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The short- and long-range structures of computer-grown random-mass fractal clusters are de-
scribed using exponential, Gaussian, and two different power-law pair-correlation functions. For all
of the correlation functions the short-range structure is determined by the fractal dimension D and
the long-range structure is expressed with a size parameter. One power correlation function has an
additional shape parameter. Closed-form expressions are derived for the small-angle x-ray scattering
for each of the four correlation functions. Clusters are grown using diffusion-limited-aggregation,
Eden, dielectric-breakdown (DBM), ballistic, and random-polymer models. The Debye sum is used
to calculate the small-angle scattering for each cluster. The parameters in the correlation func-
tions are adjusted to provide the best fit to the Debye-sum scattering. The power laws reproduce
the short- and long-range structural information much more accurately than the exponential or
Gaussian models, which lack definitive size cutoffs and fractal scaling at intermediate- and long-
range distances. In many cases the two-parameter power function produces fits that are as good
as those with a third parameter. This indicates that the long-range shape parameter in the three-
parameter power correlation function is simply related to the fractal dimension. The power 6ts
accurately give the fractal dimensions and the radii of gyration for the clusters. Expressions are
derived for the Guinier and the fractal-region scattering for each correlation function. Asymptotic
formulas are used to explain large-q (fractal-region) scattering intensity that varies as q, where
1 ( v & 4. It is shown for D = 2 systems that the fractal scattering is independent of the size and
shape parameters. The extensions of this work to the scattering by multifractals are discussed. An
efficient method is also presented to calculate large DBM clusters with noninteger growth exponents.

I. INTRODUCTION

This paper presents results on the determination of
general structural information about clusters and other
large molecular objects. The traditional goal in struc-
ture work is the determination of the precise position
of each particle in the cluster. This can be accomplished
with direct imaging of the object or with extensive x-ray-
scattering measurements if the substance can be crystal-
lized. The result is a large table of coordinates that de-
fines the structure. However, it is not always possible to
obtain crystals of a substance, and for other cases random
variations in the structure prohibit precise structure de-
termination. For these cases simple, cruder measures of
structure are useful, and such measures can also provide
a simple summary of a detailed molecular structure.

Here we consider the structural information in the pair-
correlation function p(r) that gives the number of pairs of
particles, p(r)dr, in the cluster with distances between,
r and r + dr. We seek to understand these correlations
at both short- and long-range distances. If the cluster is
assumed to be a simple mass fractal, then we can write

where D is the fractal dimension and f (r) is a cutofF func-
tion that assures a finite number of particles (size) for the
cluster. The cutofF function is assumed to be nonzero
and finite at r = 0. At short range the pair-correlation

functions p(r) scale as r, and the number of particles
found within a distance r is proportional to rD. Alter-
natively the short-range scaling can be expressed with
the density-density correlation function c(r), which can
be expressed as r ", as characterized by many workers
(Refs. 1 [p. 339, Eq. (1.2)j, 2, and 3). Here d is the di-
mension of Euclidean space in which the cluster resides.
However, the radius of gyration, Bg, and the maximum
pair distance, the spanning length a, are determined by
both D and f (r). The pair-correlation function expressed
as Eq. (1) is exact for solid spheres, where the cutoff
function f(r) is proportional to the characteristic func-
tion po(r) which was introduced by Porod (Ref. 4 p. 12).
However, the form of p(r) expressed in Eq. (1) is phe-
nomenological for fractal clusters, and to date we know
of no fundamental theory that even gives the form of f (r)
for fractal clusters.

If the coordinates of all particles in a cluster are known,
then p(r) is easily calculated and a fractal dimension D
and a cutofF function f(r) can be fit to the actual p(r).
This will explicitly determine D and f(r). Quantities
such as Bg and a can be easily determined. But for many
physical clusters, detailed coordinate data will not be
known, and small-angle scattering experiments may be
used to determine D and f (r). The theory of scattering
from fractal objects was addressed as early 1983 by Wit-
ten and Sander who correctly predicted the Fourier reci-
procity relationship between real space and q space for
fractal objects at large q. If D ( 3, it can be shown that
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the scattering intensity decreases as q for the large-
q region, if f(r) approaches zero sufficiently quickly for
large r. This q dependence has been used extensively
to elucidate the general and &actal structure of mate-
rials such as silica aerogels, resin polymers, proteins,
and detergent-type structures. Other materials which
have been investigated include bone, aerosols, soot, and
smoke. In other work on glasses and carbonaceous coal
deposits the scattering is observed to have an inverse
power dependence on q, but the scattering is not dis-
cussed in terms of mass fractals. In the cases where the
material is nonabsorbing and has a large enough particle
size, light scattering instead of small-angle x-ray scatter-
ing (SAXS) or small-angle neutron scattering) (SANS)
has been used in the determination of fractal dimensions.

The main emphasis of this paper is an examination of
f (r), which we do by considering the small-angle scat-
tering for different assumed forms for f(r). Exponential,
Gaussian, and power forms are used. The power forms
for f (r) are chosen to be zero for r ) a. One of the
power models contains an additional parameter p that
determines the form of p(r) as r ~ a. We find closed-
form expressions for the small-angle scattering intensity
I(q) for each f(r), where I(q) will depend on the values
of two or three parameters.

We attempt to find the best form for f (r) by compar-
ing the best fits that can be obtained with the scattering
from the assumed f (r) and the calculated synthetic scat-
tering of computer-grown random clusters. The scatter-
ing has been determined for clusters ranging from 10 to
10 atoms, which we have grown with diffusion-limited-
aggregation (DLA) [Refs. 13 (pp. 134—181), 3, 5, and
14], Eden, ballistic, and dielectric-breakdown [Refs.
17, 18, and 19 (p. 151)j (DBM) models. The DLA
model uses a random-walk method to choose and fol-
low the trajectories leading to growth. The DBM model
solves the Laplace equation in two or three dimensions
to generate the probabilities for the addition of particles
according to the rules set forth by Niemeyer, Pietronero,
and Wiesmann. The DBM model uses an adjustable
parameter g that when increased from 0 to 1 produces
structures with variable fractal dimensions D that de-
crease from 3 to 2.5.

We judge our choices for p(r) on their ability to repro-
duce the known Bg, a, and D for the computer-generated
clusters after adjusting the parameters in the p(r) to pro-
vide the best fit to the synthetic scattering. An impor-
tant aspect of this work is that we And properties such as
D for fractal clusters from global fits of I(q). Hence we
demand a p(r) that has information about all distances in
the cluster. The p(r) at small r is determined by D and at
large r by the size of the cluster and the functional form
of p(r) In recent S.AXS determinations of the fractal di-
mension of complex aggregate structures ' ' this global
approach has been avoided. Typically workers examine
I(q) for simple q behavior, or they use the intensity
expression derived &om an exponential cutoff function
to 6t the large-q scattering. We will show that these
approaches can have significant errors for all of the prop-
erties of monodisperse fractal clusters. An important rea-
son for the failure of simple models is that the scattering

for monodisperse clusters is often oscillatory. Polydis-
persity will smooth the oscillations, but the extent of the
polydispersity is different for various real materials. The
results of this paper can be extended to include any dis-
tribution of cluster sizes. However, since we are using the
theory for the scattering by computer-generated. clusters
that have a unique size, we do not consider polydispersity
here.

Our techniques can be applied to any monodisperse
system of random clusters which are nonaggregating. Ag-
gregation phenomena can be examined if the aggregation
is based upon a monomeric unit for which the structure
factor is known. The scatterers are assumed to take on
all orientations and to be noninteracting with the other
clusters in the sample (dilute assumption). The frac-
tal dimension D will be most reliably determined if the
cluster is a simple fractal (single value for D) and has
approximate spherical symmetry.

Section II of this paper reviews small-angle scattering
theory and the calculation of scattering with the Debye
sum and its integral approximation. Section III intro-
duces the four pair-correlation functions p(r) that are
used in this work. The corresponding expressions for I(q)
are presented along with the limiting forms for small and
large q. It is shown that the large-q scattering intensity
is independent of the form of f(r) for D = 2 clusters.
Section IV discusses the methods we use to generate the
clusters for the synthetic-scattering data. An eKcient
algorithm is presented for the calculation of DBM clus-
ters. Section V gives the results for the fits of the syn-
thetic scattering with the four assumed correlation func-
tions. The best-fit p(r) are compared with the actual
pair-correlation functions for the computer-grown clus-
ters. Section VI discusses the strengths and weaknesses
of the pair-correlation functional forms. The relationship
of this work with surface and multi&actals is considered.

II. SMALI -ANGLE X-RAY SCATTERING

In this section we consider x-ray scattering that is de-
rived from the Debye sum. The theory can also be used
to treat light scattering, neutron scattering, and electron
diffraction. SAXS is calculated &om the real-space co-
ordinate data of each cluster with N particles using the
Debye sum:

f; (q) fq (q) sin(qr, q).
1(q)

i)j=l q~i

In this equation f;(q) is the scattering factor for the ith
particle in the cluster, and r;~ is the distance between
particles i and j. The magnitude of the scattering vector
q is given by q = 4vr sin(0/2)/Ap where 0 is the scat-
tering angle, and Ao is the wavelength of the scattered
particle. This is the wavelength of a photon or the de
Broglie wavelength of a neutron or an electron. In this
work, the unit for Ao will be the unit distance ro for the
lattice on which a cluster is grown. The unit for q is ro
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For a cubic lattice rp 1s also the minimum interatomic
distance.

Here we will consider only clusters composed of a sin-
gle type of particle. In this case the Debye sum can be
written as

Now setting x = r and P(q) = 1,

2

I(q) =Ni) p
q

(3)

where P(q) = f (q) is the scattering for one particle.
The scattering at zero 8 or q is I(0) = P(q)N . Iri this
paper we will assume that the particles are structureless
point scatterers, so that P(q) can be taken as unity with
no q dependence. To calculate the scattering for clusters
composed of particles with a P(q) that varies in the q
space of interest, scattering-intensity equations in this
paper need oiily be multiplied by P(q).

The Debye sum is an exact method for representing
scattering from a cluster of ideal noninteracting point
centers, where the cluster is randomly oriented in space.
Using the Debye sum allows exact Fourier component
summation, such that all the detail that is usually found
in precise x-ray-diffraction experiments from very dilute
homogeneous size samples is preserved. The extension
of our results to polydisperse samples is beyond the scope
of this work, and this theory only deals with monodis-
perse samples in the small-angle region where q & l. It
will be shown that different cluster-growth models lead
to a variety of different behaviors in q space.

A general property of scattering for small q is that it is
determined by the radius of gyration, Bg, for the cluster.
In this work the unit of Bg is rp. The scattering for q
& 1/Bs is called Guinier scattering and is always given
(Ref. 4, p. 27) as

I(q) = I(0)(1 —8 q /3 + . ). (4)

This result is the basis of the most commonly used
method to determine particle size.

For most of the clusters that have been considered in
this work, the particles occupy integer lattice points in
two- or three-dimensional space. Hence the position of
each particle is given by (i, j, k) where i is the x posi-
tion, j is the y position, and A: is the z position. For
such lattices the Debye sum can be efIiciently calculated.
One might expect that the calculation would need N
trigonometric functions for a cluster with % particles.
However, the cubic lattice implies that the squares of all
distances r within the cluster are sums of three square
integers: r = i +j + k . The possible values for r are
1,2,3,4,5,6,8,..., a, where a is the largest distance (span-
ning length) in the cluster. Some of the square distances
such as 7 are not possible because the number cannot
be represented as the sum of three square integers. The
number of possible distances a in the cluster is much
smaller than N, and so the best strategy to calculate
I(q) by the Debye sum is to first write the sum as

where p is the total number of pairs of particles that
are separated by the distance x / . This equation shows
that it is best to first accumulate the number of parti-
cles separated at each of the possible distances and then
evaluate less than a trigonometric functions.

The Debye sum is useful to accurately calculate the
scattering &om clusters of known structure. However, it
is not useful for prediction of special properties of the
scattering from fractal clusters or for the extraction of
the pair-correlation function from observed SAXS. For
these purposes the summation can be approximated by
an integral.

I(q) = N p(r) dr
sin(qr)

0 qp

In this equation we will call p(r) the pair-correlation func-
tion, and the average number of neighbors for an atom in
the cluster at a distance between r and r + dr is p(r)dr.
We define p(r) in this way because we will determine the
parameters in p(r) using only relative scattering intensi-
ties I(q)/I(0). The normalization of p(r) is

p(r)dr = N.
0

To complete the continuum formulation, we assume that
p(r) has the form p(r) = r~ f (r), where f (r) vanishes
for large r to yield a cluster with N particles. D is a
mass fractal dim-ension and gives the number of particles
within a distance r as r f(0)/D for small r. If D =
3 and f (0) = 47r, the expected result for a sphere is
found. In this case f (r) = 4apo(r), where po(r) is Porod's
characteristic function. In this work we will consider four
f (r) functions that have closed-form expressions for I(q).

It is important to consider the validity of Eq. (7) that
approximates the Debye-sum expression for the scatter-
ing by an integral over the pair-correlation function. For
a cluster that is grown on a lattice of unit length, the De-
bye sum gives scattering that is large for small q and that
tends to decrease as q is increased. The scattering enve-
lope will have a minimum value for q & 2', where q = 2'
is the first Bragg diffraction. Since the scattering from
our assumed p(r) continues to decrease as q increases, we
expect that Eq. (7) will fail for sufficiently large q. Here
our task is to show that Eq. (7) is valid for q & 1, where
the units of q have been defined earlier.

In the literature, the integral representation of I(q)
is often given as

p(r) dr + C,
qP

I(q) = P(q) N+ 2 ) )
i=j+1 j=1 Uqr j (5)

where the constant C = 1/D is intended to correct the
fact that the Debye-sum scattering envelope will have
a minimum value. The added constant has also been
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justified to account for self-scattering. However, we will
now argue that it is justified to set C = 0 to describe the
scattering for q & 1. This choice for C has been done by
others ' without justification. Setting C = 0 allows us
to use Eq. (7) or more specifically Eq. (14) in this work.
One useful consequence of the following arguments is that
they show that the small-angle scattering region extends
at least to q = 1.

We can give three justifications for the neglect of C.
The first can be seen in the following justification for the
integral expression for I(q) that is based on the Euler-
Maclaurin sum formula [Ref. 25, p. 16, Eq. (3.6.28)]:

I(q)
sin(qr)

qr

This equation is sufBcient to interpret all of the fits in this
paper, because only the ratio of I(q)/I(0) is considered.
If absolute intensities are desired, careful evaluation of
P(q) must be done and the factor of N must be rein-
serted.

The second reason to omit an added constant is that
the Debye scattering from all the lattice points within a
spherical boundary is accurately reproduced by Eq. (14).
In this case

n —1).f~ =
k=1

f(k) ——.'[f( )+f( )]

+ —,', [f'( ) —f'(o)]+"

p(r) = 4mr (1 —r/a) (1 + r/2a),

where a is the diameter of the sphere. Now Eq. (14) was
evaluated by Rayleigh (Ref. 4, p. 19) to give

sin(qx ~ ) 1
I(q) = N ~ p(x) dx + 1 ——pp

qadi/'2 2

d p(x) sin qx ~

=p)

if a is chosen large enough that p(x) sin(qxi~ )/(qx ~ )
and its derivatives can be neglected at the upper limit of
the summation. The task now becomes the estimation of
the derivative term. This term can be expanded as

1, d Ksinqx ~

12 P() Pd (12)

We use a finite-difference approximation that p'(0) is
given by pi —po. A consistent choice for pi is 2D, since
this gives the correct number of nearest neighbors for
D = 1, 2, 3. With pp

——1 the final expression for I(q) is

Although the series on the right-hand side of this equa-
tion may not be absolutely convergent for actual corre-
lation functions, we assume as is done in perturbation
theory that the first few terms will allow an estimate of
the errors in the approximation of the sum by an integral.
With this Eq. (6) can be rewritten as

9~ t' J,&, (qa/2))Iq
2 ( (qa/2)a&2 )

(16)

The third reason to neglect the self-scattering term is
that none of the p(r) discussed in this paper fit the syn-
thetic data well enough to include the term.

The fact that Eq. (16) accurately reproduces the Debye
scattering for the set of all cubic lattice points enclosed
by a sphere also indicates that the presence of the many
zeros in the actual discrete correlation function does not
significantly impair the continuum approximation. It ap-
pears that only the average of the discrete correlation
over several zeros is important.

Several important properties of the scattering can be
obtained from Eq. (14). If D=3 and f'(0) & 0, the scat-
tering decreases as q for 1/Rg & q & 1. This is called
Porod scattering. If D ( 3, it can be shown that the
scattering intensity decreases as q in this q region, if
f (r) approaches zero sufFiciently quickly for large r. We
will call this fractal scattering.

In principle, the pair-correlation function can be ob-
tained by direct inversion of the small-angle form of the
scattering intensity by means of the equation

I(q) /N p(r) dr + + . (13)
sin qr 7 —2D q

qr 12 72

OO

p(r) = — qI(q) sin(qr)dq.

This argument shows that the end-point correction has a
small q dependence, but the magnitude of the correction
is only 1/12 for D = 3 and 1/4 for D = 2 provided
that q is less than or equal to 1. Since the integral is
% at q 0 and of order of 1 at q = 1, the correction
can only affect I(q) for q near 1, and then only by 1
part in 12 for most three-dimensional clusters. For lower-
dimensional clusters I(q) is greater than 1 for q = 1, and
so the correction is still small. It appears justified to
neglect an additional constant for a cluster containing
thousands of atoms.

Now that we have begun the justification of the integral
approximation to the Debye sum, we start using a simpler
expression for the scattering intensity. We will write Eq.
(7) without the factor of N as the following:

However, this inverse transformation is dificult to do
with experimental data. Experimental data has noise
and is often convoluted with slit corrections and the like.
Also the small-angle form of the I(q) data must be ex-
trapolated to large values of q to capture all contributions
to the integral. The final problem with direct inversion
is that the result will be p(r) at a set of r values. Quanti-
ties such as the fractal dimension must then be estimated
from these numerical p(r) values. Our approach in this
paper will be to fit actual I(q) by varying parameters in
assumed forms for the pair-correlation function. There
is no experimental averaging of the data we will use, but
this simulation procedure can easily be extended to ex-
perimental data that contains such averaging.
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III. PAIR-CORRELATION FUNCTIONS
AND THEIR SCATTERING INTENSITY

We now present four different continuous p(r) distri-
butions that will hopefully be good representations of
the discontinuous pair-correlation functions found in real
&actal clusters. These p(r) are chosen to be physically
reasonable and result in closed-form expressions for I(q).
The parameters in the assumed p(r) will be adjusted to
best-fit Debye scattering &om computer-generated ran-
dom clusters.

The first has an exponential f (r), p(r)
i exp( —r/A), which has often been used by other

workers. O' ' The parameter A is a measure of the
size of the cluster. The second has a Gaussian f(r),
p(r) = rD exp( —r /( ). Here ( is the size param-
eter. In this case the pair-correlation function decreases
more quickly with r than for the exponential, but the
p(r) still extends to arbitrarily large r.

The other two choices for p(r) are motivated by Eq.
(15), which gives the pair-correlation function for a
sphere. If the 1 + r/2a and 4' factors are suppressed,
the sphere-correlation function has the form p(r)
r i (1 —a/r) D . Here the parameter a is the spanning
length and the large r dependence of p(r) is described

by D —1. We call this correlation function the modified
power law or the two-parameter power law, and we use
it as our third choice. The fourth correlation function is
the three-parameter power law p(r) = rD i(l —r/a)".

Here the parameter a is the spanning length and p is a
shape parameter describing the long-range dependence
of the correlation function. The modified power correla-
tion function is obtained from the power-law function by
setting p = D —1.

These correlation functions result in analytic functions
for the scattered intensity. The well-known (Refs. 22 [p.
155, Eq. (36)], 24, and 29 [p. 72, Eq. (7)]) result for the
exponential f (r) is

~D-'r(D —i)
I(q) =, , (,], sin[(D —1) tan '(Aq)].+ q2P2 (D—i)/'2

The computational simplicity of this equation accounts
for its heavy use.

The scattering intensity for the Gaussian correlation
function is given by (Refs. 30 [p. 495, Eq. (7)] and 29 [p.
74, F.q. (24)])

gDr(D/2) )D
2 (2' 2' 4

where qFq is the well-known confluent hypergeometric
function (Ref. 25, pp. 503—535).

The power-law function results in I(q) given as a sum
of two confluent hypergeometric functions of imaginary
argument (Refs. 30 [p. 425, Eq. (11)] and 29 [p. 68, Eq.
(5)]):

I(q)
aD-ir(D —i)r(&+ i)

2iqr(p, + D)
[iFi(D —1) p+ D; i aq) —iEi (D —1; p + D; —iaq)] . (20)

I(q) for the modified power-law function can be found in terms of Bessel and Beta, B(x,y), functions:

I(q) = a B(D,D —l)I'(D —2) t'1'
'i ")'

(1 3 (1 5 fl l (1
) 4» ' k2 )

(21)

The derivation of the above expression in terms of Bessel
functions is accomplished by equating the series expan-
sions for the conHuent hypergeometric functions [Ref. 25,
p. 504, Eq. (13.1.2)] with those for the Bessel functions
[Ref. 25, p. 360, Eq. (9.1.10)].

The actual computations for the exponential are triv-
ial, but the other correlation functions lead to the qEq
and noninteger-order Bessel-function expressions,
which are more dificult to calculate. We have found
that the algorithms of Luke provide a convenient way
to accurately evaluate the iEi (Ref. 31, pp. 20, 73—75,
93—96) and Bessel functions (Ref. 31, pp. 208—209).

We now summarize analytical results for Guinier and
&actal scattering for each of the four correlation func-
tions. Guinier scattering occurs for small q, where I(q)
can be expressed with the first terms of a series expan-
sion about q = 0, as in Eq. (4). Only terms with even
powers of q appear in the series expansion.

The exponential model has a small-q expansion given
by

(22)

Using Eq. (4) and the approximation from the exponen-
tial above, the radius of gyration is given by

D(D+1) A'

2

The Gaussian model has a small-q expansion given by

r( —.) &
I(q) =

i

1—
2 ( 12

(24)

D (2
g 4

(25)

This equation is easily obtained from the power series
for the confluent hypergeometric functions. The radius
of gyration will be defined for the Gaussian correlation
function by
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The power model has the small-q expansion

I(q) = a B(D, 1+p)
l( a2D (1+D) q2

x 1— + . (26)6(1+D+~) (2+D+~) ) '

a D (D+1)
2 (1+D+ p) (2+ D+ p)

(27)

The modified power model has the small-q expansion

where B(D, 1 + p) is the Beta function. The radius of
gyration for the power model is given by

Once again the scattering has no oscillations and de-
creases as q for D ( 3. We note that Porod scattering
is not found for D = 3, but the scattering intensity de-
creases as a Gaussian for all q. In fact, the scattering
precisely obeys Guinier's exponential approximation

I(q) = I(0) exp( —B q /3) .

The lack of q dependence for D = 3 is not surprising
because f'(0) = 0 for the Gaussian. Porod behavior is
only expected for f'(0) & 0.

The three-parameter power-law correlation function
produces a complicated form for the scattering as seen
in Eq. (20). The large-q asymptotic form for this equa-
tion is derived from the limiting form of the confluent hy-
pergeometric function (Ref. 25, p. 508) and entails some
work to finally arrive at the following form:

The radius of gyration for the modified power model is
given by

I(q) - A(f„+ fp), (34)

a' (D+1)
4 (2D+ 1)

(29)

(vr(D r) )—
I(q) - I'(D —1) qD PqD+1

As mentioned previously, the scattering intensity is de-
termined by the mass scaling dimension D for R
q & 1. Here we present asymptotic expansions of I(q) for

large values of q for the pair-correlation functions in this
work. The exponential pair-correlation function yields

I(q) with the asymptotic q expansion

where

1(D —]) &sin( (
2 ))

1(p+ 1) ( qD

p(D —1) cos( '
)

aqD+1

+ ~ ~ ~ (35)

+ ~ ~ ~ (36)

sin(i 2aq —m(p+r)
)

ap, —D+2qp+2

(p+ 1)(D —2) cos(' ',("+')
)

ay —D+3 @+3q

+ ~ ~ ~ (30)

A = I'(p+ 1) . (37)
This expression shows that I(q) q for D & 3, but
that Porod dependence, I(q) q, is found for D = 3.
The fractal-region scattering does not exhibit any oscil-
lations for the exponential pair-correlation model. Even
simpler expressions can be found for the scattering inten-
sity when D is an integer. An interesting implication of
Eq. (30) is that it effectively requires that D & 3. For
D = 3+ x where (0 & x & 1) it is easy to show that I(q)
will be negative for q ) (2+ x) cot(vrx/2)/A. For large A,

x must be very small to have positive I(q) for q = 1. D
can be greater than 3 only for relatively small clusters.

The asymptotic expansion of I(q) for the Gaussian cor-
relation function (Ref. 25, p. 508) has two distinct forms
for the case that D ( 3 and for the case that D = 3:

( ~ (m(D —r)
)

D —1( q+
(D —1)2cos( (~-'))

aqD+'

These equations show that the power-law correlation
function can result in oscillatory fractal scattering. The
spanning length a determines the wavelength of the os-
cillations. Porod scattering is found for D = 3, and the
scattering decreases as q for D ( 3 in the fractal re-
gion. Equation (35) also limits D to be less than or equal
to 3, and the analysis presented above for the exponential
correlation function is easily applied to this case.

For completeness the f„, fp, and A terms for the rnod-
i6ed power-law correction function are

2~ 2~sr t' 1 D(D —1)
1 (3/2 —D/2) qD (2q~+2 )~

'
+ ~ ~ ~ (38)

and

for D & 3, (31) s'n( q +
) L)(D 2) cos(2aq &&

)+
'" ' +-,

aqD+1 a2qD+2

I(q) exp
~

— I, for D = 3.(sI'(3/2) 6 (2q2 l
4

(32)
and

A = r(D).
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If D ( 3, the ratio of the oscillatory terms fo to the
nonoscillatory terms f„ is proportional to q i. Hence
the oscillations will appear to damp out as q increases.
However, the oscillatory and nonoscillatory terms have
the same leading q dependence for D = 3. Again D
cannot be greater than 3 except for small clusters.

It is interesting to note that no oscillations will be ob-
served for D = 2 with the modified power correlation
function. In this case the scattering intensity for all q is

1 ( sin(aq) l
!I q = — 1

q' & aq ) (41)

The derivative of I(q) with respect to q is thus given by

dI(q) —1 f 3 sin(aq) l
! 2 + cos(aq)—

dq qs aq )
(42)

This derivative is never positive, and so the scattering
must have a monotonic decrease with increasing q.

It is also interesting to note that the nonoscillatory
part of the asymptotic scattering intensity is the same
to terms O(q s) for all of the correlation functions when
D = 2. This common asymptotic intensity is I(q) q
This fact coupled with the absence of oscillations for the
power functions indicates that the &actal scattering for
D = 2 is insensitive to the form of f(r). It is easy to
show that this will be true for all f(r) for D = 2. In this
case the scattering intensity is given by

CL

I(q) = — f (r) sin(qr)dr .
q

(43)

For f(0) = 1 and f(a) = 0, integration by parts gives the
result that

Hence we see that for D near 2 all p(r) will provide the
same fit to the scattering in the fractal region provided
the physically reasonable situation that f'(a)/q is small.
Different p(r) will provide difFerent quality of fit only
for smaller q. The &actal region will yield detailed f(r)
information only for 2 & D & 3.

A simple expression also results for D = 3 for the mod-
ified power law. Now the scattering intensity for all q is

I(q) =
~

2 + cos(aq)—
2 3 sin(aq) 5

aq4 aq j
This equation explicitly shows the Porod scattering and
the undamped oscillations for this case.

IV. CLUSTER GENERATION

To test the usefulness of the proposed p(r) to describe
the small-angle scattering of fractal clusters, we have cal-
culated the coordinates of the atoms for a variety of clus-
ters with 1.7 & D & 3. We calculated synthetic small-

I(q) = —+ —— f"(z/q) sin(z)dz.
1 f'(a) sin(aq) 1

q2 q3 4

(44)

angle scattering for the computer-grown random clusters
using the Debye sum. The scattering expected from the
difFerent Ji(r) is then fitted to the synthetic spectra. To
provide valid tests we have used a variety of cluster-
growth algorithms that produce clusters with difFerent di-
mensions. Eden, ballistic, and dielectric-breakdown
(DBM) [Refs. 17, 18, and 19 (p. 151)] models are used to
produce compact D = 3 clusters in three-dimensional Eu-
clidean space and D = 2 clusters in two-dimensional Eu-
clidean space. Clusters with D & 3 in three-dimensional
space and D & 2 in two-dimensional space are produced
with difFusion-limited-aggregation (DLA) [Refs. 13 (pp.
134—181), 3, 5, and 14] dielectric-breakdown, and true
self-avoiding random-walk (TSAW) models.

We chose to grow Eden clusters with the method that
Vicsek calls variant C (Ref. 13, p. 184). In this cluster-
growth model the location for addition of a particle is
determined by first randomly choosing an occupied clus-
ter position and then randomly choosing between any
vacant sites that are adjacent to the targeted occupied
site. If no perimeter sites are found, a new occupied site
is chosen to repeat the algorithm. It is apparent that
the Eden model produces compact clusters, because the
probability of occupying a vacant perimeter site is pro-
portional to the number of occupied sites surrounding it.
In three dimensions, the probability of occupying a site
in the interior of the cluster may be as much as 6 times
the probability of occupying a site on the surface of the
cluster. The clusters have D = 3 with fuzzy surfaces.
The clusters are rapidly grown on a computer.

The ballistic growth model adds particles by starting
trajectories at random toward the cluster &om a spheri-
cal boundary enclosing the cluster. If the trajectory in-
tercepts an occupied site, the particle is added to the
last perimeter site before the collision. The clusters have
D = 3, but have a diAerent structure than the Eden
clusters. The ballistic clusters tend to have radial voids
because of the shadowing effects of previously occupied
sites. The ballistic clusters are also rapidly grown with
a simple computer program. Ballistic clusters have D
equal to the dimension of Euclidean space in which they
are grown and have a self-aFine surface. The ballistic
cluster is not a fractal in the sense that it is not a
self-similar structure, but it does show nontrivial scaling
behavior.

The DLA model uses a random-walk method to choose
the location for the addition of a particle. The additional
particle is started on a spherical boundary surface that
comfortably surrounds the cluster. The particle is forced
to execute a random walk in Euclidean space, and the
location for addition is determined if the random walk
intercepts a perimeter site. DLA clusters have D 2.5 in
three-dimensional space, but they are multifractals (Ref.
13, pp. 48—51) and can be described by a tangential and
radial pair-correlation function that is indicative of the
anisotropic nature of the difFusion-limited aggregate.
The DLA clusters are not dificult to grow, but they need
large computer memory to eKciently search for possible
attachment positions.

The true self-avoiding random-walk model produces a
cluster with D = 2 that is grown in three-dimensional
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Euclidean space. The model produces the cluster by oc-
cupying all points of the trajectory of a random walk that
is constrained to never intercept itself. The computations
are simple, but must be performed on a very large lattice
to avoid hitting the walls. Eventually the growth will ter-
minate when the random walker finds itself surrounded
by occupied sites.

The DBM model solves the Laplace equation in two
or three dimensions to generate the probabilities for the
addition of particles according to the rules set forth
by Niemeyer, Pietronero, and Wiesmann. The DBM
model (Ref. 19, p. 151) uses an adjustable parameter
g, which when increased from 0 to 1 produces structures
with fractal dimensions D between 3 and 2.5. The
Laplace equation b7 /=0 for the potential P at each cubic

I

lattice point in three dimensions is solved with the clas-
sic Jacobi method. The boundary conditions are that the
potential at each occupied site be 0, and that the poten-
tial on a spherical surface surrounding the cluster be 1.
The size of the spherical boundary is chosen to be much
larger than the size of the cluster to be grown so that
no directional anisotropy is observed during the growth
process.

In the Jacobi method the potential at each lattice point
(i, j, k) which is not an occupied site or a part of the
spherical boundary is replaced with the average of the
potential at the six surrounding points. The procedure
is repeated until the potential converges at the perimeter
sites for the cluster. The equation for this process is the
following:

l0'ij k ~ 0'ijk + s (0i+ij k + 4i ij k + 0'ij—+1k + P.. .k + P;,k+, + P,,k, —6$,,k). (46)

In this equation ~ indicates "replaced by. " The com-
putation of a cluster begins with one occupied site at
the center of the spherical boundary surface and with
the potential at the other lattice sites set to 0.5. Once
the potential P~ at the N„peri meter sites has been ob-
tained, the probability for addition of the next particle
at a perimeter site is given by

p

E„="i6" (47)

D,' + i1(D —1)
D. + rI(D —1)

For DBM clusters grown in a three-dimensional (3D)
space, D,=3 and D =2 are the correct parameter values.
Recently a fixed scale transformation (FST) theory
has been introduced to calculate the fractal dimension
and rnulti&actal properties of DBM clusters. The first
implementations of the theory were applied to ana-
lyze DBM clusters grown in 2D space, and the results
showed that the theory fails to reproduce the fractal di-
mensions for g ( 1, but gives good results for larger g.
The theory has been most recently extended to 3D clus-
ters, and the results for the integer g correspond well

After placing the particle, the potential of the new occu-
pied site is fixed at zero and the procedure is repeated.
At sites where the potential is not fixed, P is not reset to
0.5 before starting subsequent iterations. EKcient algo-
rithms can be used for producing DBM clusters with
integer values for g.

The fractal dimension D of DBM aggregates can be
approximated with a mean-field theory. The pararne-
ters of the mean-field model are D„D, and g, which
correspond to the dimensions of the space and the ran-
dom walker on the surface and the growth exponent of
the DBM model, respectively. A simple formula results
for the fractal dimension:

I

with the experiments.
For g = 0 all perimeter sites including those with com-

pletely occupied adjacent points have the same probabil-
ity for addition. This leads to D = 3, and this cluster has
the same growth algorithm as the Eden growth variant
A described by Vicsek (Ref. 13, p. 183). However, the
DBM clusters with g = 0 are different than Eden clusters
grown using variant C. The DBM clusters tend to have
more unoccupied interior points because the probability
for occupation of these is not encouraged by having more
occupied neighbors. The g = 0 clusters tend to add par-
ticles at their surfaces until the number of unoccupied
interior points is comparable to the number of surface
sites. The terms "interior" and "surface" are loosely used
here, but a more precise distinction is possible by classi-
fying sites as surface or interior based on the number of
occupied neighbors. Interior sites can have four or more
occupied neighbor sites, and surface sites can have less.
For g = 1 the clusters are fractal with D 2.5 because
additional particles will add at perimeter sites where the
potential is greatest. This will occur at the surface of
the cluster where there are few occupied sites between
the perimeter site and the charged spherical boundary
surface. There will be no chance for addition at a point
completely surrounded by occupied sites.

Although the DLA model is described above as a
random-walk process, it is based on diffusion of parti-
cles to a cluster. Hence DLA clusters are also obtained
from solutions to the Laplace equation. However, the
DLA and the DBM (q = 1) models dier in their bound-
ary conditions. In the DBM model the potential values
at the perimeter sites are allowed to vary. In the DLA
model the perimeter potential is also fixed at zero, so
that the probability for addition of particles is deter-
mined by unoccupied sites adjacent to perimeter sites.
This phenomenon leads to a well-studied screening af-
fect for DLA. These differences in the pair correlation
functions due to this change in boundary conditions have
been well studied by Turkevich and Scher, Ball et al. ,
and Plischke and Racz.
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The DBM model for g ) 0 involves a large amount of
computation to solve the Laplace equation for the addi-
tion of each particle, because the radius of the bound-
ary surface is typically greater than 100 lattice spacings.
Hence the Jacobi algorithm must be applied at 8 000000
lattice points for each iteration of the method. Since
an average of about 50 iterations is required for each
Laplace equation solution after the first one, there are
about 400x10 Hoating-point operations for each particle
in the final cluster. This is a prohibitively large compu-
tational problem on a scalar computer. We have found

I

that the model can be formulated to efIiciently vector-
ize on computers such as the Cray Y/MP or the Intel
IP-860. For either of these machines, the computations
run at 50% of the theoretical maximum speed with our
code. The programming trick is to introduce a second
three-dimensional array 6;~I, that assures that the poten-
tial does not change for occupied sites and for the spher-
ical boundary. The elements of b,~I, for fixed points are
set to 0, and the other elements are set to 1. This array
is then inserted into the Jacobi iteration in the following
way:

0'ij k 0'ij k + stiiy k(4'i+ij k + it'i ij k—+ 0'ij+1k + 0'ij —ik + 0'ij k+i + /iij k i 0—'ij k) .

This simple method removes all conditional and branch-
ing statements, and leaves only simple Qoating-point
operations within loops of long length. The program
achieves more than 180 MfIops on a single processor of
the Cray Y/MP. With this efficient program we can set
strict convergence criteria for the potential at the perime-
ter sites.

V. RESULTS

We fit the parameters of each pair-correlation func-
tion to the synthetic-difFraction data by a nonlinear least-
squares method. The exponential, Gaussian, and modi-
fied power law are two-parameter fits (D and A, (, or
a), and the other power law is a three-parameter fit
(D, a, p). I(q) values are obtained for each cluster at
270 values of q which are equally spaced in the range of
log q &om —3 to 0. Since a major point of this paperog&0
is to compare the effectiveness of different p(r) in repro-
ducing small-angle scattering data, the fits are done for
I(q) calculated for only a single cluster of each type. Be-
cause we do not have I(q) for several random clusters,
standard deviations for each I(q) point are not available.
Hence untoeighted least-squares analysis are done. The

and the standard deviations presented in the tables
correspond to this assumption. The y are not reduced

that are useful for quality-of-fit arguments. The re-
sults of this work are presented in Figs. 1—12 and Tables
I—VI. Figures 1—6 show the Debye-sum scattering inten-
sity and the fi.ts for the four correlation functions. The
data are presented as log-log plots to indicate scattering
that varies by several orders of magnitude. Figures 7—12
give the actual correlation functions for the clusters and
the power correlation functions that provide the best fit
to the Debye scattering. Because the cluster-correlation
functions have many zeros due to their growth on cubic
lattices, their graphical presentations have been binned
to provide smooth curves. The binning algorithm simply
places all pair correlations in the range i & r ( i +1, for i
an integer, into a bin centered at r = i+ 2. The distances
r are normalized by the actual spanning length a, which
is the largest pair distance obtained from the cluster co-
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—6
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log q
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FIG. 1. Fits to the small-angle scattering for DLA (top
panel) and Eden (bottom panel) clusters of 10000 atoms
grown on a plane (2D). The Debye scattering is given by
dashed lines for each fit. The exponential (dot-dashed lines)
fit is the topmost data in each panel. The Gaussian fit (dot-
ted lines) is displaced down by 1 logio unit. The power Bt
(long-short-dashed lines) is further displaced by 1 logio unit.
The modified power fit (long-dash —triple-dotted lines) is the
bottom data in each panel.

ordinates. The pair correlations p(r) are normalized by
their maximum values. Since the actual spanning lengths
are larger than the spanning lengths for the fits (see Table
VI), both powers p(r) appear to terminate for r/a ( 1.
The actual spanning lengths are large, because there is a
long but small-amplitude tail in the pair-distance distri-
bution.

The rest of this section is a detailed presentation of
the results. For each cluster the overall quality of the
fit is discussed by reference to its y and its 6t to the
Guinier and fractal regions. The presence of undamped
oscillations, the Btting of Bg, the value of D, the size of
the spanning lengths, agreement of p with D —1, and
the fit of the correlation functions for different values of

2r/a are also considered. In some cases y is not the best
criterion for the quality of the fit. In particular, the y
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FIG. 2. As in Fig. 1 but for a DLA (top panel) cluster of
25000 atoms and a DBM (q=1.0) (bottom panel) cluster of
25 000 atoms.

FIG. 4. As in Fig. 1 but for a sphere (top panel) with
10000 atoms and a DBM (g=0.25) (bottom panel) cluster
with 25 000 atoms.

for a fit that is good for small and intermediate q may
have a larger y if the p(r) give pronounced oscillations
for large q.

Figure 1 presents the Debye sum and fits for the four
correlation functions for Eden and DLA clusters with
10 000 atoms grown on a plane. The scattering from two-
dimensional Eden clusters is perfectly fit by the three-
parameter power law. Although the other correlation
functions also have very good y values, the power law
is decidedly the best because all in8ections and detail
are perfectly reproduced. All of the correlation functions
provide excellent fits in the fractal region, but differ for
smaller q. This is consistent with the discussion for D = 2
scattering presented previously. The exponential corre-
lation function provides the poorest fits, and its failure

0 I
s &e s~ ~

+ ~ ~

—2

—4

—6

—8

in the Guinier region leads to inaccurate Bg values. The
power-law models provide Bz that have errors less than
4%, while the Rg for the Gaussian model is accurate to
within 7%. Figure I also shows that the exponential
model provides the poorest fits for DLA clusters grown
in two-dimensional space, while the other p(r) provide
good fits. The power laws provide much better Bg val-
ues than the Gaussian or exponential models.

Eden clusters in Euclidean two-space have trivially
D=2. This result is confirmed by mean-field theory. We
obtain D=2.01 from the three-parameter power model
and D=1.99 for the two-parameter power model. The
Gaussian and exponential models have D=2.14 and
D=1.96, respectively. Since the Eden cluster is a com-
pact cluster with a fractal surface, we would expect that
good analysis of the scattering should yield a value for D
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FIG. 3. As in Fig. 1 but for an Eden (bottom panel) cluster
with 100000 atoms and a DBM (@=0.0) (top panel) cluster
of 100000 atoms.

FIG. 5. As in Fig. 1 but for DBM (@=0.5) (bottom panel)
and DBM (q=0.75) (top panel) clusters with 25 000 atoms.
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FIG. 6. As in Pig. 1 but for a ballistic (top panel) cluster
with 100000 atoms and a TSAW (bottom panel) polymer
with 18 500 atoms.

PIG. 8. As in Fig. 7 but for a DLA (top panel) cluster of
25000 atoms and a DBM (rI=1.0) (bottom panel) cluster of
25 000 atoms.

of 2 or slightly less.
Numerical experiments on DLA clusters in Euclidean

two-space have found 1.66 & D & 1.70 for clusters with
less than 10000 particles. The larger value for D is found
&om the dependence of ln Bg vs ln N and the lower &om
an analysis that is equivalent to determining the depen-
dence of 1n[p(r)j vs lnr. The most accurate value is con-
sidered to be D = 1.715 + 0.004. Mean-field theory
gives D=1.67. The power-law correlation functions pro-
vide best-fit values of D=1.68, which is the midrange

1.0

0.8

0.6

0.4

of the experimentally determined values. The Gaussian
and exponential models yield D=1.66 and D=1.77, re-
spectively. Clearly the exponential fails to fit any exper-
imental or theoretically known values.

The pair-correlation functions for the clusters in Fig. 1
are shown in Fig. 7. The bottom panel demonstrates that
the actual correlation function and the three-parameter
power function are virtually identical for a 2D Eden clus-
ter. The two-parameter power-law correlation function
falls ofF too steeply at large r values compared with the
actual p(r), but the corresponding I(q) agree well. The
top panel in Fig. 7 shows that the power functions are
not suitable for reproducing the long-range order found
in two-dimensional DLA clusters. The infinite slopes at
the largest r are not physical. However, the result in q

0.2

0.0
C4 1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6

r/a
0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0
C4 1.0

0.8

0.6

FIG. 7. Correlation functions for DLA (top panel) and
Eden (bottom panel) clusters of 10000 atoms grown on a
plane (2D). The actual pair-correlation function (solid lines)
has been averaged over a small range of r to remove severe
oscillations caused by the nonallowed distances on a lattice.
The fitted power correlation function (dashed lines) and the
fitted modified power correlation function (long-short dashed
lines) are also given. The distances are scaled to the spanning
length a of the actual cluster.
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FIG. 9. As in Fig. 7 but for an Eden (bottom panel) cluster
with 100000 atoms and a DBM (ii=0.0) (top panel) cluster
of 100000 atoms.
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FIG. 10. As in Fig. 7 but for a sphere (top panel) with
10000 atoms and a DBM (r1=0.25) (bottom panel) cluster
with 25000 atoms.

FIG. 12. As in Fig. 7 but for a ballistic (top panel) cluster
with 100000 atoms and a TSAW (bottom panel) polymer
with 18 500 atoms.

space from Fig. 1 appears to be excellent. From a review
of Tables I—V it can be seen that only the power-law mod-
els and the Gaussian can reproduce the known literature
value of the fractal dimension, and only the power laws
reproduce the Bz of the cluster well. For two-dimensional
clusters even gross errors in the correlation function do
not give rise to substantial y errors in the fitting of I(q).
However, reasonably large errors in the fitted parameters
can occur when using the exponential model.

Figure 2 presents the Debye sum and Gts for DLA and
DBM (rI = I) clusters with 25000 atoms grown in three-
dimensional space. For the DBM cluster only the power-
law models provide an excellent fit to the Guinier re-
gion and partially reproduce the transitory local minima
found just before the fractal region. The Gaussian model
provides a poorer fit, and the exponential model gives the

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8
0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6

r/a

.50

0.8 1.0

FIG. 11. As in Fig. 7 but for DBM (iI=0.5) (top panel) and
DBM (@=0.75) (bottom panel) clusters with 25 000 atoms.

worst fit for the Guinier region. All of the models provide
good fits in the &actal region. For the DLA cluster the
exponential and Gaussian models fail to fit the Guinier
region, and the power models do a better job, but not
as good as for the DBM g = 1 cluster. For DLA clus-
ters I(q) has a local minimum near q = O. l that is not
well Gt by any of the models. The power models pro-

TABLE I. Exponential pair-correlation Bts to small-angle
scattering. Size is the number of atoms in the cluster. D and
A are defined in Eq. (18). crz& and cry are standard errors.
is the estimated variance.

Cluster
ballistic

dla
dla
dla

dla2d
dla

eden
eden

eden2d
eden

DBM p.pb

DBM 0.25b

DBM 0.5
DBM 0.75

DBM 1.pb

offdla2d '

ofFdla
TSAR
sphere
sphere

Size D cr~
100k 2.989 0.011 22.19
100k 2.474 0.025 55.56

25k 2.526 0.025 28.68
10k 2.518 0.027 21.71
10k 1.767 0.010 109.01

5k 2.574 0.026 15.17
100k 3.043 0.008 17.70

10k 3.128 0.015 7.46
10k 2.141 0.009 31.45

5k 3.186 0.017 5.57
lppk 3.047 0.006 18.71

25k 2.996 0.015 12.46
25k 2.855 0.019 14.82
25k 2.702 0.020 18.32
25k 2.636 0.016 19.67
1pk 1.759 0.011 111.72
10k 2.514 0.035 22.51
18k 2140 0004 4270
10k 3.135 0.022 7.65
5k 3 244 0 014 5.40

0.53
2.19
0.98
0.76
2.15
0.46
0.42
0.19
0.41
0.14
0.42
0.30
0.39
0.49
0.41
2.59
1.04
0.27
0.32
0.18

x'
0.0497
0.0393
0.0246
0.0222
0.0046
0.0156
0.0679
0.0458
0.0020
0.0327
0.0693
0.0318
0.0228
0.0173
0.0094
0.0063
0.0395
0.0006
0 ~ 1345
0.1117

Cluster grown in two-dimensional space.
The number following "DBM" is the value for g.
The pre6x "oK" signifies that the cluster is produced ofF lat-

tice.
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TABLE II. Gaussian pair-correlation fits to small-angle scattering. D and ( are defined in Eq.
(19). og and oD are standard errors.

Cluster
ballistic

dla
dla
dla

dla2d
dla

eden
eden

eden2d
eden

DBM o.o
DBM 0.25
DBM 0.5

DBM o.75
DBM 1.o

o8'dla2d
ofFdla

TSAR
sphere
sphere

Size
100k
100k

25k
1ok
lok

5k
100k

10k
1ok

5k
look

25k
25k
25k
25k
10k
1ok
18k
1ok

5k

D
2.890
2.394
2.398
2.376
1.663
2.391
2.918
2.888
1.957
2.874
2.943
2.825
2.687
2.527
2.430
1.659
2.399
1.969
2.907
2.905

OD

0.005
0.015
0.013
0.014
0.004
0.012
0.006
0.007
0.002
0.007
0.004
0.006
0.007
0.009
0.008
0.005
0.021
0.008
0.013
0.014

38.67
98.07
53.75
41.14

189.04
30.02
31.90
15.06
61.85
11.95
31.51
24.02
29.01
36.38
40.51

192.14
41.44
82.99
15.18
12.05

Og

0.48
2.17
0.91
0.70
1.37
0.40
0.53
0.20
0.17
0.13
0.44
0.22
0.28
0.39
0.39
1.89
1.08
0.96
0.42
0.32

x'
0.0186
0.0191
0.0097
0.0090
0.0009
0.0053
0.0405
0.0192
0.0002
0.0120
0.0347
0.0074
0.0050
0.0047
0.0032
0.0017
0.0218
0.0028
0.0995
0.0872

duce an oscillatory component that is out of phase with
the minima seen in the Debye data, but this oscillatory
component may be facilitating the fit in other cases. Al-
though the figures show that DLA clusters are not well
fit in either real or q spaces, the three-parameter power
model still produces the correct value of D and gives Rg
vrithin 10%%u&j. This is not true of the other models that
fail quite badly in reproducing D or the proper R~. The
modified power model also provides a better fit than ei-
ther the exponential or Gaussian. The slight oscillations

in the fits properly damp out for large q. It is interesting
to note that the scattering intensity for all of the fits de-
creases more quickly than the Debye sum in the fractal
region.

The fractal dimension of DLA clusters in Euclidean
three-space has been extensively studied. Numerical
experiments on 16 unique DLA clusters of varying size
find values of D between 2.25 and. 2.64 using a radius of
gyration analysis on the last 90% of the points added to
the clusters. The average value of D=2.49 was found us-

TABLE III. Power-law pair-correlation fits to small-angle scattering. D, p, and a are defined in
Eq. (20). ao, o~, and cr are standard errors.

Cluster
ballistic

dla
dla
dla

dla2d
dla

eden
eden

eden2d
eden

DBM 0.0
DBM 0.25
DBM o.5

DBM o.75
DBM 1.0

offdla2d
ofFdla

TSAW
sphere
sphere

Size
look
look

25k
10k
10k
5k

100k
10k
10k

5k
100k

25k
25k
25k
25k
10k
lok
18k
10k
5k

D
2.969
2.466
2.484
2.448
1.672
2.470
2.996
2.997
2.011
3.005
3.017
2.948
2.797
2.626
2 ~ 527
1.666
2.505
2.118
2.953
2.947

CT~

0.004
0.016
0.014
0.017
0.004
0.016
0.004
0.007
0.001
0.008
0.004
0.006
0.007
0.009
0.007
0.005
0.021
0.005
0.003
0.004

a
73.70

157.46
85.99
70.66

243.93
54.75
58.27
26.58

112.58
21.81
61.94
44.96
51.32
62.04
68.59

231.57
61.27

881.05
25.73
20.38

0.97
1.44
0.72
1.01
1.19
0.99
0.12
0.09
0.19
0.10
0.18
0.21
0.21
0.35
0.35
0.95
0.56

67.59
0.02
0.02

P
1.80
1.15
1.16
1.29
0.47
1.46
1.84
1.79
1.38
1.86
2.01
1.86
1.55
1.37
1.32
0.35
1.06

18.28
1.56
1.54

0~
0.02
0.07
0.05
0.07
0.02
0.08
0.03
0.03
0.01
0.03
0.04
0.03
0.03
0.03
0.03
0.02
0.06
1.60
0.01
0.01

x'
0.01?15
0.02510
0.01222
0.01214
0.00094
0.00736
0.03117
0.01645
0.00001
0.00960
0.04423
0.01133
0.00571
0.00484
0.00218
0.00166
0.02604
0.00061
0.02220
0.01693
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TABLE IV. Modified power-law pair-correlation fits to small-angle scattering. D and a are
defined in Eq. (21). o'ii and o are standard errors.

Cluster
ballistic

dla
dla
dla

dla2d
dla

eden
eden

eden2d
eden

DBM 0.0
DBM 0.25
DBM 0.5

DBM 0.75
DBM 1.0

oKdla2d
ofFdla

TSAW
sphere
sphere

Size
100k
100k

25k
10k
10k

5k
100k

10k
10k

5k
100k

25k
25k
25k
25k
10k
10k
18k
10k

5k

D
2.984
2.441
2.478
2.444
1.679
2.470
3.011
3.030
1.988
3.035
3.018
2.957
2.814
2.640
2.534
1.673
2.472
2.003
3.064
3.063

0'~
0.003
0.015
0.013
0.014
0.003
0.012
0.002
0.003
0.002
0.003
0.002
0.004
0.006
0.008
0.006
0.004
0.021
0.009
0.001
0.001

a
75.99

182.41
97.32
75.12

269.31
54.83
61.29
28.06

100.27
22.46
61.83
45.81
54.88
66.82
73.14

274.31
?5.43

134.78
26.73
21.58

CTa

0.24
2.90
1.13
0.90
1.27
0.52
0.18
0.11
0.18
0.08
0.14
0.20
0.30
0.44
0.36
1.70
1.31
1.19
0.04
0.07

x'
0.0194
0.0252
0.0128
0.0121
0.0009
0.0073
0.0375
0.0192
0.0002
0.0103
0.0440
0.0117
0.0069
0.0056
0.0024
0.0016
0.0266
0.0040
0.0564
0.0469

ing an average cluster size of 7899 particles. Our 10000-
particle DLA cluster has D=2.45 when fit by the three-
parameter power model and D=2.44 when fit by the two-
parameter power model. The Gaussian and exponential
models yield D=2.38 and D=2.52. This cluster is one
of the few cases where the Gaussian model fails to pro-
vide agreement with the expected experimental or theo-
retical value. The exponential and power models give
very good values for D. Mean-6eld theory predicts
D=2.5 for DLA clusters in a 3D space. FST theory

yields D = 2.49. Since the fitted I(q) curves have a
negative slope that has a larger magnitude than that for
the Debye-sum in the fractal region, a simple estimate of
D for the Debye-sum data from the slope of the plot of
ln I(q) vs ln q will be smaller than 2.49. The tables show
that the exponential and three-parameter power models
give the same D value of 2.51 for an off-lattice DLA clus-
ter in a 3D space. The corresponding modified power
and Gaussian fits give D = 2.47 and D=2.40. The Gaus-
sian correlation function for DLA clusters always gives

TABLE V. Fitted and actual radii of gyration. Actual Rg is the radius of gyration found from
coordinate data. Rs in columns 3, 4, 5, and 6 are defined by Eqs. (23), (25), (27), and (29).

Cluster

ballistic
dla
dla
dla

dla2d
dla

eden
eden

eden2d
eden

DBM 0.0
DBM 0.25

DBM 0.5
DBM 0.75

DBM 1.0
o6'dla2d

offdla
TSAW
sphere
sphere

Size

100k
100k
25k
10k
10k

5k
100k

10k
10k

5k
100k

25k
25k
25k
25k
10k
10k
18k
10k

5k

Rg
Exponential

54.2
115.2
60.5
45.7

170.5
32.5
43.9
19.0
57.7
14.4
46.5
30.5
34.8
41.0
43.1

174.1
47.3
78.3
19.5
14.2

Rg
Gauss
32.9
75.9
41.6
31.7

121.9
23.2
27.2
12.8
43.3
10.1
27.0
20.2
23.8
28.9
31.6

123.7
32.1
58.2
12.9
10.3

Rg
Power
28.6
63.9
34.9
28.3

101.1
20.9
22.6
10.4
40.3
8.4

23.4
17.3
20.3
24.7
27.2

100.5
25.5
73.1
10.4
8.2

Rg
Modified Power

28.7
69.8
37.2
28.7

105.6
21.0
22.8
10.6
38.8
8.5

23.4
17.3
20.8
25.4
27.9

107.6
28.8
52.2
10.1

8 ~ 1

Rg
Actual
28.5
58.8
33.9
26.8

104.7
20.3
22.6
10.7
40.4

8.5
23.1
17.4
20.4
24.4
27.8

105.0
25.3
69.1
10.5
8.3
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TABLE VI. Actual and Gtted spanning lengths. Actual
a is the spanning length from coordinate data. a d is the
spanning length fitted using Eq. (21). a s/a is the ratio of
the fitted to the actual spanning length.

Cluster
ballistic

dla
dla
dla

dla2d
dla

eden
eden

eden2d
eden

DBM 0.0
DBM 0.25
DBM 0.5

DBM 0.75
DBM 1.0

ofFdla2d
offdla

TSAW
sphere
sphere

Size
100k
100k

251
10k
10k

5k
100k

10k
10k

5k
100k

25k
25k
25k
25k
10k
10k
18k
10k
5k

Actual a
86.49

210.50
113.12
94.39

390.28
71.81
72.03
35.64

132.14
29.83
75.24
61.20
67.35
75.54
98.78

350.90
87.18

223.65
26.98
21.78

+mod
75.99

182.41
97.32
75.12

269.31
54.83
61.29
28.06

100.27
22.46
61.83
45.81
54.88
66.82
73.14

274.31
75.43

134.78
26.73
21.58

amog a
0.878
0.866
0.860
0.795
0.690
0.763
0.851
0.787
0.758
0.752
0.821
0.748
0.814
0.884
0.740
0.781
0.865
0.602
0.990
0.991

a &actal dimension that is not consistent with the other
values, except in the 2D case.

The &actal dimension of DBM clusters for varying

g values have been experimentally studied where the
clusters usually have fewer than 10 000 particles. Mean-
field theory predicts D=2.5 for g = 1. FST theory
yields D = 2.49. For g = 1 the DBM and DLA clusters
are expected to have the same D. In the cited study a
4000-particle DBM cluster grown with g = 1 was found
to have D=2.65, using a radius of gyration analysis. Our
25000-particle DBM g = 1 cluster has D=2.53 using
either of the power models to fit the scattering. The
Gaussian and exponential models give D=2.43 and
D=2.64, respectively. The power models agree very well
with the mean-field prediction, and experimental studies.
Figure 8 shows the pair-correlation functions for DLA
and iq = 1 DBM clusters. The actual p(r) are similar
for the two clusters, but the fitted p(r) are different. For
either cluster the power models agree for r less than the
r corresponding to the maximum in p(r). The power
functions provide a better fit for DLA clusters at small r
and DBM clusters at large r. The power-law correlation
functions are broader than the actual in either case.

Figure 3 shows the very similar diffraction patterns of
Eden and DBM (rl = 0) clusters with 100000 particles.
The Debye patterns appear superimposable. The power-
law models provide the best fits to the Guinier regions
for both clusters, and the next best fits are provided by
the Gaussian model. The worst Guinier fits are produced
with the exponential model. Table III shows that the pa-
rameter p for the three-parameter power fit is different
for the two clusters, but D and a are very similar. The
power fit to the DBM cluster shows that p = D —1, so
that there is virtually no difference between the fits (pa-

rameters and g ) for the two power models. However,
for the Eden cluster, the fact that p is not equal to D —1
allows a better fit to the Guinier region. This better fit
allows the power model to reproduce Rz exactly. It is
interesting that the Gaussian model produces the best
y2 for the DBM cluster, but the power models are much
better at obtaining the proper Rz. This demonstrates
that y2 is not always the best measure in evaluating the
results &orn these models. The power models have bet-
ter y for the Eden cluster. The power laws provide
some oscillatory fit for both clusters in the q region past
the Guinier region, but the oscillations do not damp out
as rapidly as the Debye-sum data. It appears that these
slowly damped oscillations contribute to the larger y for
the power-law fits. For the Eden cluster the slope of the
power and exponential models fit the Debye-sum slope
in the fractal region, but the Gaussian model has a neg-
ative slope with a magnitude that is too small. For the
DBM cluster the Gaussian model has the correct slope,
but the other fits have negative slopes with too large a
magnitude.

Any DBM cluster grown with a zero growth expo-
nent g = 0 will have D=3 when the clusters are grown
on three-dimensional lattices. Both power models give
D=3.02 for our 100000-particle g = 0 cluster. The
Gaussian model gives a reasonable value of D=2.94. The
exponential model gives a value of D=3.05. Mean-field
theory predicts D = 3 for g = 0 clusters in three-space.
The low D value for the Gaussian model is consistent
with its negative slope with too small a magnitude for
I(q) in the fractal region.

The Eden model produces clusters that are more com-
pact than the DBM g = 0 clusters, but D = 3 for
both. The unmodified power model gives a fit of D=3.00,
while the modified model gives a value of D=3.01. The
Gaussian and exponential models give D values of
D=2.92 and D=3.04, respectively.

The correlation functions for the clusters in Fig. 3 are
shown in Fig. 9. Since the fitted parameters from the
power models for the DBM cluster are identical, it is
clear that the correlation functions are also identical. The
power correlation functions agree well with the real cor-
relation function. R~ is well reproduced, although the
power laws give a much smaller spanning length than
the actual. The Eden cluster shows subtle differences
in fits between the power models. The three-parameter
model has a smaller spanning length, but is nearly iden-
tical to the actual correlation function. The modified
power law has a slightly larger spanning length which
causes it to deviate when r/a ) 0.5. The fact that the
unmodified power model is very accurate at large r/a
and has p g D —1 may indicate a subtle difference in
the long-range order between Eden and DBM clusters
where the latter exhibits exact p = D —1 behavior. The
deviation of p from D —1 for the Eden cluster may be a
genuine indication of this long-range order.

Figure 4 displays the diffraction space for a sphere and
an @=0.25 DBM cluster. Again the power-law models
provide the best fits to the Guinier regions for both clus-
ters. The Gaussian model does not produce as good fits.
The worst Guinier region fits are produced with the ex-
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ponential model. The power models give almost the same
fit for the DBM cluster because p for the three-parameter
power law is very close to D —1. The two power models
give the same Rg which agrees well with the actual Rg.
The Gaussian model produces the best y for the DBM
cluster, but Rg is not fit well. The exponential model pro-
duces the worst y of any of the models, and the Rg is
extremely poor as can be seen from the Guinier region.
The Gaussian fits the fractal region very well, but the
slopes from the other models have a negative slope with
a magnitude that is too large. Also the oscillations in the
power fits do not damp out as rapidly as the Debye-sum
scattering intensity.

The sphere is fit with much smaller y using either of
the power models, compared to the other models. The
power fits show very good Rg and D values and span-
ning lengths that are very close to the actual spanning
length. The three-parameter model has p 1.55, instead
of p D —1, which is found for some other compact clus-
ters. The three-parameter power model is better than the
modified power function in fitting the amplitudes of the
oscillations, as well as the region between the Guinier and
Porod regions. The phase of the oscillations is better for
the two-parameter model, but the depth of the oscilla-
tions is not as well fit. The errors in fitting the oscilla-
tions are found because the power correlation functions
differ from the exact p(r) given in Eq. (15). The extra
1+r/(2a) factor is responsible for producing zeros in I(q)
as predicted by Eq. (16).

We have found no work in the literature that considers
DBM clusters grown on three-dimensional lattices with
g=0.25. Mean-field theory predicts D=2.85, and we ob-
tain D=2.95 from the power-model Bts. The fits from the
Gaussian and the exponential models give D=2.83 and
D=3.00, respectively. The exponential correlation func-
tion gives a fractal dimension that is too high. These
results are consistent with the magnitudes of the nega-
tive slopes of ln I(q) vs ln q in the fractal region.

The fractal dimension of a sphere is trivially D=3, and
an analytically correct correlation function should yield
this as a fit to the scattering. However, incorrect correla-
tion functions may give Bts with inappropriate parame-
ters because the fitting routine will attempt to minimize
the square of the deviations in the presence of deep oscil-
lations. The power correlation functions are only approx-
imations to the correct correlation function of a sphere
[Eq. (15)j, which underestimate the value of the corre-
lation function as r ~ a. The three-parameter power
model gives D=2.95, and the two-parameter model gives
D=3.06. Much worse fractal dimensions are obtained
with the Gaussian and exponential models, which give
D=2.91 and D=3.14, respectively.

The correlation functions for these clusters are shown
in Fig. 10, which demonstrates the difference in the power
correlation functions for Euclidean and fractal clusters.
Euclidean spheres have symmetrical correlation functions
with a sharply defined spanning length. The three-
parameter power model reproduces the actual p(r). The
two-parameter p(r) is too large at smaller r and too small
at large r, but it still provides a good fit to the actual
pair-correlation function. The errors are those expected

for the neglected contribution of the 1 + r/(2a) factor.
The correlation functions presented for the fractal DBM
cluster show that the power models can accurately give
the small r part of p(r), but have substantial errors for
r & 0.4. The two- and three-parameter power correlation
functions are the same for the DBM cluster.

I(q) for DBM clusters with lower fractal dimensionality
than the DBM cluster in Fig. 4 are shown in Fig. 5. The
Guinier region for both clusters is best Bt by the power-
law models. The Gaussian model provides better Bts to
the Guinier region than the exponential model. Both
power models appear to provide nearly the same fit, and
the y2 values only differ by 18%. The power models
spanning lengths differ by about 7% from each other for
either of the clusters shown. The largest errors for the
power models occur around logos(q) = —0.8. This is the
transition area between the Guinier region and the fractal
region, and is a diKcult region to fit for all of the DBM
clusters. The Gaussian fits in the top and bottom panels
are good except for the Guinier region, which leads to
a poor Rg value. For the g=0.75 cluster in the fractal
region, the exponential model provides the worst fit, and
the Gaussian provides the best Bt. This may account for
why the Gaussian has slightly better y than the power
models.

Three-dimensional DBM clusters where g=0.5 have
been studied, with the conclusion that D=2.78. This
value compares favorably with our three-parameter
power fit, which gives D=2.80. The two-parameter
power model has D=2.81, which is also very close. The
Gaussian and exponential models give values of D=2.69
and D=2.86. This would appear to support a trend that
the exponential model provides the largest estimates for
D, while the Gaussian model provides the lowest esti-
mates. The large D for the exponential is consistent with
the magnitude of the negative slope being too large in the
fractal region. The mean-Beld result for this cluster is
D=2.71, which in this case is very close to the Gaussian
fit.

There appear to be no literature results for DBM clus-
ters grown with g=0.75. Our results from the three-
parameter and two-parameter power models are D=2.63
and D=2.64. These compare well with the expected
mean-field value of D=2.60. The Gaussian and expo-
nential models give different results from the mean-field
value, giving D=2.53 and D=2.70, respectively. It ap-
pears that as the growth exponent (g -+ 1.0), the y
becomes smaller, while the value of D for both of the
power models approaches the mean-Beld value of D given
by Eq. (48).

The correlation functions for these clusters are shown
in Fig. 11. The power correlation functions are very sim-
ilar to each other for the DBM g=0.5 cluster, and agree
with the actual p(r) at small r. The power correlation
functions show larger differences from each other for the
g=0.75 cluster, but both provide a reasonable fit to the
small r part of p(r). At large r the power correlation
functions tend to be larger than the actual.

Figure 6 shows I(q) for a true self avoiding random-
walk (TSAW) polymer. The TSAW polymer is a well-
studied model. This polymer reached a size of about
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18 500 particles before growth terminated. Figure 6
demonstrates that all of the models fit the fractal region
very well, which is expected for a D = 2 cluster. The
exponential and three-parameter power models have the
lowest y . The Guinier region for the TSAW polymer
is not fit well by any of the models, but the best Bg is
found with the three-parameter power model. The mod-
ified power model is the worst fit of any of the models.
The power-function spanning lengths are not reasonable.
Only the unmodified power model can predict the real Bg
to within 10%%uo. The exponential p(r) is commonly used
in the literature for evaluating 2D polymeric type struc-
tures, but it appears to be unreliable for the evaluation of
the B~ for such structures. The Debye equation derived
for a TSAW polymer, I(q)/I(0) = 2[exp( —z) +x —1]/z,
where x = B q, also provides a good fit. The only
dilemma should be that any model with an f(r) that
damps to any extent will provide a good fit in q space
to experimental data. The real test of a model has to lie
in its ability to properly evaluate both D and B~. None
of the models appear to be able to follow the very mild
oscillations in the Debye data.

Figure 6 also shows the scattering for a ballistic clus-
ter with 100000 atoms. The Debye data for the ballistic
cluster is very similar to that for the Eden and DBM
g=0.0 clusters, and shows the characteristic oscillations
associated with clusters whose fractal dimension is very
close to D=3. The power-law models provide the best
fit to the Guinier region, and the next best fit is pro-
vided by the Gaussian model. The worst Guinier fit is
produced by the exponential model. The fitted y for
the ballistic cluster is better than for either the Eden or
the DBM @=0.0 cluster. This better fit is visible in Fig.
6. It can be seen immediately that the very first large
oscillation is best fit by the unmodified power model.
Both power models produce excellent Bg values, but the
exponential and Gaussian models cannot reproduce the
actual Bg because of their poor fits to the Guinier scat-
tering. The power models show oscillations that have
good phase agreement with the Debye scattering, but
the oscillations in the power scattering do not damp out
with increasing q. The oscillations in the scattering damp
out more quickly for the two-parameter power correlation
function. A more bothersome observation is that in the
fractal scattering region, the negative slope of the Debye
data has a smaller magnitude than is found for all of the
fits. The Debye data decrease approximately as q for
large q. The ballistic cluster is a good example of why y
may not be a good measure of the fitting ability of the
power models. The y for the three-parameter power
model fit of the ballistic cluster is about 8 times larger
than the y for the fit for a DBM g =1.0 cluster. But
R~ is reproduced to within 0.3%%uo for the ballistic cluster,
while Rg is only reproduced within 2'%%uo for the DBM clus-
ter. The magnitude of y for the power models appears
to be mostly due to the undamped oscillations, which
should not have a large efFect on D or Bg. The fitted p
parameter in the three-parameter fit is close to D —1.

In three-dimensional Euclidean space the fractal di-
mension of the TSAW polymer should have D=2, which
is the same as that for a random walker. Although the

correlation function for the TSAW polymer has several
maxima, the D value from the modified power model
gives D=2.00, while the unmodified power model gives
D=2.12. The Gaussian and exponential models give
D=1.97 and D=2.14, respectively. The Debye polymer
scattering expression is based on D = 2, which is obvi-
ous from the asymptotic dependence of I(q). The D = 2
dependence for the Debye expression can also be found
by taking the sine transform of qI(q) as shown in Eq.
(»)

It can be proven (Ref. 13, p. 192) that the frac-
tal dimension of a ballistic cluster is D = d, where d
is the dimension of the lattice on which the cluster is
grown. Our fitting methods are sensitive to the density-
correlation function between the voids of the structure
and the branches of the structure. If the amount of
void space per unit volume of the structure is constant,
then the &actal dimension of the structure should be
D = d. The fits we obtain with the unmodified and mod-
ified power models are D=2.97 and D=2.98, respectively.
The Gaussian and exponential models give D=2.89 and
D=2.99, respectively. The poor agreement for the slope
in the &actal region using the exponential model does
not appear to cause errors in obtaining the proper fractal
dimension. The other models do a better job in repro-
ducing the slope of the Debye-sum scattering.

The correlation functions associated with Fig. 6 are
shown in Fig. 12. The actual correlation function for the
TSAW polymer is seen to have several maxima. The
various maxima are associated with the fact that the
TSAW polymer has a number of loops where the random-
walk trajectory reversed its direction. In the vicinity of
a loop many monomers will have the same distance from
monomers near another loop. The modified power p(r)
provides a poor fit to the actual correlation function,
but it still reproduces the fractal scattering very well.
The three-parameter power model provides a good fit for
small r and appears to provide a smooth approximation
to the actual function at larger r, but the fitted spanning
length and p, value are unusual. The two- and three-
parameter power correlation functions for the ballistic
cluster are nearly identical, and they provide a good fit
to the actual correlation function for small r. Both func-
tions become greater than the actual correlation function
at r/a & 0.45, which is close to the value at which other
compact clusters begin to deviate. The actual correla-
tion function and the power models seem to parallel each
other at values of r/a & 0.5. Figure 12 seems to show
that the spanning length of the power models is actually
larger than that for the real correlation function. How-
ever, this is not the case since the real function has a long
and small-amplitude tail that is not visible in Fig. 12.

VI. DISCUSSION

In discussing the idea of fractals and scale invari-
ance it is important to note that any fractal, size, and
shape information contained in the real-space coordinates
through the actual pair-correlation function must be pre-
served in the Fourier transform to q space. The q space of
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all the aggregates we have examined has been determined
by the analog of a Fourier transform of their spatial pair-
correlation functions. This principle constitutes Debye
scattering and all other diffraction phenomena. We have
shown by example that any of our pair-correlation func-
tions can roughly reproduce the &actal dimension with

q scattering in the fractal region, for D ( 3 . We also
have shown that the Guinier scattering and the transi-
tion regions before the fractal region are reproduced only
with a realistic f(r) such as the power-law function, re-
gardless of the fractal dimension or size of the structure.
Because of Fourier reciprocity, we would expect that all
models should behave similarly in the fractal region. In
reality all models exhibit q behavior except in the case
of D=3, where the behavior is related to the first deriva-
tive of f (r) at r = 0.

The power-law pair-correlation function appears to be
very useful in describing the fractal dimension and the
shape and size of the clusters. It even seems plausible
that by the choice of f(r) = (1 —r/a)" that frac-
tal clusters of different types yet having the same fractal
dimension might be distinguished from each other, as ev-
idenced in the case of DLA and the DBM clusters of low
dimensionality, as well as the Eden and ballistic cluster
examples. The choice of f (r) = (1—r/a) ~ was found
to provide very suitable results for most of the clusters
we examined. This suggests that the use of the shape pa-
rameter p may not be necessary unless f (r) can be shown
to have different forms for clusters having the same value
of D, but differing in their long-range structure. But it
is intriguing that this term has the same type of dimen-
sional scaling found at short range and works well for
most of the fractals studied except DLA and the random
polymer model. There is no analytical theory at this time
that gives this interesting dimensional scaling.

We make the following observations about the correla-
tion functions. The simple exponential function gives the
worst estimate for the shape of the correlation function
and thus very poor size results. The Gaussian function
has a better shape, but cannot yield the fine structure
in the &actal region or ever reproduce Porod (q ) scat-
tering. These two models never give any oscillatory fine
structure due to the absence of a size cutoff. The result
of this is that these models give bad size information for
clusters where D=3, because the fitting program will sac-
rifice accuracy in the Guinier region in an attempt to pro-
vide a better fit to the Porod region. Power-law functions
always 6t the Guinier region much better than the expo-
nential function. Only the power-law functions can pro-
duce oscillatory scattering, and only the Gaussian model
is at all comparable to the power-law models in being
able to fit the proper Ag for the clusters. The conclusion
is that the long-range order of the pair-correlation func-
tion for fractal clusters has a much sharper cutoff than
is described by an exponential function. Since the ex-
ponential function is the cutoff function most frequently
cited by authors in this field, it is important to be aware
of its shortcomings.

Our research indicates that the simple power-law de-
pendence of the q type is only found for very large
clusters or when the fractal dimension of the cluster is

very near D=2. Otherwise, a mild or pronounced os-
cillation is often superimposed on the q scattering.
This phenomenon is experimentally apparent when ana-
lyzing small monodisperse clusters such as silica spheres
(Ludox). 2~'~ We demonstrate that this mild oscillatory
effect can prevent the accurate determination of the f'rac-

tal dimension as well as the size of the cluster when
using scattering-intensity models based upon exponen-
tial pair-correlation functions as applied to any dilute
and monodisperse systems. We have also found that the
slopes of ln I(q) vs ln q in the &actal region are often not
fit well when using the exponential model. Sometimes
this appears to affect the D value and sometimes it does
not. There appears to be the smallest inHuence on D
when it is very near D = 3, and this is consistent with
the discussion in the next paragraph.

Previous work has found special interest in a scattering
intensity that is proportional to q where 3 & v & 4,
and we wish to address this case from the perspective
of our models for mass fractals. This scattering case is
ascribed to the presence of surface fractals as has been
done in the important work of Bale and Schmidt.
Their theory describes scattering from a surface &actal
by the relation v = D, —6. D, is the fractal dimen-
sion of the surface, which can have a value in the range
2 & D, & 3. The object is also assumed to have a con-
stant density D = 3. This surface &actal theory is used to
account for scattering with an exponent v between 3 and
4. In our theory, there is no explicit division between bulk
and surface atoms. We only consider the pair-correlation
function p(r), which will contain contributions from in-
terior and "surface" atoms. In particular, the D that we
calculate simply gives small-r dependence of p(r). For
D = 3 mass scaling the small-r dependence will be pro-
portional to r for a large cluster, but the presence of a
rough surface can modify this scaling for smaller clusters.
The scaling will be determined by an effective value of D,
which will be slightly less than 3. This will give scatter-
ing that will have an effective v between 3 and 4. By
way of example the modified power correlation function
predicts that the nonoscillatory scattering for D = 3 —b
with b small will be

Af„= I'(2 —6), ', +, , + . (50)
(sin( 2 ) (2 —$)2

q o,q

As b is increased from 0, the scattering exponent will
decrease from 4. However, we note that our mass-fractal
theory can never produce I(q) that varies strictly as q
with v between 3 and 4. The relative sizes of the q
and q ~ + ~ terms will depend on the precise form of
f(r) in addition to the &actal dimension and size of the
cluster, but the effect will be the same. For a given size
cluster, q scattering dependence will be found for D
suFiciently less than 3.

The recent work of Schmidt et al. on scattering with
exponents which exceed the Porod value of 4 is also rel-
evant for the present work. Such scattering is found for
reversed-phase (RP) silicas. Our assumed forms for p(r)
are not able to explain the results obtained for these sys-
tems. However, we have found scattering with exponents
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greater than 4 for Debye scattering by geometric objects
with two decidedly different physical dimensions. Exam-
ples include arrays of atoms that look like long tubes or
boards.

Our global fits for I(q) produce the best values of D
that are consistent with the assumed form of p(r). This
D is seen to agree with other estimates of D for the
clustersis when the assumed p(r) fits the scattering over
the entire range of q. However, the exponential model
does not provide good global fits, and its D parameter is
greater than 3.1 for Eden clusters and spheres. Such non-
physical values arise from the fact that the exponential
p(r) is a poor representation of the actual pair-correlation
function for compact clusters.

The power models appear to have at least two interest-
ing trends that suggest they are better than the Gaussian
or exponential models in determinations of the fractal
dimension D. The most important trend of the power
models is their ability to accurately define D for com-
pact clusters, where there are very small differences in
the fractal dimension value for compact structures and
near-compact structures such as the DBM g=0.25 clus-
ter. Since the exponential model generally overestimates
the value of D for most clusters, it is not an appropri-
ate model for discerning the value of D for near-compact
clusters. The Gaussian is also not appropriate for ex-
amining compact clusters for exactly the opposite rea-
son that it generally underestimates the value of D for
most clusters. For clusters of lower dimensionality where
D & 2, the power and Gaussian models are much bet-
ter than the exponential model in giving agreement with
literature and mean-Geld fractal dimension values. The
exponential model appears to only reproduce the D value
of DLA, where the value agrees with mean-field theory.

The above discussion indicates that the power correla-
tion functions give the best fractal dimensions. However,
our results are based on fits to a single cluster and we
have not averaged our results with data from many ran-
dom clusters of the same type and size. Also we have not
systematically determined the fractal dimensions of our
clusters with an independent method such as Bg or p(r)
analysis, since we feel there are many ambiguities in these
methods (such as different results in difFerent ranges of N
or r) In any ca.se the values of D rendered by the power
models for DLA clusters are well within any accepted
boundaries, and the improved y of the power models
over the exponential model more than justifies its use.
The Gaussian model provides a slight enigma in the case
of DLA. Since the Gaussian model has the best values of

for all of the DLA clusters, it would be expected that
the D values it fits and the Rg values it produces should
be very good. But instead the Gaussian model Gts very
poor values of Rg and produces very suspect values of D
for a DLA cluster.

The second trend can be observed in the DBM clusters.
The power models yield values of D for the lower val-
ues of g that are slightly high with respect to the mean-
field-theory values. However, as g is increased the y
of the Gts decreases and the values of D approach the
predicted mean-field values. The most important reason
for this behavior appears to be that the oscillations are

being damped by the lower values of D and the increas-
ing spanning length. The Gaussian model by comparison
always produces lower D values than predicted by mean-
Geld theory with the maximum discrepancy found when
@=1.0. This is opposite to the behavior of the power
models. The exponential model produces values of D
which are consistently much higher than those predicted
by mean-Geld theory. This argues against there being
some statistical aberration for our single examples of
clusters since the deviations of D from the mean-field val-
ues are consistent for different values for g. Although the
fractal dimensions obtained from the exponential model
agree better with experimental data, this result may be
partly due the fact that our DBM clusters are much larger
than those used in the experiment. The method used to
determine D can also significantly affect the value. A
significant conclusion should be drawn that the proper-
ties of f (r) directly afFect the fractal measure found for
any cluster examined. To conclusively prove that the
power models are producing the best results in all the
cases would require work beyond the scope of this pa-
per. We do, however, feel that in all cases the power
models produce results which are very close or exactly
in agreement with experimental and or theoretical val-
ues of the fractal dimension. The power models never
produce contradictory or suspect results such as those
found in the Gaussian or exponential model, especially
the exponential model. The one or two cases where the
results from the exponential or Gaussian model appear
to be slightly better or equivalent to the power models is
far outweighed by inferior y values and poor Rg values
produced by those models.

When Gtting Debye scattering data with power corre-
lation functions, we find Gtted spanning lengths that are
between 60% and 90% of the real spanning lengths for
the cluster (see Table VI). We also find oscillations in
the fitted scattering intensity that do not damp out with
increasing q as is found in the Debye data. These two
observations are related to the fact that the actual pair-
correlation function for the random clusters has a very
long but small-amplitude tail. This tail is seen in Figs.
7—12 as the part of the actual correlation function with
"zero" amplitude to r/o, = 1. The actual cluster by its
random nature has a small measure set of distances that
are significantly greater than those needed to produce the
main features of the scattering. The tail of the real cor-
relation function is not contained in our analytic corre-
lation function, and it has an extremely small integrated
area. However, this small part of the correlation func-
tion is capable of damping out the oscillations in I(q).
Figure 13 has two curves that represent Debye-sum data
for a 100 000-particle ballistic cluster. The curve without
large-q oscillations is the result of transforming all pair
distances in the cluster. The other curve is the result of
transforming 99.9% of the total pair distances. The two

I(q) curves are coincident for q ( 0.2. Clear oscillatory
behavior at large q is evident for the second curve. This
oscillatory nature is very similar to what we observe for
Btting several of the clusters. The actual cluster coordi-
nates will have oscillatory scattering if the fuzzy surface
of the cluster is shaved ofF. However, the slope of I(q) is
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The power pair-correlation functions provide a good fit
to the Debye scattering and the actual correlation func-
tions for most of the clusters in this work. However, the
fits to DLA clusters are less satisfactory. The anisotropies
stated above might give the DLA clusters a p(r) that
cannot be approximated by our assumed forms. Another
explanation is that the multifractal nature of DLA is ex-
pressed in the small-angle scattering. For a multifractal
we expect the mass to scale with an expression such as

log q

FIG. 13. Effect of the tail in a ballistic random cluster on
I(q). The solid line is the Debye sum for all pair distances.
The dotted line (displaced up by 1 logio unit) omits the largest
0.1% of the pair distances. The dotted line is also shown
without displacement, where it is seen to be indistinguishable
from the solid line for logyp ( —0.7 .

not affected by the elimination of the tail. The oscilla-
tions in I(q) are damped by including only 0.1% of the
total pair distances. For this 100 000-particle cluster, this
could represent the pair distances of only 100 particles.
The last 0.1% of the total pair distances are associated
with r/a ) 0.82. This distance is consistent with the
spanning length fit by the three-parameter power model
(see Table VI). Similar truncation results are found for
the other compact random clusters, but the effect is not
observable for DLA and the more fractal DBM clusters.

The small-angle scattering is very sensitive to the form
of f(r) for compact clusters. For these clusters the pa-
rameter p in the three-parameter power fits is often given
as D —1. The cases where p g D —1 appear to indi-
cate differences in the correlation functions that may be
caused by angular or radial anisotropy or by the presence
of multiple mass scaling terms. However, there is ample
evidence in this work that the scattering for D = 2 ob-
jects is insensitive to the form of f (r) The data for. Eden

lusters grown on a plane and the TSAW polymer grown
in 3D space and the above analysis support this conclu-
sion.

where o, is the amplitude of the component that scales
as D, . The f; (r) can have the same or difFerent size given
by a parameter such as a;.

The scattering exponent will be affected if two or more
terms with suKciently different D; have significant am-
plitudes. If the size parameters a; are similar, then the
scattering exponent will be determined by the smaller
value of D, . The effect will be seen because the scatter-
ing intensity falls off less rapidly for small values of the
fractal dimension. If the size parameters are very differ-
ent, then the scattering exponent may have one value in
one q range and another in a different q range. This can
be seen in the Debye-sum scattering for scatterers placed
at the positions (i, j) where 1 & i & 50 and 1 & j & 2. In
this case v = 1 for 0.1 ( q & 1 and v = 2 for 2 ( q ( 4.
Finally, it appears that the D value obtained from anal-
ysis of the scattering by a multi&actal can be different
than the D given by Rg or p(r) analysis. If several terms
in Eq. (51) have significant values for n, expressing p(r)
with Eq. (1) may introduce considerable error. The scat-
tering intensity I(q) is easily obtained for p(r) given by
Eq. (51), but we do not use Eq. (51) in this work because
the number of adjustable parameters can easily get out
of control.
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