature is low-
ered further. This assumption is verified experimentally
for the —phase.

The possible space groups of the commensurate phases
are shown in Table I. They were derived theoretically in
Ref. 24. The space group of the phase n/m depends
only on whether n and m are even or odd, and on the
phase angle 4 of the modulation relative to the unit cell.
Some space groups allow a spontanous polarization of
the corresponding phase, explaining why an electric Beld
aKects BCCD's phase sequence.

Ag
Bpg sL

Bpg '.

83u '

Ag
~' Bpg

Big
' 4u

Ag:
4

i Ag

Au

& Big

Bzu:

Au

four structural units [(CHs) sNCH2COO CaC12 2H20]
per unit cell. The position of the individual ions is de-
scribed in Ref. 25. We consider all ions in the unit cell
as associated with one of the two planes at z = c/4 and
z = 3c/4. For example, the four nitrogen ions in the unit
cell are associated with these planes as shown in Fig. 3.
Furthermore, the betaine unit (CHs)sNCH2COO, con-
taining a given nitrogen ion, is associated with the plane
to which the nitrogen ion belongs. For the calcium ions
and the CaC12-2820 units they are contained in, we pro-
ceed similarly. We call the set of ions associated with a
given plane a "layer. "

An arbitrary distortion of a layer is described as a lin-
ear combination of symmetry modes of this layer. The
definition of a symmetry mode of wave vector k is that
it must transform like a basis vector of an irreducible
representation (IRREP) of the little group of k. For a

I/3 I /2

k (units of C )

FIG. 2. Low-lying phonon branches in BCCD for T =270
K (solid lines) and T = 170 K (dotted line), reprinted from
Ref. 23. (D) and (~ ) indicate experimental data. (~ ) indicates
experimental data, giving information over the symmetry of
the mode as well.

B. Symmetry analysis of BCCD

The crystal structure of BCCD in the normal phase
is orthorombic with space group Pnma. There are

10

TABLE I. Theoretically possible space groups of the com-
mensurate phases (Ref. 24). o. = n/m is the respective wave
vector, 4 the phase angle of the modulation in the unit cell. P
is the direction of a possible spontanous polarization. Boldy
printed are the space groups realized according to experi-
ments; note the ambiguity for n/m = odd/odd.
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FIG. l. Incomplete devil's staircase: the wave number
a(T) for BCCD, labeling the phase sequence.
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PIG. 3. Simplified unit cell of BCCD: (o) nitrogen ions,
contained in betaine units; (~ ) calcium ions, contained in
CaCl 2H20 units.

symmetry mode of a layer, or "layer mode, " k is two
dimensional (2D). An arbitrary distortion of the crys-
tal can be represented as a linear combination of layer
modes from all layers. Therefore we can choose the layer
modes as basic distortions of our model, without loss of
generality.

The distortion of BCCD in the modulated phases is
characterized by a wave vector k = (0, 0, k, ) normal to
the layers (for convenience, the index z will be dropped
when unambiguous). Therefore only layer modes with
wave vector k = (0, 0), i.e. , zone-center layer modes, will
contribute to this distortion and for our purpose form a
complete set of variables.

We now find the zone-center layer modes. Rather than
work with the displacement of all ions in such a mode,
we will, for the sake of simplicity, only work with the dis-
placements of the nitrogen atoms. It is understood, how-
ever, that all ions in the layer have symmetry-determined
displaceInents.

All zone-center layer modes (henceforth just called
layer modes when unambiguous) must transform like ba-
sis vectors of the IRREP's of the little group of k = (0, 0).
The wave vector k is invariant under the entire space
group K of the layer, which therefore is its little group.
It is easy to check (see Fig. 3) that the generators of K
are (o, ~2, 0) and (o&~0, z), and that its point group is
C2„. The character table and IRREP's I', of C2„are
given in Table II. The characters of I'; define the trans-
formation properties of the basis vector e~(I';) of a layer
mode of layer I,. For I'2 and I'3 one finds the basis vectors
(see Fig. 4)

e&(I'2) = (0, 1, 0, 0, —1, 0), e&(I'3) —(0, 1, 0, 0, 1,0),
(1)

TABI E II. Character table and irreducible representa-
tions of C2„. The top row and the I',. refer to the 2D layer
modes, the bottom row and the A~ to the 3D modes.

0

(b)
a

even-l layer
a

odd-I layer

FIG. 4. Displacement of the nitrogen ions (o) and calcium
ions (~) in a mode of (a) I'2 and (b) I's symmetry.

e'„= ) exp(ikz() e)(1',)

is a 3D symmetry mode with wave vector k = (0, 0, k).
Here z~ = tc+ c/2, c = c/2 is the interlayer distance, and
the additional constant c/2 appears because the origin is
chosen to be in the middle between two layers.

As symmetry modes, the ek's must transform like basis
vectors of an IRREP of the little group of k = (0, 0, k).

TABLE III. Irreducible representation of C2„and D2h, ac-
cording to which the basis vectors of the 3D symmetry modes
e& transform.

where the first three [last three] entries describe the dis-
placement in the x, y, and z directions of the nitrogen
ion number (1) [(3)] for odd l and of the nitrogen ion
number (2) [(4)] for even t

Note that the characters of the IRREP I'i [I'4] allow
two basis vectors e(I'i ) and e(I'ip) [e(I 4 ) and e(I'4p)],
which we do not show in detail.

Now we use the symmetry of the soft mode (see Fig. 2)
to identify those layer modes that form the modulated
phases. The soft mode is a 3D symmetry mode. A given
layer mode can only take part in forming the modulated
phases if the 3D symmetry mode derived from it has the
symmetry of the soft mode. It is easy to check that the
superposition
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The generating elements of the group G, which leaves
k invariant, are (cr

~ 2, 2, 2) and (a„~0, 2, 0). The point
group is again C2 . The corresponding IRREP's are la-
beled A~ (see Table II). In order to know according to
which A~ the e& transform, we need to know how the
basis vectors el(I';) of the layer modes transform under
the generatores of G. A look at Fig. 4 shows for example
that

(3a)

(3b)

i.e. , el(I 2) and el(I' s) transform identically. This allows
us to derive the transformation properties of the 3D sym-
metry modes eh„which are shown in the second and third
columns of Table III. Because of Eq. (3), el, and e& trans-
form identically, namely, like a basis vector of A3 in the
first half of the Brillouin zone and like a basis vector of
A2 in the second. As can be seen from Fig. 2, this is just
how the soft mode transforms. On the other hand, e&

and e& derived from I'q and I'4 do not transform like4a/p

basis vectors of the soft mode.
Finally, it will be useful to derive the symmetry of the

3D zone-center modes with k = (0, 0, 0) and its equiva-
lent (0, 0, c*), corresponding to k = 0 and c* in Eq. (2).
The wave vector k = (0, 0, 0) is invariant under the full
space group of the crystal, Pnma, which has generating
elements (o

~ 2, 2, 2), (o&~0, 2, 0), and (o',
~ 2, 0, 2). Its

point group is therefore D2h with IRREP's A„and B„,,
where the parity p = u, g and i = 1, . . . , 3. To find how
eI, transforms for k = 0 and c* under the action of Pnme,
we need Eq. (3) and

where the plus (minus) sign goes with I's (I'2). Note
that here el(12) and el(I' s) transform differently. The
resulting transformation properties of t.o and e'. lead to
the other columns in Table III.

The result of this section is that amplitudes of layer
modes with basis vectors el(I'2) and el(I' s) must be in-

cluded in the free energy, whereas those with el (I'r)
and el (I'4) need not be.

C. Symmetry analysis of the experimental
phonon-dispersion relation

For each layer, there are 168 distinct zone-center layer
modes, because there are two structural units with 28
atoms each in the layer unit cell. Since the lowest-energy
phonon branches are expected to be the most important
for the description of the low-temperature phases, our
model takes into account only a few low-lying branches
which, according to the last section, must originate &om
layer modes with I'2 or I 3 symmetry. In particular, let us
take into account three modes for each layer l as follows:
one acoustic mode of I'3 symmetry and amplitude u~,
one optic mode of I'2 symmetry and amplitude v~, and
one optic mode of I'3 symmetry and amplitude m~. Thus
we consider the state of the crystal, and hence the free
energy, to be determined by the amplitudes of u~, v~, and
m~ of these three modes, the so-called "layer variables. "

We expand the free energy in the harmonic approxima-
tion I'h to second order in powers of the layer variables
and require it to be invariant under the operations of
Pnma as well as an overall translation of the crystal,
which is expressed as ul -+ ul + b (because ul describes
an acoustic mode). This expansion only considers the
temperature dependence of the free energy. It yields

+h —) I 2 br (ul ul —r) + 2b2 vl + bs vlvl r+ 2b4 —Vi) + b5 ullull r-
l

+ -bs (ulvl r ul »—l)—+ -—br (2ul —ul —r —ul+r)~l + -bs (~l vl —r —~l —»l)].
Note that none of the coeflicients (b;) depends on t.

We now introduce the Fourier transforms

mt=a e mA, ,

which lead to

Ih = L ) (uA, vl„ural, )* 0 (k)

(br (1—coskc) — bs sinkc-
20 (k) = 2b2 + b3 cos kc

'br (1—cos kc))-
—-b8 sin kc2
'b4+ bs coskc)-

where L is the total number of layers, and 0 (k) is the symmetric 3 x 3 matrix

Since we have no basis for an estimate of the e8'ective
mass associated with each mode, we assume they are
unity. Then the eigenvalues of the matrix 0 (k) are
ur (k), where ur(k) is a 3D symmetry-mode frequency.

For the unperturbed case b6 ——bv ——bs ——0, i.e., no in-

I

teraction between modes, the matrix is already diagonal,
leading to the dispersion relation in Fig. 5(a).

For bs, br, bs g 0, the resulting dispersion relation typ-
ically looks like that depicted in Fig. 5(b). Its most
conspicuous feature is that the branches do not cross.
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FIG. 5. The branches u(k) of the theoretical dispersion relation, Eq. (8), with b2 —b4 ——0, bs —bs = 1, bi ——4. (a) No
interaction between branches, i.e., bs = b7 ——bs ——0. (b) and (c) interaction "switched on, " with bs = —2, b7 = 1, bs = 1.
Dashed lines indicate the course of the former unperturbed branches (crossovers). For a definition of a+ and J+ see Eq. (10).

Instead they —figuratively speaking —exchange their sec-
ond halfs. It is easy to prove that along with this, there
is an exchange of end-point symmetries: For example, in
the no-interaction case [Fig. 5(a)], the acoustic branch
starts with symmetry B2„at k = 0 and ends with Big
for k = c* as prescribed by Table II, whereas for nonzero
interactions [Fig. 5(b)] the acoustic branch connects B2„
to A . Clearly, the A„symmetry is picked up from the
highest optic branch.

Now we apply these theoretical results to the experi-
mental dispersion relation. According to Fig. 2, the soft
mode is composed of two branches, both of which orig-
inate from I'3 layer modes, one acoustic and one optic.
Following one branch along the dashed lines, i.e. , the
crossovers, one should retrieve the unperturbed branch.
However, it is clear that the number of crossovers pro-
posed in Fig. 2 is insufhcient, because the zone-center
syxnmetries do not fit. E.g. , the lowest optic unperturbed
branch should connect B2„ to Bqg. However, it ends on
A.„.This means the crossovers must be di8'erent, in par-
ticular a I'2 branch; i.e., the optic branch which starts
second lowest on the k = 0 axis must cross also, intro-
ducing the A„zone-center symmetry.

Figure 5(b) shows the simplest way to satisfy both
symmetries and the experimental data. Note that here
the soft mode is composed of three rather than two un-
perturbed branches.

In the experimental dispersion relation four As/A2
branches appear. The energetically highest of them is
not considered in our model, because we assume it has
no significant inBuence on the soft mode and thus on the
phase transition. However, this branch seems to cross the
second highest As/A2 branch (the crossover is not indi-
cated in Fig. 2) and therefore provides it with a different
zone-center symmetry and shape from what is depicted
in Fig. 5(b).

The result of this section is that a description of the
dispersion of the soft mode requires the three layer modes
with amplitudes u~, v~, m~ definded above. In the previ-
ous model the free energy depended only on the two
optic modes v~ and m~.

D. Free energy for BCCD
Finally, we can present the full expression for the free

energy, subject to the same conditions as the harmonic

truncation Fh in Eq. (5). It is an expansion to fourth-
order in m~ and v~, but only to second order in u~. The
fourth-order terms involving u~ were dropped, because
the coefFicient for the quadratic term in u~, bq, can never
become smaller than zero, for if it does, the velocity of
sound in the crystal v, = v bi becomes imaginary. How-
ever, only in the case b~ & 0 are fourth-order terms in-
volving nI important. Interactions between layers are
considered up to second order, within layers up to fourth
order. This yields a free energy F given by

P = ) [4Vi + 4tUi + 26pVilOi + 2(tel Vl —i)

+ 2b2 v) + b3 v&vt —z+ 2b4 m) + b5 m&tu) 1
1 2 1 2

+ 2 be (tilVl —i Vl —i'll) + 267 (2&i %i+i ul i) uil-
+ 2 (Ul lull —

Vl ural i) ]. (9)

Four coeKcients are eliminated. by rescaling, such that
they are replaced by their respective value in Fig. 5(b).
Seven coefficients (b, ) are left. This large number is a
consequence of having three interacting modes.

III. RESULTS

A. Theoretical dispersion relation

To get an estimate of the value and temperature depen-
dence of the (6;), we fit the theoretical dispersion relation
to the the softening of the lowest branch as found in ex-
periment (Fig. 2, dotted line). The values of the (b, f are
found by looking at details of Fig. 2. It turns out that
one needs b~ ) 0 and b5 & 0, but that the shape of the
phonon branches is rather insensitive to the magnitude
of the (b,). We define

a~ = b2 -If:b4, J~ —= b3+ b5,

and And that a softening of the lowest branch is achieved
by lowering only a+ and J+, keeping a, J and all other
coefFicients fixed. This corresponds to a simultanous low-
ering of the unperturbed optic branches. Figure 5(c)
shows the results of this simulation. The agreement with
the experimental soft mode is excellent.
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B. Theoretical phase diagram

Qualitative coneidev'ationa

2. Quantitative results

Rather than determining a 7D phase diagram as a
function of the seven (b, }, we only consider a 2D cut

0
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7 Q i4 i3

3
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10

4 g- 5
R . 18 17 13

FIG. 6. Section of the Farey tree: a scheme for ordering
the rational numbers between one and zero. Baldly printed
are phases occuring in BCCD. Phases above the dashed line
are included in the calculation of the phase diagram.

What mechanism leads to diferent phases when the
coefficients (b;j are varied'? Each phase, except for the
nomal phase, is characterized by nonzero values of at
least some of the layer variables u~, v~, n~. In this section
we only look at their signs. To mimimize F, each term
in the &ee energy favors a di8'erent wave number, i.e. ,

periodicity in L. For example, depending on the sign of
its coeKcient, a self-interaction term such as v~v~ i will
support either a ferroelectric (————) or an antiferro-
electric (+ —+—

) profile for v~. Other terms, such as the
mixed interaction term (v~ iso~ —v~to~ i), favor diferent
profiles, in this case (++ ——) for v~ and (+ ——+) for iU~

simultanously. Depending on the relative strength of the
coeKcients, the global minimum is located such that the
resulting wave number is a trade-ofF between the diferent
terms. As the size of the coeKcients varies, the location
of the minimum shifts, as does the wave number of the
phase.

For BCCD, the sequence of wave numbers a(T) (see
Fig. 1) is surprisingly well described by the so-called
Farey tree, a section of which is shown in Fig. 6. The
Farey tree is a 2D scheme for ordering the rational num-
bers between one and zero according to their size horizon-
tally and to the size of the sum of their continued-fraction
expansion vertically. The vertical rank is thus a measure
of the simplicity or order of a number. Each number
can be ascribed two "parents, " namely, its two nearest
neighbors &om the upper rows. In fact, the numerator
(denominator) of this number is obtained by adding the
numerators (denominators) of its parents. In the phase
sequence of BCCD, a phase n/m generally only appears if
its parents appear as well and then always between them.
In fact, such a phase sequence is predicted by most the-
oretical models, independent of the specific crystal they
are dealing with.

along a+ and J+, since changing these two quantities was
suKcient to simulate the temperature dependence of the
dispersion relation in the normal phase. The values of
the other coefficients are those used to obtain Figs. 5(b)
and 5(c). To minimize I, we simultanously solve the
equations

0 = s ——4 (2u) —u) i —u)+i) + 2bs (v) i v)—+i)BF 1

+ 2 by (2tU~ —7B~ i —tU~+i),

0 = B
= v) +6pv)to)BF

+2(a++a ) v)+ -'(J++J )(v) i+v(+, )

+ bs (ul+1 ul —1) + (tol+1 ~L 1)—

0 =
B =%DE +6p v)Q)iBF

+-(a+ —a ) zo( + -'(J+ J)(u—)( i+m(+, )

+ 2bv (2ui —ui —i —ui+i)

+ —,
'

(v( i —v(+i) v l.

Because there are two layers per unit cell, a phase n/m
has period 2m and 2n nodes. This leads to the boundary
conditions u~+2 ——u~, etc. One is left with 3 x 2 x m
coupled nonlinear equations, to be solved numerically.

The phase diagram is traced out by noting that for
a+ ))0 the normal phase, i.e. , u~ ——v~

——ml ——0, is a so-
lution, which therefore corresponds to high temperature,
and consequently a+ ((0 corresponds to low tempera-
ture. Given a+ &(0, for J+ &(0 the ferroelectric solu-
tion is stable, whereas for J+ ))0 the antiferroelectric
solution is stable. This corresponds to n/m = 0/1 and
n/m, = 1/0, respectively.

The numerical procedure then consists of first guess-
ing what phase n/m minimizes I" for a given a+ and
J+. For the same J+ but a+ (( 0 this phase is still
metastable. In fact, a phase with any wave number is
metastable for a+ (& 0, because in this case all mix-
ing terms in Eq. (11) are negligible and the solution can
be any permutation on the layers of the analytical so-
lutions u~ = 0, +2 ~, v~ = 0, +~ 2(a++a )~ ~, and
iv~ = 0, +

~ 2 (a+ —a ) ~

~ . For a phase n/m, the solution
is a permutation of these values on 2m layers with 2n
nodes. All permutations consistent with this number of
nodes must be considered. Starting from one of these an-
alytical solutions, one can proceed to higher values of a+
in an iteration where the last solution is used as initial
conditions for a new calculation with slightly increased
a+. For each pair (a+, J+), the free energy of diff'erent
phases n/m is compared and the global minimum found.
Once a rough phase diagram is determined, experience
shows that one can choose further solutions according
to the Farey tree. All phases listed in Fig. 6 above the
dashed line were tested as well as all phases appearing
in the logical extension of this scheme in the next lower
row. In addition, we determine where high-order phases,
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FIG. 7. Phase diagram for BCCD, obtained numerically
from Eq. (9) with bs ———2 and bz = 1 as in Fig. 5, and bo ——2.
Commensurate phases are labeled by n/m and their space
group I—III from Table I. Shaded areas stand for high-order
commensurate or incommensurate phases. The dashed line in
phase —marks a second-order phase transition in the space
group. The bold arrow indicates the trajectory BCCD takes
through the diagram at normal pressure.

including incommensurate phases, are stable by testing
phases from two rows below the dashed line.

Note that the values of a+ and J+ at a normal' n/m
phase transition are determined by the dispersion rela-
tion in Eq. (8), because for these values there must be a
soft mode with w( —c*)=0.

The phase diagram obtained from solving Eqs. (11) is
shown in Fig. 7. The qualitative features of the diagram
are not sensitive to the magnitude of the coefficients (b;).

8. Di scussi on

The trajectory of BCCD on the phase diagram is a
straight line, because we assume that the coefFicients
(b, ) are linear functions of temperature. The trajectory
is fixed on the one hand because the soft mode should
touch the u = 0 axis at o. = 0.32. On the other hand,

is the last phase before finally entering the z phase
(see Fig. 1). We choose, however, to ignore the —phase,
because to our knowledge it was reported only once,
and was found through dielectric measurements; i.e. , a
small electric field was applied, whereas our model as-
sumes zero electric field. At the same time including this
phase would result in a very distorted theoretical phase
sequence. Therefore the trajectory in Fig. 7 leads directly
from — to —.1 0

7 1
However, even ignoring the 8 phase does not com-

pletely eliminate the discrepancy between the theoreti-
cal and experimental phase sequences. Although all nec-
essary phases appear in the theoretical sequence, many
more phases of higher order appear between them. At
the same time, the length of the trajectory in a given
phase does not correspond well to the temperature in-
tervall over which this phase is stable in experiment.
Summarizing, the incommensurate and high-order com-
mensurate phases take on more weight in the theoretical
model than in experiment.

Since most experimental data originate from dielectric

measurements, the agreement between theory and exper-
iment might improve when the eKect of an electric field
is included in the expression for the free energy. Results
from the previous model suggest that doing so would
indeed suppress high-order phases in favor of low-order
phases.

The space groups of the phases predicted by our model
all coincide with the space groups listed in Table I, and
the polarity of the phases almost always agrees with the
experimental results. Note that we find the space group
P2i2i2i for the nonpolar odd/odd phases, for which no
space group was determined experimentally.

For phases n/m = odd/even, we find the space group
P2ica, if m(10, and the space group P12i/cl, if m& 10
(note the hybrid phase io ). Therefore our model predicts
that low-order odd/even phases can be spontanously po-
larized, whereas high-order phases of this type cannot.
However, according to experiment odd/even phases are
always spontanously polarized (see, e.g. , Refs. 14 and 16—
19).

The reason that the space group of odd/even phases
depends on the order of the phase is the term b0vt tU~ ln
the expression for the free energy [see Eq. (9)]. For bo ——0
and n/m given, the nonpolar phase always has lower free
energy than the polar phase. However, if b0 ) 0, v~ ——0
or m~

——0 is supported, i.e. , a profile in which the nodes of
the modulation are located on layers. The location of the
nodes is determined by the phase angle C of the modula-
tion relative to the unit cell (see Table I). If, without loss
of generality, we assume a sinusoidal modulation, then for
4 = nm/2m, i.e. , polar phase, the first and (n+ 1)st node
are located on a layer, because the origin is in the middle
between layers and because in a phase n/m, the unit cell
stretches over 2m layers. All other nodes are not located
on a layer. For all other values of 4 in an odd/even phase,
no node is located on a layer. Therefore, assuming sim-
ilar magnitude of the layer variables in both phases, the
polar phase is stable for b0 sufFiciently large. However,
the efI'ect of the b0 term is the smaller the larger m, i.e. ,
the order of the phase. Thus for I, large, the nonpolar
phase always prevails.

A comparison of the phase diagram derived here with
that obtained from the previous model shows that the
two diagrams are essentially the same. Thus it is only
in the interpretation of the dispersion relation that the
need for a new model appears.

IV. SUMMARY AND OUTLOOK

In this paper a model was developed for BCCD, based
on the introduction of appropriate symmetry-determined
layer modes. The experimentally determined phonon-
dispersion relation was used to identify the layer modes
which are important to include in the formulation of the
model. The model parameters were chosen such that
the low-lying branches of the phonon-dispersion rela-
tion, including their temperature dependence, are well
accounted for. The model then reproduces fairly well
both the phase sequence and the phase symmetries found
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in experiments. The main difFerence between theory and
experiment is that high-order phases appear more promi-
nently in the former. Tentatively, we concluded that the

8 phase exists only in the presence of an electric Geld. To
support this statement, future work will investigate the
efFect of an electric Geld on the theoretical phase diagram.
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