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Thermal expansion and x-ray-absorption fine-structure cumulants
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In the classical limit, a simple relation has been shown to exist between the thermal expansion
coefBcient a and the cumulants of the vibrational amplitude that are measured in x-ray-absorption
fine structure (XAFS), i.e. , nrTo /cr l = 1/2, where cr is the mean-square vibrational amplitude,

the third cumulant, T the absolute temperature, and r the equilibrium bond length. We
generalize this relation to the quantum case using a correlated Einstein model and thermodynamic
perturbation theory, and find arTo /o = [3z(l + z) ln(1/z)]/[(1 —z)(1+ 10z+ z )], where z =
exp( —e~/T), and e~ is the Einstein temperature. This result is found to be in agreement with
the measured thermal expansion coefFicient and XAFS cumulants in RbBr at 30 K and 125 K.

I. INTRODUCTION

Within the harmonic approximation the tempera-
ture dependence of the x-ray-absorption fine-structure
(XAFS) amplitude is governed by a Gaussian Debye-
Waller factor exp( —2p o ), where cr is the mean-square
vibrational amplitude and p is the photoelectron wave
number. Anharmonic terms in the potential give rise
to a correction in the XAFS phase bC = —(4/3)p o.& ),
where cr&s) is the third cumulant of the vibrational am-
plitude distribution. This contribution leads to an un-
physical, apparent contraction with increasing temper-
ature unless it is properly accounted for. 2 Recently a
simple relation between the thermal expansion coefficient
n = (1/r)dr(T)/dT and the second and third cumulants
was deduced for the high-temperature limit of a simple
anharmonic oscillator model, s

We find that the relation between these cumulants and
the thermal expansion coefficient is not generally a sim-
ple ratio but, rather, a temperature dependent function
of T/0@, where 0@ is the Einstein temperature. Like
all Einstein models, this model fails to give the correct
power-law temperature dependence of various thermo-
dynamic quantities near T = 0, but such differences are
usually difficult to distinguish experimentally. However,
because the long-wavelength acoustic modes do not con-
tribute to the relative motion of a given bond, the Ein-
stein model is a better approximation for bond vibra-
tional amplitudes than for site amplitudes.

II. FORMALISM

We consider the vibration of two masses Mi and M2,
interacting via an anharmonic potential V(x),
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where 1' is the absolute temperature and r is the equi-
librium bond len h. An analogous classical relation
r(T) —r(0) = o&s /2o2 was obtained by Wenzel et al.
and is implicit in the work of Stern and Heald. s These
relations were found to be in accord with experiments 4

in the classical limit.
In this work we generalize these relations to low tem-

peratures and compare the results with experiment. To
simplify the problem as much as possible we make use of
an anharmonic, correlated-Einstein model, i.e., an oscil-
lator with a single frequency taken to be the mean of the
local density of modes that contribute to the relative vi-
brational amplitude of a given bond, plus a small anhar-
monic perturbation. This Einstein frequency u~ depends
on the bond in question, and is typically some fraction
of the corresponding Debye frequency u~ = k&equi/h.

where x is the deviation of the bond length r from the
location of the potential minimum, i.e., x = r —ro. We
define y to be the deviation from the equilibrium value
of x at temperature T and determine the net thermal
expansion a(T) = (r —ro) by setting (x —a) = (y) =
0, where the brackets denote a thermal average. Our
calculations of these averages are based on the quasi-
harmonic approximation, in which the Hamiltonian of
the system is written as a harmonic term with respect to
the equilibrium position at a given temperature, plus an
anharmonic perturbation:

H = + V(x)—:Ho + V(a) + 6V(y),
2p

where 1/p = 1/Mi + 1/M2, and
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bV(y) = (koa+ 3ksa )y+ ksy .
(4)

=10 = (y) = —Tr p y = —Tr 6p y,Z ZQ
(5)

~' = (y') = —T py' = —T po y',
Z ZQ

(6)

Here the effective spring constant k = kQ + 6k3a = pu .
Note that the length dependence of k yields a Gruneisen
parameter p = —ct inn/ctln V = rk—s/k

We now use erst-order thermodynamic perturbation
theory to derive expressions for the net thermal expan-
sion a, and for the second and third cumulants, to leading
order in k3.
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Since bU(y) = kpay + ksy to leading order in ks and
m = 1 or 3, the matrix elements only couple n to n + 1,
n + 3. Also, making use of the hermiticity of 6V and

y, one can easily demonstrate the equivalence of the
n' = n 6 j terms in Eq. (12). Thus we need only the
matrix elements,

where we have used P„nz" = z/(1 —z) . On performing
the integral in Eq. (8) over P' and evaluating the traces,
the remaining odd moments are given by

~~l=(y)= —T py = —Tippy.3 3 1 3 1 3
Z ZQ

Here the brackets denote a thermal average over the sta-
tistical density matrix p = e ~ and Z = Trp is the
canonical partition function; the corresponding unper-
turbed quantities are pQ

——e ~ ' and ZQ ——Tr pQ. This
first-order treatment ignores anharmonic contributions to
o.2, which only arise in second order, but is adequate to
account for the low-temperature behavior discussed be-
low. To leading order in the perturbation bV, p = pQ+bp
where bp is given by"

Hence

(y) = kpaoo ) z"(n+ 1)Zo~

+ 3ksop ) z"(n+ 1)

(n~y~n+ 1) = crp(n+ 1)'~2,

(n~y ~n+ 1) = 3oo(n+ 1)s~z,

( ly'I + 3) = o[( + 1)( + 2)( + 3)]'".

(14)

p
e ~ '6V(P')dP', Using the identities, Q„z~(n + 1) = 1/(1 —z)2 and

P„z"(n+ 1) = (1+ z)/(1 —z)s, and setting (y) = 0,
we obtain from Eq. (14),

6'V(P) = eP '6Ve ~H'', P—:1/k~T, and k~ is Boltz-
mann's constant.

The traces in Eqs. (5)—(7) are straightforwardly evalu-
ated using harmonic oscillator states ~n) with eigenvalues
E„=n~ (for convenience we set the zero point energy
to zero). Thus,

and hence,

3ks
k

3ksk+ z[ln(z)] 2

3k3oQ 1+z
G =—

k 1 —z
(15)

Z = ) e nPhu ) n
1 —z )

where the temperature variable z:—e ~~ = e
and ez = hu/k~ is the Einstein temperature. Similarly

(y') = ) e-"c'~(n~y'~n).
0

To evaluate the matrix elements, we express y in terms
of creation and annihilation operators, a and a, i.e.,

y = op(a + at), where op = gh/2pcu. These opera-
tors have the following properties: [a, at] = 1, attn) =
v n+ l~n + 1), and n~n) = n~n) where n = ala is
the number operator. Thus, for example, (n~y ~n)
o.p(n~aat + ata~n) = (2n+ 1)o.o, so that

The above proportionality between a and cT = (c)/k,
where (c) is the mean bond energy, implies that the
temperature dependence of the thermal expansion a is
generally quite different from that of o &s&/2o. 2 that ap-
pears in the classical theories, 45 and also that a has
the same temperature dependence as the specific heat,
d(e)/dT. Our expression for a agrees with that of
Feynman to leading order in k3, although our treat-
ments differ. While we use a quasiharmonic approxi-
mation, Feynman obtains a by minimizing the free en-

ergy F(a) The variation. al principle can also be used
with our approach by minimizing F = Fp + V(a), where
Fp = k~T in[2 sinh(~/2k~T)], and using the relation
de/da = 3ks/pw from the Griineisen parameter, and
gives the same result.

The third cumulant may be evaluated similarly:
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o.( ) = — ) z"f(l —z )[ksclp(n+ l)(n+ 2)(n+ 3)/3] + (1 —z)[3kpaap(n+ 1) + 9kscrp(n+ 1) ]). (17)

Now using P z"(n+ 1)(n+ 2)(n+ 3) = 6/(1 —z) and
P„z"(n+ 1) = (1+4z+ z2)/(1 —z), we obtain

(s) ks(hen)2 1+10z+ zz

2ks (1 —z)z (18)

With the above results, we therefore derive a relation
between n and the second and third cumulants which is
only a function of T/0@..

arTo 3z(1+ z)ln(1/z)
cr(» (1 —z)(1+ 10z+ z~)

In the next section these results are used to determine
high-temperature (HT) and low-temperature (LT) be-
havior of o, o & ), a, and a.

IV. EXPERIMENT

XAFS measurements and data analysis were carried
out on RbBr at 30 K and 125 K.s The second and third
cumulants are obtained for both temperatures by fit-
ting theoretical calculations using the ab initio XAFS
code FEFF5 to data in r-space for the Rb—Br and Rb-
Rb bonds, i.e. , for first- and second-nearest neighbors,
respectively (see Table I).

To calculate the thermal expansion coefficient at each
temperature we obtain k and ks from fits to Eqs. (20)
and then calculate w = gk/p. For the Rb—Rb bond at
TH =125K, r=4.81k., p=M~b/2=7. 1x10 Kg,
and oH2 ——0.0158k, so

III. HIGH- AND LOW-TEMPERATURE LIMITS

kgTH N
2 )

OH fA
(22)

In the HT limit z = 1 —her/kIiT, so that

3k3
aH = — kgyT,

3kskB0 =—
kzr

kgb T
&H =

k

(20)

and hence u = 1.24 x 10is Hz. For the low-temperature
case TI. = 30 K, and hence ural, = ~/k~TI, —3.14 and
zl. —0.043. Using Eqs. (11) and (18) we can now deter-

mlile O'I and o I
~ 2 (3).

o.H TI.'ail. 1+zl.2
~ X

2 TH 1 zL,

(23)
(3) - 2 2

(3) crH Tl mi 1 + 10zL, + zL 5 +3
T~ (1 —zL, )z

Hence we obtain the classical expressions, s s e.g. , Eq. (1)
and also (see Fig. 2 of Ref. 4) Erb, oz/Acr&s& = AT/4T.
These results reHect the proportionality to k3 of a, a.,

and cr(s& as well as the simple monomial dependence of
these quantities on k and T. We emphasize that these re-
sults are only valid to first order in k3 and are simply the
first terms in a high-temperature series expansion. The
dimensionless small parameter ksa/k becomes important
only at very high temperatures, k&T ) kp/(3ks), usu-

ally well above 0@.
In the LT limit z —+ 0, so we can neglect zz and higher

powers. In this case we obtain

al, = — M(1+ 2z),
3ks

z(lnz) (1+2z),
3ksk~

k2r
(21)

(1+2z),
hu

o~() = — (hu)) (1+12z).

Note that a, cr2, and o (s) contain zero point contributions
but o. vanishes exponentially with e~/T.

Both al and o 3 obtained here agree well with experiment
(Table I). The thermal expansion coefficient nH at 125 K
can then be obtained from Eq. (1). For err, at 30 K, we
use Eq. (19) with w determined from a fit to Eqs. (21).
This yields

o.l. = (1.5 + 0.6) x 10 s K

nH = (3.1 60.3) x 10 K

The two values agree, within uncertainties, with experi-
mental measurements of n. Similar measurements for
the nearest-neighbor Rb—Br bond at 30 K and 125 K
yield ni, = (1.1+0.6) x 10 s K i and o,~ = (2.9+0.3) x

TABLE I. Cumulants for the Rb—Br and Rb—Rb bonds in
RbBr from XAFS experiment at 30 K and 125 K; u~ is the
derived bond Einstein &equency.

T(K) Bond u)~ (10 Hz) cr (10 A ) o~ ~ (10 A )
30 Rb—Br 1.44 + 0.05 0.55 + 0.05 0.28 + 0.15
30 Rb—Rb 1.17+ 0.02 0.71 + 0.05 0.47 + 0.17

125 Rb—Br 1.52 + 0.04 1.05 + 0.05 2.6 + 0.3
125 Rb—Rb 1.24 + 0.01 1.58 + 0.05 6.5 + 0.2
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FIG. 1. Thermal expansion coefficient a in RbBr from
experiment (Ref. 10) (solid line) and from this work, for
the nearest-neighbor Rb—Br bond (crosses), and the sec-
ond-neighbor Rb—Rb bond (squares).

10 K, respectively, in agreement with the Rb—Rb
results above (see Fig. 1).

mal expansion a and o2 are found to be simply pro-
portional at all temperatures. These relations are ob-
served to be in agreement with XAFS experiment in
RbBr. These results can also be used to correct for the
contribution of o & & to the XAFS phase and thus elimi-
nate the unphysical contraction with increasing tempera-
ture. It is remarkable that a simple anharmonic oscillator
model for o. agrees to within experimental uncertainty at
30 K. At lower temperatures one expects a power law,
rather than an exponential temperature dependence, and
also an electronic contribution to the thermal expansion.
This agreement is explained in part by the connection in
solids between o, and the specific heat per unit volume

c„, i.e. , n = pc„/3B where p is the Griineisen parameter
and B is the bulk modulus. Since p and B are nearly
temperature independent, n cx c„, and hence o, like c„ is
insensitive to details of the vibrational structure.

After this work was completed we learned that equiv-
alent low-temperature formulas for a and o.&3~ have been
derived using a different method by Rabus. Interest-
ingly, Rabus expresses the temperature dependence of
o is) in terms of o; this can also be done here by invert-
ing Eq. (11) to obtain z = (o —ere)/(o + oo).

V. DISCUSSION AND CONCLUSIONS

We have shown that the fixed classical ratio between
the cumulants and the thermal expansion coefBcient fails
to hold at low temperatures but can be generalized,
within the Einstein approximation, in terms of a func-
tion only of T/0@. Within the same model, the ther-
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