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We have from first principles calculated the elastic constants (C,;, C},, and C,,) of all nonmagnetic
cubic d transition metals, and obtained good agreement with experimental data. We show that the trend
exhibited by the tetragonal shear constant in the transition metals can be simply understood. In particu-
lar, we show that the trend of the tetragonal shear constant, C', of cubic transition metals and alloys is
determined by the energy difference between the fcc and bcee structures of a given system, which in turn is
determined by band filling. This finding is in turn due to the result that these systems have a Bains path
with similar shape, and our ‘“‘canonical” Bains path illustrates this behavior. The trend of C’ is further
studied by including selected alloys (thereby obtaining a finer tuning of band-filling effects). The scaling
of C’ with the bee-fce energy difference is found to hold also for the studied alloys (roughly), and the cal-
culated C’ is found to agree well with available experimental data.

I. INTRODUCTION

Most ground-state properties of the transition metals
are now well characterized and understood. For in-
stance, the equilibrium volume (V) shows a parabolic
trend with a minimum approximately in the middle of
the series. Also, the bulk modulus (B) and the cohesive
energy (E,) have similar trends, but with a maximum ap-
proximately where the volume has a minimum. These
trends are roughly given by the Friedel model;""? in
which one is occupying bonding d orbitals in the first half
of the series and then filling antibonding d orbitals in the
second half of the series. In this model the d orbitals
form a narrow band that is pinned at the Fermi energy
(Ep). A more quantitative picture of the trends of all
three quantities is given by the universal bonding mod-
el>* based upon local-density approximation (LDA) cal-
culations. An important feature of the LDA calculations
is that B, V., and E, can be determined within 10% in-
dependent of crystal structure, indicating these quantities
are independent of the arrangement of the atoms as long
as they are rather closely packed (fcc, bee, or hep). It is
this blend of detailed calculations (LDA results) and
descriptive concepts (Friedel model) that has given a
deeper understanding of these average properties of
solids.

In contrast to the clear parabolic trends of the cubic
transition metals, shown by Ve» B, and E, is the
behavior of the elastic constants (C’, Cy;, Cy,, and Cyy).
Since the observed elastic constant trends for the 3d, 4d,
and 5d series are similar, we will focus the discussion
mainly on the 5d series. To illustrate the problem we
show in Fig. 1 the experimental tetragonal shear con-
stants C' and the bulk moduli B [C'=(C;; —C,)/2 and
B =(C,;;+2C,,;)/3] for the 5d series. We also show the
calculated trend of C’ using ion-ion potentials.’ We have
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chosen C’ instead of C|; or C,, because this constant is
obtained from the curvature of the total energy for a
tetragonal distortion of a cubic lattice (see below).
Despite the fact that C' and B are both linear combina-
tions of C;; and C,,, they do not follow a similar trend;
the shear constants of W and Ir are highly anomalous,
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FIG. 1. Experimental data for the tetragonal shear constant
(solid circles, right-hand scale) and for the bulk modulus (solid
line, left hand scale), of the 5d transition metals. Also shown
are calculated values of C’ using ion-ion potentials (open circles,
right-hand scale).
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while the shear constants of Cs, La, Ta, Pt, and Au fol-
low approximately the same trend as B. Notice also that
calculations of C’ using ion-ion potentials reproduce the
trend of B, instead of C' and thus fail to reproduce the
experimental data for W and Ir. The lack of a simple
parabolic behavior for the trend of C’ has led to the belief
that there is no simple explanation of elastic constant
behavior in the transition-metal elements. Similar, al-
though not as pronounced, effects can also be found for
Cyy.

Many previous studies of elastic properties of
transition-metal elements have mainly demonstrated the
complexity of the behavior. For example, the high shear
constant of Ir yields unusual brittle cleavage of that ma-
terial, and it was argued on this basis that Ir has very
strong directional atomic binding forces.® Similarly, us-
ing interatomic central force potentials, it has been ar-
gued that the bcc transition elements have strong direc-
tional covalent bonds, since C’ and E, could not both be
fitted.” The directionality in the bonds of bce metals was
also used as an argument for the similar behavior of AE,
and K] (AE, is the deviation between the predicted
cohesive energies with and without the presence of co-
valent bonds, and K, is proportional to the difference be-
tween calculated and experimental C’ values). Moreover,
the covalent bond strength was suggested to decrease
with increasing |n, — 5/, where n, is the number of d elec-
trons.’

In an earlier paper we demonstrated a simple correla-
tion between C' and the magnitude of the fcc-bee crystal
structure energy difference,® which from hereafter is re-
ferred to as AE. The tetragonal shear constant C’ is ob-
tained from the curvature of the total energy under a
volume conserving deformation that modifies the z axis
but keeps the x and y axes equal, while conserving
volume.’ "' C' is obtained from the curvature around
the energy minimum, i.e., for very small shears. Howev-
er, the same shear (tetragonal), although larger, can
transform a bcc crystal to a fcc crystal and vice versa.
Hence, both the fcc and bece crystal can be described as
body-centered tetragonal with ¢ /a equal to V2 and 1, re-
spectively. This kind of shear is referred to as the Bains
transformation path.!? It is therefore illustrative to study
the total energy as a function of not only small shears
(the C’ values), but also shears of larger magnitude that
bring a bcc crystal to the fcc structure and vice versa.
These considerations indicate that an understanding of
C’ is tied up with an understanding of crystal structure
trends in the transition metals. The present study ex-
tends the earlier work to include all cubic, nonmagnetic
transition metals and their alloys and includes a discus-
sion of the trends or lack thereof of Cy,.

The crystal structure stabilities of most of the transi-
tion metals have been calculated from first princi-
ples.!* 15 The trend of the crystal structure stabilities
was shown to be determined by the d electrons, and it
was even demonstrated that the eigenvalues [and there-
fore the density of states (DOS)] of the “canonical d
bands”'®!” (which only depend on the crystal structure,
with no potential nor volume dependence) describe these
trends.'>'* The dominant term in minimizing the total
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energy of a given structure is associated with the shape,
and the filling (number of valence electrons) of the partial
d DOS. This is essentially described by the canonical d
bands, which are unique to that particular arrangement
of the atoms. To illustrate this we show in Fig. 2 the
canonical d DOS for the fcc and bcee structures. In Fig. 3
we show the difference between the first moment (eigen-
value sum) of the two DOS. The band energy E, (first
moment) of the d electrons is defined as

E
E,=[ " eN(ende, (m

where N is the canonical d DOS. Notice in Fig. 3 that
the fcc energy is the reference level, and is set to zero.
Figure 3 suggests that initially the fcc structure is stable,
then for d-band fillings between ~3 and ~5 the bcc
structure is stabilized, and for between ~5 and ~9 d
electrons the fcc structure is stabilized again. A similar
analysis was presented earlier'>'* including also the hcp
structure. The crystal structure trends exhibited by the
transition metals can thus be explained using the above
stated simple arguments; in the 5d series La and Hf (d-
band filling ~1.5-2.5) are close packed (hexagonal), Ta
and W (d-band filling ~3.5-4.5) are bcc, whereas the
rest of the series is close packed (hcp or fcc). The reason
for the trend of the first moment (Fig. 3) can be seen in
Fig. 2. Namely, it is energetically favorable to have as
much weight of the DOS pushed to lower energies com-
pared to E. For d-band fillings around 4 to 5, Ep lies
between —3 and O in Fig. 2, and the bcc structure is thus
stabilized.

We turn to the detailed LDA calculations of the elastic
constants themselves which indicate the level of accuracy
that can be obtained. An ab initio calculation of elastic
constants of transition metals was presented by Dacorog-
na, Ashkenazi, and Peter,” who calculated the C’ con-
stants for 13 fcc and bec transition metals, using the
linear muffin-tin orbital method in the atomic sphere ap-
proximation (LMTO-ASA).!®!” These results compared
fairly well with experiments, with the largest disagree-
ment being ~50% to large in fcc Pd, ~60% to large in
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FIG. 2. Canonical d DOS for the fcc (full drawn line) and bece
(dotted line) structure. The DOS was convoluted with a Gauss-
ian function.
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FIG. 3. Calculated difference between the first moment of the
fcc and bec structures. The bee moment is the reference level
and is set to zero.

fcc Ag, as well as ~60% to large in bcc Mo. Christen-
sen'® on the other hand found good agreement for both
fcc Pd and fcc Au, using LMTO-ASA calculations.
Moreover, Shimizu'® and Ohta and Shimizu!® found fair-
ly poor agreement in their calculated C’ constants of V
and Cr. The only full-potential treatment of elastic con-
stants of transition elements, that we are aware of, were
published by Alouani, Albers, and Methfessel who ob-
tained good agreement with experiment for bcc Mo.2°

II. DETAILS OF CALCULATIONS

As mentioned above there are only three elastic con-
stants in a cubic material (neglecting the bulk modulus);
C,1, Cy5, and C4. These constants can be obtained by
calculating the total energy as a function of the shears de-
scribed below.’”!! For C,; and C;, one considers the
following shear:® 1!

1+86 0 0
0 1+8 0 , )
0 .
(1+8)

i.e., modifying the z axis, but keeping the x and y axes the
same, in a volume conserving way. The change in strain
energy density as a function of the shear § is then

U=6C'8*+0(8°), (3)

where C’' is the tetragonal shear constant,
C'=L(C;;—Cy;). By calculating C’' and the bulk
modulus B =4(C;; +2C},), one can extract C;; and C\,.
Similarly, considering the following shear:*~!!

SODERLIND, ERIKSSON, WILLS, AND BORING 48

the C44 constant can be calculated from
U=2C,8+0(8% . (5

The strain energy density is the increase of the energy
density of a distorted system, which is proportional to the
corresponding change in total energy. In order to calcu-
late the total energy for a given shear, we have used a
full-potential linear muffin-tin orbital method?' (FP-
LMTO) as well as an LMTO-ASA (Refs. 16 and 17)
method. The accuracy of the total-energy differences
needed for calculating the elastic constants is ~uRy, and
as we shall see one needs a highly accurate computational
method (FP-LMTO) to obtain good agreement with ex-
perimental data. However, it is interesting that the
trends of the elastic constants can be well reproduced!®
using the less accurate LMTO-ASA method and we will
discuss this finding below.

Most of the details of the FP-LMTO calculations were
similar to previous calculations. However there are some
aspects of these types of calculations that are not ‘“‘stan-
dard.” One of the most problematic issues is the conver-
gence of the k-space sampling. We have used the special
k-point method?? in this work, to speed up k-space con-
vergence. In addition to this we have associated each ei-
genvalue used in the calculations with a Gaussian having
a width ~15 mRy. We have tested this approach for
selected systems and found that it accelerates the conver-
gence, with negligible changes in the calculated elastic
properties. For the present calculations we then sampled
the & [Eq. (2)] and the § [Eq. (4)] irreducible part of the
Brillouin zone, with k points that both correspond to
4000 points in the full zone for the fcc lattice, and
4000-5324 points for the bcc lattice.

The LMTO-ASA calculations were the same as in
Skrivers previous work,!* although we used s, p, d, and f
partial waves. These calculations were only done to give
additional and complementary information of the C’
values. Both types of calculations (full-potential and
ASA) were based on the local-density approximation,
with only crystal structure and nuclear charge as input.

III. RESULTS

A. Metals

Shown in Tables I and II are the calculated (FP-
LMTO, using the experimental crystal structure) and ex-
perimental values of C,;, C,,, and C,, for all nonmagnet-
ic cubic transition metals. Notice that with a few excep-
tions we have agreement between experiment and theory
within ~ 10% for all three elastic constants. It should be
noticed here that La is stabilized in the fcc structure only
at elevated temperatures. The worst agreement between
theory and experiment is found for the C,, constant of
bee V. We note that for V, LDA gives less accurate re-
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TABLE 1. Experimental and theoretical values of C,; and C|, (in Mbar). The experimental value of
fcc La was obtained at elevated temperatures ( ~ 600 °C).

Cifer cir co i

5d La (fcc) 0.29 0.17 0.29 0.20
Ta (bce) 291 1.62 2.66 1.58

W (bcce) 5.53 2.07 5.33 2.05

Ir (fcc) 6.20 2.65 6.00 2.56

Pt (fcc) 3.72 2.53 3.58 2.54

Au (fce) 2.09 1.75 2.02 1.70

4d Nb (bcc) 2.67 1.47 2.53 1.33
Mo (bec) 4.06 1.50 4.50 1.73

Rh (fce) 3.97 1.71 4.13 1.94

Pd (fec) 1.95 1.67 2.34 1.76

Ag (fcc) 1.28 0.86 1.32 0.97

3d V (bce) 2.05 1.30 2.32 1.19
Cu (fcc) 1.93 1.51 1.76 1.25

sults also for other properties, e.g., the equilibrium
volume is ~10% to small® (the equilibrium volume can
normally be obtained within ~6%). We therefore per-
formed a calculation of C,, at the theoretical volume of
V, and the agreement with experiment is improved, 0.30
Mbar, whereas for the C;; and C,, constants the agree-
ment is worse, 3.10 and 1.63 Mbar, respectively. Notice
also that the isoelectronic fcc metals Rh, and Ir have
anomalously high C;; values. A similar situation is
found for bcc Mo and W. These high constants come
about, since the curvature of the total energy for a tetrag-
onal strain (C’) is particularly large for these systems.?
The bulk modulus, which together with C’ is used to cal-
culate C;; and C,, behaves more smoothly (Fig. 1). In
our previous report® on elastic constants of 5d transition
metals we found agreement within ~10% for the C’
values, and we demonstrated that the anomalies found in
Ir (Rh) and W (Mo) is a reflection of the anomalously

TABLE II. Experimental and theoretical values of C,4 (in

Mbar). The experimental value of fcc La was obtained at
elevated temperatures ( ~ 600 °C).

Cifer c

5d La (fcc) 0.16 0.17

Ta (bce) 0.84 0.87

W (bece) 1.78 1.63

Ir (fce) 2.66 2.68

Pt (fcc) 0.85 0.77

Au (fcc) 0.31 0.45

4d Nb (bce) 0.27 0.31

Mo (bcc) 1.07 1.25

Rb (fcc) 1.96 1.84

Pd (fcc) 0.73 0.72

Ag (fcc) 0.61 0.51

3d V (bcc) 0.05 0.46

Cu (fcc) 0.82 0.82

high AE found in these systems. The anomalously high
values of Cy;, for Ir, Rh, W, and Mo is thus a reflection
of the unusually large tetragonal shear constant found for
these systems.® Table II suggests that also C,, has slight-
ly larger values for Ir, Rh, W, and Mo, compared to the
trend expected for the bulk modulus (as well as volume
and cohesive energy). However the strain that corre-
sponds to the C,4 constant is more complicated and we
have not found correlations with other properties, as is
the case for C'. We will return to discussions of C4, in
Sec. III B.

The unusual behavior for C;; (and C;,) is thus a
reflection of the behavior of the tetragonal shear con-
stant, and we have done some additional analysis of this
property. As stated above it is illustrative to study not
only small strains in Eq. (1), but the entire Bains path.?
The total energies are shown in Fig. 2 of Ref. 8 (obtained
from LMTO-ASA) for all 5d elements (including the hex-
agonal ones, treated as fcc to illustrate trends) as a func-
tion of ¢ /a ratio, i.e., the calculated Bains path [with the
reference energy set to zero for ¢ /a =V'2, (fcc) for all ele-
ments]. From that figure it is clear that systems that
have a large AE show a large curvature of the total ener-
gy around the energy minimum (both for bcc and fcc
crystals) and should therefore show large C’ values. That
figure thus suggests that C’ scales with the energy
difference between the bcc and fecc structures. To test this
hypothesis, we show in Fig. 4 the calculated [LMTO-
ASA (a) and FP-LMTO (b)] C’ values, as well as AE, for
all 5d metals (including the hexagonal ones, treated as fcc
to illustrate trends). We have also plotted the experimen-
tal data for the cubic metals in Fig. 4. Notice that the
anomalously high shear constants of W and Ir simply
reflect a very large difference in crystal structural energies.
Similarly this explains the high C’ values of Mo and Rh
in the 4d series. The reason for these large differences in
crystal structure energies have previously been demon-
strated to be governed by the d-band filling, and in partic-
ular the shape of the canonical d bands (Figs. 2 and
3).1%1% Notice also that the scaling between the crystal
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FIG. 4. Theoretical data for the absolute value of the energy
difference between the fcc and bce structures (full drawn line,
right-hand scale), as well as the calculated tetragonal shear con-
stant, C’' (open circles, left-hand scale). The LMTO-ASA re-
sults are shown in (a) and the FP-LMTO results in (b). The ex-
perimental data for C' are also shown (b) (filled circles).
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structure energy and C’ depends on the shape of the
Bains path for a particular system. However, it is seen
that (except for the high-temperature phase of La) there
is agreement within 10-20 %.

The scaling between C' and AE is interesting, and we
have done some additional analysis concerning this issue.
Therefore we show in Fig. 5 the canonical DOS for the
bet structure as function of ¢ /a ratio. Notice that as the
¢ /a ratio is changed continuously the resulting DOS, and
therefore also the first moment E, [Eq. (1)], varies
smoothly. Starting at ¢ /a =0.8 the DOS looks like a dis-
torted version of the bcc DOS. Increasing ¢ /a towards
1.0, makes the similarity more pronounced. For c/a ra-
tios increasing from 1 the gap between the two bcc peaks
(E; and T,,) starts to get filled and the DOS becomes

T T T
E

DOS (arb. units)

fcec

Energy (arb. units)

FIG. 5. Canonical d DOS for the bct structure using a ¢/a
ratio of 0.8 (upper panel) to 1.6 (lower panel). The special cases
c¢/a=1, and c¢/a =V'2 correspond to the bcc and fcc struc-
tures, respectively. The DOS was convoluted with a Gaussian
function.
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more fcc like. Increasing ¢ /a from V2 (fcc) produces a
gap in the middle of the DOS again. To further elaborate
on this, we show the canonical Bains path in Fig. 6, for
d-band fillings with 3 (~Ta), 4 (~W), and 7 (~Ir) elec-
trons. These paths were calculated from the first moment
[Eq. (1)] of the d DOS curves in Fig. 5. However the
different paths were scaled to have the same energy
difference between the fcc and bce structures (AE), and
were also shifted to lie at the same energies. Thus the en-
ergy scale in Fig. 6 has no meaning, but the shape of the
curves has. It is striking from Fig. 6 that the shape of the
Bains path is very similar irrespective of crystal structure
and band filling. However, one should bear in mind that
for these band fillings AE is very large and that this part-
ly explains the similar shape of the canonical Bains paths.
For other band fillings, where AE is smaller, the canoni-
cal Bains path differs slightly from the universal behavior
suggested by Fig. 6. Also, other contributions to the to-
tal energy show a different behavior, and specifically the
Madelung contribution wants to stabilize high symmetry
structures, ¢/a =1 and V2. Therefore, depending on
which terms dominate the energy along the Bains path
can deviate from a ‘‘universal” behavior, and this is in
fact the explanation to why the scaling between C’ and
AE is not perfect (Fig. 4). Nevertheless, systems where
E, dominates show a total energy along the Bains path
that is quite similar in shape.

In order to illustrate the Madelung contribution to the
total energy we show in Fig. 7 an estimate of this contri-
bution, for La, Re, and Au. This energy was calculated
according to the formula of Esposito et al.,?*!3i..,

1 aM_l.S
Uy= —E(qslel)z——?*— ,

where a,, is the Madelung constant of the lattice and S is
the atomic Wigner-Seitz radius. Further, g |e| is ob-
tained from our LMTO-ASA energies through

g;lel=4mS3n(S)le| , (7)

(6)

where n (S) is the electron density at the atomic radius.
Notice in Fig. 7 that the Madelung energy stabilizes high
symmetry structures, i.e., the bcc and fcc structures along

Moment (arb. units)

]

0.9 1.0 1.1 1.2 1.3 1.4 1.5
bct c/a

FIG. 6. Canonical Bains path for d-band fillings of 3 (short-
dashed line), 4 (full drawn line), and 7 (long-dashed line).

Madelung Energy (mRy)

c/a

FIG. 7. Madelung energy [Egs. (6) and (7)] for the Bains path
of La, Re, and Au.

the Bains path. Notice also that the Madelung energy
has a larger energy barrier between the bce and fcc struc-
tures, for systems in the middle of a series (Re in our ex-
ample). We will return to this results in Sec. III B.

B. Alloys

In the preceding section it was argued that the elastic
shear constant, C’, scales with the fcc-bcc energy
difference, AE, and that this holds for systems that
display a similar shape of the Bains path. Using these ar-
guments it then follows that systems where band filling
dictates a low (or zero) AE should display a low C’ con-
stant. Hence, since the crystal structure stability between
the bcc and fcc structure changes sign somewhere be-
tween Mo and Tc in the 4d series, and somewhere be-
tween W and Re in the 5d series, it is interesting to study
the behavior of C’ for MoTc alloys and WRe alloys. In
order to study a successive filling of the d band we have
calculated the structural energy difference for these alloys
using the virtual crystal approximation. This simple ap-
proximation of an alloy of two elements (that differ in nu-
clear charge with one) is suitable, since the averaging of
the nuclear charge and the valence electrons in the model
neglects other effects than the band filling.

In the 4d transition series the (hypothetical)
Mo, ,sTcy 75 alloy has a vanishing AE and as Fig. 8
shows, also a low C’. However, the elastic shear constant
C'’ is far from zero, since although AE is zero (or almost
zero) there is still an energy barrier between the fcc and
bece structures. The main contribution to this energy bar-
rier comes from the Madelung energy, as Fig. 7 shows.
Nevertheless, the trend of C’ tracks AE (roughly), and
the dip shown by C’ for the Moy ,5Tc, 75 alloy is clearly
correlated with AE being very low.
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FIG. 8. Experimental (@) and theoretical (O) tetragonal
shear constant in kbar and fcc-bee energy difference (dotted
line) in mRy for the 4d elements. The bcc energy is lower for
Nb and Mo.

We have also performed calculations for 4d alloys
where experimental data are available, as well as for (hex-
agonal) Zr, Tc, and Ru treated as fcc, to study trends.
The theoretical and measured elastic shear constant, to-
gether with the theoretical AE, is thus presented in Fig. 8
for the 4d transition elements, complemented with select-
ed alloys. Notice that, when a comparison is possible, the
agreement between experiment and theory is good.

Also, it is interesting to notice that in the beginning of
the 4d transition series the alloy with as much as 90% Zr
(hexagonal) and 10% Nb (bcc) is bcc, and the elastic
shear constant has been measured.?> From this alloy C’
increases continuously for increasing band filling up to
Mo, tracing AE. Notice in Fig. 8 that the elastic shear
constant thus roughly follows the same trend as AE.
However, the maximum of the C’ curve is at a slightly
larger atomic number than the maximum in the AE
curve, indicating that the shape of the Bains path is not
quite the same for all systems. For the Rb,Pd,_, and
Pd, Ag,_, alloys the scaling between C’' and AE also
holds and, because of the behavior of AE, C’ decreases
rapidly with increasing band filling.

In Fig. 9 we have plotted the same properties as in Fig.
8, but now for the 5d transition series. Here (hexagonal)
Hf, Re, and Os were also treated in a hypothetical fcc
structure. The elastic shear constant C’ for the 5d ele-
ments displays a similar trend as the 4d series does, and
the small C' of the W, 3sRe, ¢4 alloy corresponds to a low
(zero) AE (similar to the Moy ,sTcy 45 alloy in the 4d
series). Notice that the trend of C’ is very similar for the
4d and 5d series, and that C’ tracks (roughly) AE. How-
ever, also for the 5d series one can notice that the max-
imum of the C’ curve appears for a slightly higher atomic
number than the maximum for AE, again indicating that
the shape of the total energy along the Bains path is not
quite the same for all systems. Nevertheless, we repro-
duce the experimental finding of a decrease of C’' when
small amounts of Re is alloyed in W.

FIG. 9. Experimental (@) and theoretical (O) tetragonal
shear constant in kbar and fcc-bee energy difference (dotted
line) in mRy for the 5d elements. The bcc energy is lower for
Ta and W.

IV. CONCLUSIONS

To conclude, we have calculated the elastic constants
(Cy, Cyy, and Cyy) for all nonmagnetic cubic transition
elements, and found agreement within ~10% (with a few
exceptions). In particular our calculations reproduce the
anomalously high C;; values found in Rh, Ir, Mo, and
W, and we show that is due to an anomalously high C’
constant for these systems. Further, we have obtained
values of C’ in good agreement with experiment, for
selected 4d and 5d transition-metal alloys. We have
shown that there is a simple explanation for the trend in
C'’ for the cubic transition metals and alloys. From the
calculation of the energy along the Bains path one ob-
tains not only the crystal structure stability, but its “ex-
cited” state (AE) and the fact that C' is related to its ex-
cited state structure. Therefore, unlike V., B, and E,
the crystal structure energies determine the trends in C’
and one does not get a parabolic trend. Because both the
stable crystal structure and its excited state can be corre-
lated with d-band filling we arrive at a simple explanation
for the values of C’, i.e., those crystals for which band
filling arguments dictate a large AE will have large C’
values. The physical explanation for this is that it is pre-
cisely these systems for which the bcc—fcc transforma-
tion is difficult and hence the C’ values high. The reason
for the anomalously high value of C’', for Rh, Ir, Mo, W,
and alloys that have a dominating concentration of these
elements, does thus not depend on whether bonding or an-
tibonding orbitals are being filled (as in the explanation of
Veq» B, and E;—Friedel model), but rather on details in
the DOS, which in turn, depending on band filling, can
make the bcc structure very stable against the fcc struc-
ture, and vice versa. In connection to this it is very in-
teresting that central force potential calculations do not
reproduce the anomalously high C’ values found for Ir,
Rh, W, and Mo (Fig. 1), and not even the trend, whereas
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a theory that takes into account the detailed shape of the
DOS (band calculations) explains those irregularities as
well as the general trend. We have also predicted an
anomalously low elastic shear constant for Mo-Tc (Tc
rich) alloys as well as for W-Re (Re rich) alloys, and it
would be interesting if these alloys could be stabilized in
a cubic structure, and the elastic constants measured.
Finally, there is no (to our knowledge) simple transfor-
mation path which, in a similar way to relating the Bains
path to the C’ constant, connects the C,, constant with
some crystallographic transformation path. The trend of
C44 also has less structure than C’. Nevertheless, Cy, is
enhanced compared to the trends expected from B, Veqs
and E_, for Rh, Ir, Mo, and W. The explanation for this
enhancement is similar to the arguments for the
enhanced values of C’. Namely, taking W as an example,
the bce structure is stable against the fcc structure since,
for this band filling, the DOS has most weight at low en-
ergies causing E, to stabilize this structure. However,
any type of shear that, for a certain band filling, moves
weight of the DOS to higher energies will lower the band
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energy E, in Eq. (1). The shear corresponding to Cy,
creates such a change of the DOS for W, and consequent-
ly is C,, also anomalously high for this particular ele-
ment. .

To summarize, both the shape of the DOS and the par-
ticular band filling, i.e., the position of the Fermi level,
Eg, is of importance for the elastic shear constant C’ as
well as the elastic constant C,,. For elements such as Mo
and Rh in the 4d transition series and W and Ir in the 5d
transition series the d-band filling together with the d-
projected DOS makes the elements exceptionally stable in
their true crystal structures and C' as well as C,4 show
exceptionally large values for these metals.
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