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Fermion sign problem: Decoupling transformation and simulation algorithm
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We discuss the fermion sign problem and, by examining a very general Hubbard-Stratonovich trans-
formation, argue that the sign problem cannot be solved with such methods. We propose a different
kind of transformation which, while not solving the sign problem, shows more detailed information
about the system. With our transformation it is trivial to tell which auxiliary field configurations give a
positive sign and which give a negative sign. We then discuss briefly various properties of this transfor-
mation and construct an algorithm which with one simulation gives results for a whole range of particle
densities and Hubbard U values, positive and negative. Our approach is in excellent agreement with ex-
act calculations.

The major obstacle facing numerical simulation of a
large number of strongly interacting electrons is the so-
called "fermion sign problem. "' This problem appears
in many different guises and here we will focus on its
form in the determinant algorithm for quantum Monte
Carlo. Our method and conclusions are general but for
clarity we will concentrate on the Hubbard model, which

I

Z =tr(e ~ ),

is under active study as a model for metal-insulator tran-
sitions and high-temperature superconductivity. We be-
gin by reviewing the Hubbard Stratonovich transforma-
tion and the resulting sign problem. The partition func-
tion of the Hubbard model in the grand canonical ensem-
ble is given by

H= t g [c (i)c (—j)+c (j)c (i)]+Up [n+(i) —
—,'][n (i)——,]

(ij ),o

—pg [n+(i)+n (i)],
1

=g ct(i)k,"c (j)+ Up [n~(i) —
—,'][n (i)——,'] .

(2a)

(2b)

The sum (ij ) is over all pairs of nearest neighbor lattice
sites, t is the hopping parameter, c (i) and c (i) are
creation and annihilation operators of electrons with spin
o along thez axis at site i n+ (n . ) is the number opera-
tor for electrons with up (down) spins. P is the inverse
temperature, and U is the coupling constant, which can
be positive or negative. The matrix k in Eq. (2b) contains
the hopping term and the chemical potential. Through
standard techniques one can transform the trace into a

I

I

path integral (or sum) over the configurations of a c-
number auxiliary Geld. First we use the Trotter-Suzuki
approximation to express Z as Z =tr(e ' )~

=tr(e '"e ), where r=f3/L « 1, is the imaginary
time step, and I. is the number of such time steps. Now
we use the Hubbard-Stratonovich (HS) transformation to
decouple the quartic potential term e into quadratics
in the creation and annihilation operators:

exp{ rU[n+ (—i) —
—,
' ][n (i) —

—,
' ]]= exp( —r U/4)

2 s(i, I)=+1
exp[ —

A, (si, l)[n +(i)
—n (i)]I

s(i, 1)=+1

detM+detM (4)

at each site i and time slice l. A. is related to U via
cosh(A, ) =e . Here we write the discrete HS transfor-
mation, but one can also write a continuous one. The
trace over the fermion operators can now be taken, since
they only appear quadratically. This gives

I

where

and

I =I+B B . . . BL L —1 1

+ A, u(1) —wk
I
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I is a VX V unit matrix, V is the spatial volume,
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u(1);J.=5;~s(i, l), wherei runs from 1 to Vand i from 1 to
L. The partition function is now written as a sum over c
numbers and can therefore be simulated on a computer.
The sign problem arises because the determinants and
their product, in Eq. (4), can be negative and thus cannot
be used as the probability density in a Monte Carlo sirnu-
lation. Instead, their absolute value is used, and the aver-
age of an observable 3 is then given by
(3 )=(2 sgn)'/(sgn)', where ( )' denotes averages
with respect to the absolute value of the determinants.
The average sign is thus defined as (sgn)'=Z/Z', where
Z is the partition function resulting from using the abso-
lute value of the determinants. This approach works well
for small U and relatively high temperatures. As the
temperature decreases (P increases), the average sign
scales like ' (sgn) -e '~, where c is a constant. This
makes low-temperature simulations impractical because
averages are obtained as the ratios of two very small
numbers, each with a very large variance. When U (0, a
similar procedure yields M+ =M . Consequently, the
product of the two determinants in Eq. (4) becomes a
square, and therefore positive semidefinite even though
the determinant itself is still not positive semidefinite.
Thus, there is no sign problem for the negative-U Hub-
bard model (or other attractive interactions).

The HS transformation discussed above is the most
commonly used one, but it is only one of an infinite num-
ber of possible transformations. For example, other
decoupling schemes were discussed in Refs. 5 and 6 in the
hope of finding a transformation, which will solve the
sign problem or at least decrease its severity. We will ar-
gue here that there exists no HS transformation that will
eliminate the sign problem. We start by noting that the
purpose of any HS transformation is to decouple the
quartic fermionic interaction into quadratic terms which
are coupled to the HS (auxiliary) field. This allows us to
perform the trace in the partition function, giving two
determinants. But, except for minor details, all transfor-
mations examined so far have yielded either a product of
different determinants of the above form, or a single
determinant, which have always suffered severely from
the sign problem for certain values of p, P, and U. This
suggests that one way to solve the sign problem in this
approach is to obtain a square of a determinant. Is it
therefore possible to generalize the above HS transforma-
tions such that the resulting partition function is a sum
(or integral) over a square, and if not, why? In order to
get (detM), the relative minus sign between n and n+
on the right-hand side of Eq. (3) must become a plus, thus
preserving the up-down symmetry of the Hamiltonian in
the HS transformation. Let us therefore propose a gen-
eral HS transformation

(, n++n )
exp[ rU(n+n —'n+ —'n —)]=——dyP(y)y

where P(y) and y are real' and arbitrary except for the
constraints discussed below, and U is positive or negative.
This transformation includes discrete transformations
like Eq. (3), but is more general. If such a transformation
were possible, the sign problem would be solved because

of the resulting (detM) . Since n+ =0, 1, we see that the
conditions on P (y ) and y are

f dy P(y)=1,

( ) 7U/2

(y') =1,

(8)

(9)

(10)

P(y) =+[a5(y (i, l) —yi )+b6(y (i, l) —y2)], (11)

where i is the space index, and l is the time slice index.
y, and y2 are the allowed values for the auxiliary field y,
a, and b are parameters to be determined from the con-
straints Eqs. (8), (9), and (10). We chose two discrete
values, y, and y2, for the auxiliary field, but we could
have chosen any number of discrete variables, or any con-
tinuous distributions as long as we satisfy conditions Eqs.
(8), (9), and (10). Our motivation is simplicity. Applying
the above constraints gives a +b = 1 and

y2b= (12)

.,/2 +yly2
yi+y2

(13)

Having chosen the form of P(y), we still have the free-
dom of choosing the values of one of the two parameters
y „y2, the second being determined by Eq. (13).

Now that we have decoupled the quartic fermion in-
teraction into two quadratic terms with the same sign,
the trace over the Fermi operators can be performed as in
the HS case giving for the partition function

where ( ) means an average with respect to the weight
P(y). In general, the inequality (y) ~ (y ) must be
satisfied. Combining this with Eqs. (9) and (10) forces U
to be negative: In other words, the inequality cannot be
satisfied for positive values of U. Therefore, there is no
general HS transformation that is capable of giving the
square of a determinant. Consequently, this approach to
solving the sign problem fails.

Implicit in the above argument is the positivity of
P(y). We will reserve the name "Hubbard-Stratonovich
transformation" for these cases, since all previous appli-
cations of the HS transformation assume such positivity.
However, this argument is invalid if we allow P (y ) to
take negative values. This of course would not solve the
sign problem, but it would give us a square of a deter-
minant, with the result that the sign changes now come
not from the determinants, but from P(y). One advan-
tage of this is that contrary to the HS transformation,
where, in general, we do not know which auxiliary field
configurations lead to minus signs because the structure
of the determinants is too complicated; here the minus
sign comes from P(y), which we know exactly. There-
fore, we have complete prior knowledge of the sign of all
the configurations.

For example, a simple choice is
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M has the same form as M, Eq. (5), and

Bi =u (l)e

(14)

(15)

ing in M =I and detM =1. When this happens the ob-
servables will also have a trivial value. So, when such
configurations become important, there will be many in-
stances where the observables are trivial and it would be
interesting to study the effect such configurations might
have on phase transitions.

The third choice is to take y =+1. The limit of Eqs.
(12) and (13) as y &

~+ 1 and y2 ~—1 is

with v(l), 1 =5,.~y (i, I). n, (n2 ) is the number of auxiliary
spins with the value y& (y2), and N =n, +n2 is the total
number of sites on the (d +1) dimensional lattice. ( ) „"2
is an average over all configurations which have n2 spins
equal to y2, whose number is the binomial coefficient C„."2
It is easy to show that for U & 0, both a and b are positive
and therefore there is no sign problem, just like the usual
HS transformations. When U) 0, a and b have opposite
signs (we take b &0), and thus the sign problem reap-
pears. However, although the value of (detM) (always
positive) depends on both the relative number of spins
with values y& and y2, and their configuration on the lat-

n1 n2tice, the prefactor a 'b ' depends only on the relative
numbers. In particular, since the source of the sign prob-
lem in our formulation is the opposite sign of a and b, we
have complete knowledge of all the configurations that
change the sign: only configurations with an odd number
of y2 spins lead to an odd exponent for b and thus a nega-
tive contribution. This complete characterization of the
negative configurations is to be contrasted with all the HS
transformations previously used where one knows very
little about the kind of configurations that lead to minus
signs. This vividly demonstrates, yet again, that the sign
problem in the determinant algorithm is not related to
configurations where the electron "paths" exchange. It is
merely an artifact of the transformation used to decouple
the quartic terms in the Hamiltonian. Another property
of our transformation is that it preserves the rotational
spin symmetry of the original Hamiltonian. We can
therefore take measurements along any spin direction, or
along all three, thus reducing fluctuations.

Not surprisingly, the behavior of the average sign and
the usual summand in Eqs. (14) and (15) depend on the
values we choose for the auxiliary fields. Three choices
are of particular interest to us. The first is to choose
y, =y2. This choice is remarkable because the entire
phase space is explored with a variable that Auctuates
very little. Consequently the values of the determinant
and other observables fIuctuate little, and change very
smoothly as more spins are Aipped. The disadvantage of
this choice is that a /b ~—1 (always keeping a +b = 1)
as y&~y2, which means that the contributions of the
negative configurations are of the same size as the posi-
tive ones. This makes numerical simulations hard, but
may offer the possibility of studying the system semi-
analytically.

Our second choice is to take y2 =0. What is intriguing
about this choice is that when enough auxiliary spins
have the value y2=0, there will be many realizations
where the auxiliary field for at least one entire time slice
is zero, preventing the percolation of y &

spins and result-

a =—'(1+e' ~
)2

rU/2)
2

(18)
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FIG. 1. The average density (nt ) vs U for p= —0. 1, —0.2,—0.3, —0.5, and —1 as labeled in the figure. The crosses show
exact results.

Notice that with this choice, M is no longer a function of
the coupling constant U, since the coupling constant can
appear only in y, a, and b, and here we fixed y =+1. Fur-
thermore, recall that, in the matrix M, p appears in the
form e "Ifor each BI matrix, where I is the VX Videnti-
ty. Consequently, the matrix M'=e P"(M I) is a—func-
tion of temperature, but not U or p. This major
simplification allows us to collect a large number of reali-
zations of M', and then perform data analysis for any U
and p. The p dependence is obtained by multiplying M'
by e~". The U dependence appears through the ratio
b /a, Eqs. (15), (17), and (18), in a way similar to perturba-
tion theory for ~ small. We can thus obtain results for a
wide range of values of U (positive and negative) and p
from only one computer run. Currently, we generate the
realizations of M' as follows: start with a11 y =+1 and
successively Aip randomly selected spins to y = —1, cal-
culating M' after each spin fa.ip. This is done up to some
maximum number of Hipped spins, much smaller than the
total number of sites. The reason is that the expansion of
Z in nz [Eq. (15)], which is similar to a perturbation ex-
pansion for ~ small, converges quickly and can be trun-
cated. Then we start all over, and in this way we generate
an ensemble of realizations of fiipped spins over which we
can average. The addition of importance sampling could
greatly increase the efficiency of the algorithm. This is
currently being investigated.
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We tested this algorithm on a 2X2 lattice and com-
pared with exact results. In Fig. 1 we show a plot of
(n& ) versus U, with the crosses showing exact results.
Figure 2 shows a similar figure for the ferromagnetic
correlation function, S(0,0). We used 256 time slices in
order to eliminate the finite time-step errors for compar-
ison with exact diagonalization. In general, the finite ~

FIG. 2. The ferromagnetic correlation function S(0,0) vs U
for the same values of the chemical potential as in Fig. 1. The
crosses show exact results.

errors are 0 (r U), as in the usual determinant algorithm.
The major part of the computing effort goes into the eval-
uation of the determinant, which scales like the cube of
the volume of the system. Note that as we move away
from half filling the errors increase appreciably for posi-
tive U because the sign problem is appearing in force.
Just like in the usual case, the average sign decreases ex-
ponentially with the inverse temperature, and therefore
the computer time required to keep statistical errors un-
der control also grows exponentially. It is worth noting,
however, that here we can reduce the fluctuations of the
average sign by an order of magnitude or more, by group-
ing together positive and negative configurations: This
is possible in our formulation only, because of our a priori
knowledge of the sign. For U &0, where there is no sign
problem, errors are very small. Recall that all of the
shown curves were obtained from the data of only one
run, and that those data contain all the information need-
ed to measure all the equal time correlation functions for
positive and negative U and a wide range of p.
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