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Elastic constants of Cu and the instability of its bcc structure
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First-principles full-potential nonrelativistic calculations of the total energy of fcc Cu for various
deformations of the cubic unit cell give values of the three elastic constants of fcc Cu in good
agreement with experiment. Use is made of simple formulas for the strain energy of tetragonal and
trigonal deformations in terms of the elastic constants. The total energy of Cu as a function of the
shape of a body-centered-tetragonal cell at constant volume does not have a minimum at the bcc
structure, and it is concluded that bce Cu is unstable with respect to [110] shears. However, this
instability does not prevent epitaxial growth on (001) surfaces.

I. INTRODUCTION

The metastable crystalline phases of a given material
are interesting because they correspond to new bonding
arrangements and new properties of the same atoms, but
have an analytic connection to the stable phase. Thus
from a first-principles point of view, i.e., finding solutions
of the Kohn-Sham equations with no adjustable param-
eters, such phases correspond to additional solutions of
the same problem which are local minima of the total
energy. Hence when a theoretical first-principles calcula-
tion in 1987, extended in 1989, found not just one, but
two metastable phases of copper, considerable interest
was aroused. The stable phase, face-centered-cubic (fcc)
copper, is a well-studied metal experimentally and theo-
retically because it has the simplicity of cubic symmetry,
does not have the complications of partially filled d shells
and magnetic effects, and its calculated properties from
first principles agree well with experiment, as they did in
Refs. 1 and 2. So the extensions of the theory to these
new metastable phases seemed to be reliable.

The new metastable phases of copper found in Refs. 1
and 2 were a body-centered-cubic (bcc) phase (c/a =
1) and a body-centered-tetragonal (bct) phase with
¢/a = 1.12, where c is the dimension of a tetragonal cell
along the tetragonal axis, and a is the side of the square
cross section (see Fig. 1).> The metastable phases were
found to have energies per atom a few mRy higher than
the fcc phase (¢/a = 1.41).

The occurrence of the metastable bct phase near the
bcc phase in the work of Ref. 2 produced a nonparabolic
curve with a near double minimum in the total energy
per atom E as a function of the volume per atom V for
the bce phase. This distortion led a number of workers
to doubt the correctness of the result.* ® These workers
showed by several independent methods that the E(V)
curve for bcc Cu was smooth without any indication of

0163-1829/93/48(9)/5886(5)/$06.00 48

the distorted shape found in Ref. 2. Hence it was con-
cluded that the bct phase was doubtful and probably an
artifact of the computation in Refs. 1 and 2.

However, the work on bcc Cu, which established from
several sources a consistent E(V) curve with a single
minimum and disposed of the bct metastable phase, left
the impression that bcc Cu was itself a well-behaved
metastable phase. The purpose of this paper is to show
by first-principles calculations, which find the total en-
ergy for noncubic configurations, that bcc Cu is in fact
unstable. The new calculations show that Cu at con-
stant volume does not have a local minimum of E at
the bcc structure, but is unstable with respect to shears
of the (110) planes. This instability is apparent from
the absence of a minimum in E as a function of ¢/a for
a bct cell at constant V' at the bec structure; hence a
transformation of the bcc structure exists along which £
continuously decreases.

The new calculations were aided by work by Jansen,
who calculated F as a function of ¢ and a for tetrag-
onal Cu with the full-potential augmented-plane-wave
(FLAPW) method. Jansen also found that E had no
local minimum at the bcc structure.

The accuracy of the calculations of F for noncubic con-
figurations are checked by finding the two shear moduli
of fcc Cu as well as the bulk modulus and showing that
the values compare well with experiment. The changes
in E for distortions around cubic structures are given by
simple expressions, which will be derived in the next sec-
tion, that lead directly to the shear constants. It will
be shown that changes in ¢/a and V provide orthogonal
strain parameters in terms of which the strain energy § E
is quadratic in the two strain parameters without a cross
term between them.

The apparent existence of a metastable bcec phase in
all the previous calculations with lattice constant 2.88 A
and a metastable bct phase with @ = 2.76 A in Ref. 2
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induced experiments which tried to grow these phases in
coherent epitaxy® on Pd(001), which has a square surface
mesh of side 2.75 A. The structure of the film could then
be determined by low-energy electron-diffraction (LEED)
analysis. A coherent tetragonal epitaxial film did grow,
whose structure was found, but strain analysis (based
on linear elastic theory) suggested that the film should
be described as a highly strained fcc phase, and not a
strained bcc or bet phase.® This reluctance of Cu to grow
in the bece structure suggested the conclusion that beec Cu
was unstable, but the more careful study of this paper
shows that such a conclusion is unwarranted. In fact,
later epitaxial experiments'® under the still more favor-
able conditions for growth of bcc Cu on Ag(001) (the side
of the substrate square unit cell is 2.89 A) appear to have
grown bce Cu, but in a rather disordered condition. The
discussion section will explain why an unstable structure
such as bcc Cu can still be grown epitaxially on (001)
surfaces.

II. CRYSTAL STRAIN AND ELASTIC MODULI

The previous calculations on bcc and fcc Cu referred
to above?™® all found E as a function of V', which gave
in addition to the equilibrium lattice constant the bulk
modulus

82E)
B=(vZZ , 1)
( V2 )y

where Vj is the equilibrium volume per atom. To un-
cover the instability of bcc Cu requires calculating shear
moduli, which are obtained from strain energy values 6 E
for more general strains than volume strains. Simple for-
mulas for §F for two strain configurations will permit
evaluation of the two shear constants of a cubic struc-
ture directly from the curvature of a calculated function
of one variable.
Consider two types of strain:

(1) Tetragonal strain around a cubic structure which
changes the dimension along the [001] direction, i.e., the
cell dimension ¢, and isotropically changes the dimension
in the (001) plane, i.e., the side a of the square cross
section. Figures 1(a) and 1(c) show both the top and the
side views of the tetragonal unit cells for the bcc and the
fcc structures, respectively.

(2) Trigonal strain which changes the cell dimension ¢
along [111] and changes isotropically the cell dimension
in the (111) plane, i.e., changes the side a of the rhombic
cross section. Figures 1(b) and 1(d) show the unit cells
used for trigonal strain.

In general, the strain energy density around a cubic
structure of volume V, per atom and side ag can be
written!?

6FE ¢
Vo %1(512 + 2% + €3%) + c12(e2e3 + 361 + €162)
(i
c
+50 (64 + &57 + e6?), @)
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where the ¢;, i=1-6, are the components of the strain
tensor in the crystal axes (unit vectors in the [100], [010],
[001] directions) in which the elastic stiffness tensor com-
ponents c¢;; have cubic symmetry and hence consist of
just three independent constants ci1, c12, C44.1?

For the tetragonal strain the strain components are
already in the crystal axis system and there are no shear
strains,

51=EZ=6G/G,€3=(56/C,642652662‘0, (3)

and we have, on putting Eq. (3) into Eq. (2),

6FE c
vo = (Cll + C12)€% + 20126183 —+ %Eg . (4)
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FIG. 1. Top and side views drawn to scale, all at the same
volume per atom, of cells used for total-energy calculations:
(a) tetragonal unit cell for bec lattice, (b) trigonal unit cell
for bcc lattice, (c) tetragonal unit cell for fcc lattice, and
(d) trigonal unit cell for fcc lattice. Smaller circles represent
atoms further from the plane of the plot (four sizes). For
tetragonal strain, the ¢ axis is parallel to the [001] direction.
For trigonal strain, the a axis lies in the (111) plane and the
¢ axis points into the [111] direction.
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In terms of strain components da/a and éc/c, the
quadratic form for 6 F in Eq. (4) has a cross term. But
in terms of strain components

% da bc  d(c/a) bc da

- =2— > =

|4 a c (c/a) c a
Eq. (4) becomes

SE B (6V\?  2G (é(c/a)\’ ©)
VJ_2<V> +3(c/a) ’
where B = (c11 + 2¢12)/3 and G = (c11 — ¢12)/2 is the
shear modulus for [110] shears, i.e., the modulus that re-
sists sliding of (110) planes on each other.!! Thus 6V/V
and é(c/a)/(c/a) are orthogonal strains for the strain en-
ergy of tetragonal distortions around a cubic structure.
The trigonal strain requires a more elaborate treat-
ment, since the axes for ¢ and a are not crystal axes. It
is necessary to transform the strains in ¢ and a to the
crystal axes, where the elastic tensor has the symmetry
of the crystal and is known. The tensor transformation
rule is used to find the strain components in the crys-
tal axes g;,i=1-6, in terms of the strain components
in the surface axes (indicated by primes) €. The trig-
onal strain components in the surface axes are given by
el = ey = daja,el = bc/c, e} = ef = ey = 0. The
expressions for the ¢; in terms of the ¢ are put into Eq.
(2) to give 0F (after some tedious algebra) in the form

(5)

SF _ e’ gc + 4 + gc
Vo = |\ 3ot gzt gea
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If §F is now expressed in terms of strain parameters
8V/V and é§(c/a)/(c/a) using Eq. (5), 6 E simplifies to

B2 (). o
/

Equations (6) and (8) now give the shear moduli G and
c44 directly from the curvature of calculated values of 6 E
as a function of ¢/a at constant V' around the values for
the bee and fcc structures.

III. CALCULATION PROCEDURE AND
RESULTS

The total energies were calculated with the full-
potential linear muffin-tin orbital method (FP-LMTO)
(Ref. 12) using the Ceperley-Alder form of exchange-
correlation potential!® in the Vosko-Wilk-Nusair para-
metrization.'* The k-space sampling was done on a uni-
form mesh of 288 k points in the irreducible part of the
Brillouin zone (1/16th for the tetragonal cell, 1/12th for
the trigonal cell). This mesh scales with the distorted lat-
tice to take the variation in lattice axes into account. The
k convergence was treated carefully. It turned out that
approximately 160 k points are sufficient to have total
energies converged to less than 0.1 mRy/atom. The re-

TABLE I. Lattice constants and elastic constants of fcc Cu.

a b c
a (R) 3.58 3.61 3.615
B (Mbar) 1.53 1.62 1.42
G (Mbar) 0.272 0.256
cas (Mbar) 0.86 0.75
# This work.

® Ref. 5, nonrelativistic results.
¢ Experiment.

sults were obtained without relativistic corrections, since
the relativistic corrections are known to introduce large
errors in the bulk modulus (noted in Ref. 6, for example).

Comparing the calculated values of the three elastic
constants for fcc Cu with experiment (see Table I) we
get a useful test of the accuracy of the method and the
precision of our calculation. The bulk modulus B and
the shear modulus G are about 10% higher than exper-
iment, and the other shear modulus c44 is about 15%
high. These differences are reasonable for good calcula-
tions within the local-density approximation.!®

Plots of E(c/a) for bct structures over a range that
includes the bce value (¢/a = 1) and the fcc value (¢/a =
V/2) are shown in Fig. 2 at the bcc theoretical equilibrium
value and at the fcc theoretical equilibrium value of V.
Note the following features of these plots:

(1) There is no minimum of E at the bcc structure.

(2) The slope 0E/0(c/a) = 0 at the c/a values of
the cubic structures bcc and fcc, as it must be by
symmetry.1®

(3) The bcce equilibrium E is about 0.5 mRy/atom
higher than the fcc equilibrium E and occurs at a V
4.3% smaller. This value of AE may be compared with
0.3 mRy in Ref. 4 (nonrelativistic, exchange-correlation
potential vy, in the Hedin-Lundqvist form) and with 1.7
mRy in Ref. 6 (nonrelativistic; with relativistic correc-
tions Ref. 6 finds AE = 3.6 mRy; vy in the Wigner
form).

The function E(c/a) for the trigonal cell at two values
of V' in Fig. 3 shows that the c44 constant of becec Cu is
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FIG. 2. Total energy per atom FE in mRy of

body-centered-tetragonal cells as a function of ¢/a at constant
volume referred to zero at the fcc minimum energy. Open cir-
cles at the volume of the fcc minimum energy, solid circles at
the volume of the bcec minimum energy.



48 ELASTIC CONSTANTS OF Cu AND THE INSTABILITY OF . ..

Vbee Y/ fee

4.0} 1 1
3.0} 1} 1
2.0} 1 /
0.6 0.8 2.0 2.2 2.4 2.6

c/a c/a

1.0} 1 r
0.0

(E - Efc) (mRy/atom)

FIG. 3. Total energy per atom for trigonal cells as a func-
tion of ¢/a at the volume of the bcc energy minimum (left)
and at the volume of the fcc minimum (right), referred to zero
at the fcc minimum energy. The energy barrier between the
two structures is ~ 9 mRy and not completely drawn.

finite (0.69 Mbar) and 20% smaller than the value for fcc
Cu (0.86 Mbar; see Table I).

IV. DISCUSSION

The bct calculations show that bcc Cu is unstable be-
cause there is no energy barrier for the shear deformation
that increases ¢/a. Thus bec Cu has a weak shear modu-
lus G, which vanishes to the accuracy of this calculation.
This weakness of the shear modulus is understandable if
the binding of the bce Cu lattice is reasonably described
by near-neighbor central forces. Then the bonds will be
perpendicular to (110) shears and hence will offer no re-
sistance to such shears, which to first order do not stretch
the bonds. However, this model would still show resis-
tance to (100) shears, since such shears will stretch the
bonds. We would like to point out that this vanishing
resistance can be well understood in terms of band fill-
ing. For Cu, the d shell is completely filled; thus, their
contribution to bonding effects is expected to be small.
Obviously, this is not the case for other transition metals
which need further specific investigation.

We can now explain why unstable bcc Cu is not ob-
viously prevented from growing epitaxially on (001) sur-
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faces, such as the Ag(001) substrate surface of Ref. 10.
The reason is that only one shear constant G vanishes,
but the shear constant that opposes sliding of (001)
planes is the other shear constant cy4, which is finite.
The epitaxial constraint of the film by the substrate pre-
vents (110) planes from sliding on each other.

This lack of stability of bcc Cu with respect to shear
is an obvious warning, often forgotten, that evalua-
tion of total energies as a function of volume alone is
not enough to establish the metastability of a phase.
Proof of metastability requires a more extensive anal-
ysis; in principle, such proof requires showing that the
energy increases for all possible infinitesimal deforma-
tions. Imposed constraints, however, can create stability
or metastability.

V. SUMMARY

Full-potential nonrelativistic calculations of the total
energy of Cu as a function of the ¢/a ratio of tetragonal
and trigonal cells give values of the two shear constants
and the bulk modulus of fcc Cu which agree well with
experiment (10-15% high). The calculations use a par-
ticularly simple form for the strain energy of tetragonal
and trigonal deformations of a cubic structure. To obtain
this simple form the strains in ¢/a and V are shown to
be orthogonal, and so the elastic constants can be eval-
uated from the curvature of the energy as a function of
just one variable. For bcc Cu the calculations show an
instability with respect to [110] shears and a vanishing of
the G modulus, but B and c44 are finite. Hence it is un-
derstandable that bcc Cu is not prevented from growing
in coherent epitaxy on closely matched (001) surfaces.
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