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Molecular-dynamics simulations of quenched two-dimensional anisotropic XY models
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In this paper results of molecular-dynamics simulations of a quenched anisotropic XY model are
presented. At late stages an algebraic growth law satisfying the classical Lifshitz-Allen-Cahn law has
been found. Thus the results in the present paper are in agreement with the results found in Monte Car-
lo simulations, hence suggesting that the Monte Carlo time measure is related linearly to real time at late
stages. Furthermore, at early stages an exponential growth of the ordered states has been found —in
agreement with the linearized Cahn-Hilliard equation.

I. INTRODUCTION

The domain-growth kinetics of two-dimensional Potts
and Ising models as well as two-dimensional continuous-
rotor or XY models has been studied in the literature by
Monte Carlo simulations. The asymptotic growth law of
the average linear extension of the domains as a function
of time is usually described as

l(t ) =at"

where n is referred to as the growth exponent.
In Refs. 1 —3 the growth laws for Potts and Ising mod-

els have been studied, and Eq. (1) has been found to hold
with exponent value n =

—,
' for conserved order parameter,

and n =
—,
' for nonconserved order parameter, where the

latter also is the result of the classical Lifshitz-Allen-
Cahn theories. ' From Monte Carlo simulations of con-
tinuous single-site rotor or XY models ' the Lifshitz-
Allen-Cahn value n =

—,
' has also been established.

The validity of the measurements of the growth ex-
ponents by Monte Carlo simulations is uncertain due to
the lack of a convincing argument that the time measure
of Monte Carlo simulations is related linearly to real
time. In molecular-dynamics simulations the real time is
obtained directly, and thus a molecular-dynamics simula-
tion of a growth process would be useful to establish
whether the Monte Carlo time is linear or not. There
have been some studies of quenching using molecular dy-
namics on Lennard-Jones liquids. ' ' However, they
studied phase separation cluster growth, where the
growth exponent is explained through a Lifshitz-
Slyozov —like analysis. Thus there seem to be no
molecular-dynamics studies of quenched Lifshitz-Allen-
Cahn —type models available.

In this paper simulations for the growth exponent of
the classical p =2 XY model studied by the Monte Carlo
method in Ref. 10 are repeated, but using the molecular-
dynamics method instead. The aim of the present paper
is to check whether an n =—,

' exponent is found at finite
temperatures, In Sec. II the model is presented, and the
molecular-dynamics method necessary to simulate a con-
stant temperature system is discussed. In Sec. III the
computational details and results of the simulations are

presented. It is found that the n =
—,
' dependence at finite

temperatures indeed holds. At early times an exponential
growth of the ordered states has been found. This is in
agreement with the classical linearization of the Cahn-
Hillard equation. '

II. THE MODEL AND THE SIMULATION METHOD

A classical twofold degenerate XY-spin model is used.
The corresponding Hamiltonian is

H= ,' gP, + —,'J—g
jE(NNN')

cos(P; —Pi)

,'P g g —co—s(P;)cos(Pi ),
jE, (NN')

In thermodynamical equilibrium this method produces
trajectories corresponding to the microcanonical ensem-
ble. A molecular-dynamics simulation of a quenched
dynamical system using this method thus has the serious
drawback that it will not converge to the true canonical
ensemble dynamics as time goes to infinity. Moreover,
the intermediate distributions conserve the total energy
obtained at zero time, which yields instantaneous temper-
atures of the system, which are too high. A modification
of the method is needed that simulates the system in ex-
change with a heat bath at fixed temperature, still allow-

where J&0, P &0 and (NNN') indicates that the sum is
on next-nearest neighbors to rotator i only, whereas
(NN') indicates a sum over nearest neighbors in the x
direction. In an ordered domain neighbors in the x direc-
tion are aligned with the same direction, whereas neigh-
bors in the y direction are aligned with opposite direc-
tions. Thus the two degenerate ordered domains are anti-
ferromagnetic. This Harniltonian has been used in Ref.
10 to find the growth exponent by Monte Carlo simula-
tions. In the classical method of molecular dynamics, the
equations of motion are derived directly from Eq. (2):

P; =J g sin(P, —P ) Pg sin(P—; )cos(P. ) .
jE(NNN') jE (NN')
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FIG. 1. Instantaneous temperature as a

function of time.
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temperature T could thus be simulated using the Nose-
Hoover equations in the following way: (I) Equilibrate
the system using the Nose-Hoover equations at T=Tz,
(2) change the value of T to T; (3) simulate the quench
using the Nose-Hoover equations at T= T .

Notice that the additional variable g intluences the sys-
tem in a harmonic manner allowing oscillations of the in-
stantaneous temperature about the equilibrium tempera-
ture T. When the method is applied to a system which is
started off at an instantaneous temperature far away from
T, the oscillations are damped rather slowly. This causes
a rather serious drawback in a study of the early stage or-
dering dynamics using the method above, since the oscil-
lations force the instantaneous temperature to drop far
below T, which is a rather unphysical effect of the
method. Although this effect should cause negligible
damage at late stages, the following method is applied in-
stead: (I) Set up a random configuration; (2) Set up ran-
dom velocities according to T; (3) Simulate the quench
using the Nose-Hoover equations at T= T .

Thus the initial configuration corresponds to an infinite
temperature and the instantaneous temperature at zero
time is close to T . The amplitude of the oscillations of

ing fluctuations of the instantaneous temperature in the
system. Nose"' found a solution to this problem. He
constructed an extended Hamiltonian, which he proved
to yield statistics of the canonical ensemble at thermo-
dynamical equilibrium. The method was simplified by
Hoover. ' Applying Hoover's simplification yields the
following (Nose-Hoover) equations of motion:

P;=J g sin(P; —P )

j~(NNN')

Pg —sin(P; )cos(P. )
2' C (NN')

Q= g (P; NkT)IQ, — (4)

where N is the total number of rotators, T is the tempera-
ture of the external heat bath, and Q )0 is an arbitrary
constant. The value of Q should be chosen carefully to
yield good statistics of the simulations. " Notice that this
is the real time formulation of the Nose-Hoover equa-
tions. This is important since time scaling should be
avoided.

A quench from a high temperature T& to a quench

'T=0. 10'
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4. 4 FIG. 2. Log-log plot of the excess energy as
a function of time for five different quenches at
T=0.05.
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the instantaneous temperature is therefore small even at
early stages.

III. SIMULATIONS AND RESULTS

The model described in the preceding section where
7=1 and P=5 has been simulated using Nose-Hoover
molecular dynamics at four different temperatures. The
simulations were performed on a grid of 72 X 72 rotators,
and the Nose-Hoover parameter Q was set to 5. The
equations of motion were integrated by a fourth-order
Runge-Kutta scheme with a stepwise of 0.008, and the
simulations were run for 25000 timesteps on a T800
transputer-based MEIKO computer.

In Fig. 1 the instantaneous temperature is shown as a
function of time at a quench to T=0.1. The instantane-
ous temperature reaches equilibrium very fast as expect-
ed. (On all figures the time is measured in units of time
steps, and the temperature is measured in units of the
critical temperature. )

A well-known way (see, for example, Ref. 18) of finding
a measure for the average domain size l(t) at time t in a
quench at temperature T is by calculating the excess en-
ergy:

bE(r)=E(t) E, (T)=l '(t) .— (5)

Thus the growth exponent n can be found from the
slope of a log-log plot of b.E(t). Figure 2 shows a log-log
plot of the decay in excess energies from five different
quenches at T=0.1. It can be seen that the excess energy
yields a measure of the growth, which suppresses noise
very well. Another way of finding a measure is by using
the structure factor. The structure factor was measured,
but the results for the average domain size obtained from
the structure factor were found to be extremely sensitive
to noise compared to the excess energy method. Al-
though moments of the structure factor may be used to
suppress the noise, throughout this paper domain sizes
are measured using Eq. (5).

FIG. 3. Log-log plot of the excess energy as
a function of time obtained from the average of
five different quenches at each temperature.

In Fig. 3, a log-log plot of the average growth at
different temperatures is shown. Different phases of the
growth can be obtained from the figure. At early stages,
[log(t) & 2.5], domains are formed by thermalization
from a random configuration. At times [2.5
& log(t) & 3.0] the system changes towards the late stage
curvature driven growth (3.0 & t), where difFerent
domains "compete" with each other.

In Fig. 4 snapshots of the different phases in the
growth at T=0. 1 are shown. In these figures a spin is as-
sumed to belong to a wall if its angle deviates more than
m j15 from a ground state angle. The first two figures in
Fig. 4 show the development of the system in the early
stage. In the third figure the system is undergoing the
crossover to late stage growth. In the fourth figure a very
late stage of the system is shown.

~aa ID' ' ldaaaaa ~ l~ ~ R 5 0

-+ ~ ~
a% '% P'I

I"
RI ~ ~ 5

51$ ~aa.I ~I
y'

J I I ialrI~~S -mmiamZK

a a a j' S '

rmggyq, F

~,~~ s ql I ~ ~ I'"=-- Per
aIE::.~I' i

'Ski p.~
% «5 ~%6= =- --- ~a a N58 ~

~ ra aa- .—
I 5

II .II IL

~ I a
~ I W ~I

aa I

~ ~

IJir a

aa~
. .% ' IIU

IF
a

~ II I
'I ~

~ r
~ M ~

II I ~

, g, a ~ U ~

I I~ ~ ~~a % %I

s ~

'T
I ' ~

W I
I I

' ~===.
'%I 5

J
r~

FIG. 4. Snapshots of configuration at different times. Black
areas correspond to walls, whereas white and grey areas corre-
spond to the two different domains.
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the method of molecular dynamics, and thus that the
Monte Carlo time is in linear correspondence with real
time. In the zero temperature limit, however, there has
been found a crossover to a second universality class in
Monte Carlo experiments. ' This universality class is
characterized by a growth exponent of —,', and has not
been found here. The reason may be that the late stage
dynamical behavior is essentially different in the two
methods at very small temperatures, and thus that the
time measure may become different.
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