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Total-energy calculations within the local-density approximation (LDA) to the density-functional
theory are used to study the properties of tin under pressure. It is known experimentally that the cubic
diamond structure () is stable at zero pressure and low temperature, but the application of a very small
pressure, a few kbar, drives Sn into the B-Sn structure. The transition is accompanied by a large volume
reduction, =~20%. This is also found in the present calculations, and they further suggest that the 8
structure is stable for pressures up to =100 kbar, above which Sn transforms into a body-centered-
tetragonal phase. Experiments carried out at room temperature yield a transition pressure of 95 kbar,
and extrapolating the phase diagram from 0°C to 7=0 K the experimental zero-temperature value is es-
timated to be 120—130 kbar. At T'=0 and P~ 105 kbar the calculation predicts the structure to be bct
with ¢/a=0.91. At finite temperatures the ¢ /a ratio in this phase is expected to range from 0.85 to 1.06,
but with increasing pressure a predominance of structures with ¢ /a =1.00 is predicted. Above 300-400
kbar the structure may be characterized as bcc (i.e., ¢ /a =1.00 is clearly dominating), and for pressures
up to at least 2 Mbar the bce phase remains the phase with the lowest enthalpy when compared with «,
B, bet, fcc, sc, hep, dhep, and primitive hexagonal structures. The bect— bcc transition is of first order at
T =0. The pressure dependence of the I's and I'; phonons in 3-Sn is calculated, and agreement with re-
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cent Raman measurements is obtained.

I. INTRODUCTION

The electronic and structural properties of tin have
been of considerable interest to experimental! " as well
as theoretical® ~!° solid-state physics over several decades.
The reason is that its properties depend sensitively on
external parameters like temperature (7°) and pressure
(P), and this is rather unusual for an elemental solid. Tin
belongs to group IV of the periodic table and has as such,
like its partners C, Si, Ge, and Pb, a tendency to form sp3
bonds. But, going down rowwise, one finds that the sp>
bond order decreases'® and that the s —p promotion en-
ergy simultaneously increases. It so happens that Sn is at
the borderline where the gain in energy obtained by form-
ing sp> bonds hardly exceeds the energy cost associated
with the transfer of an electron from an s state to a p
state. Thus, above Sn, the group-IV elements (Ge, Si, and
C) tend to form strongly tetrahedrally bonded crystals,
whereas this is not the case below (Pb, which prefers the
fcc structure). Relativistic dehybridization'®!” plays an
important role in this connection, as also follows from
Fig. 1.

Tin does assume the diamond structure, but only at
low pressures and low temperatures. At atmospheric
pressure this a form is stable below 13°C (grey tin),
whereas the usual metallic “white tin” is the modification
observed at higher temperatures and pressures. Its crys-
tal structure is named after this tin phase, 3-Sn, which is
derived from a body-centered tetragonal Bravais lattice
and has two atoms in the basis, (0,0,0) and (a /2,0,c /4).
The atomic volume of 3-Sn is only 80% of that of a-Sn.
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Experiments® show that the B structure is stable for pres-
sures up to 95 kbar. Above this Sn tends to form the
body-centered cubic (bcc) structure. This, however, is
only achieved at very high pressures, above 400-500
kbar. In the pressure range between 95 and 400 kbar the
structure has been described as body-centered tetragonal
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FIG. 1. Group-IV elements: Calculated ratio §, between the
sp? bond formation energy and the s—p promotion energy cost
as a function of bond order, b (see Refs. 16 and 24). The calcu-
lations are relativistic, except the one labeled “NR Pb” which is
a fully nonrelativistic calculation for lead (further discussion in
Ref. 16).
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(bct). The bct structure has a large c¢/a ratio, =0.90.
This peculiarity, i.e., that Sn does not go directly to the
highly coordinated bcc structure, but assumes a bct
structure with large ¢ /a ratio, was explained'® as a conse-
quence of the splitting of the bcc H 5-level (just below the
Fermi level) under tetragonal strain. Olijnyk and Holzap-
fel® observed, in a certain pressure range, the coexistence
of bct and bec structures, and only above 500 kbar did
they characterize the samples as purely bce. This is in
agreement with the present calculations, which, however,
predict that a range of ¢ /a ratios should be observed (at
room temperature) also at lower pressures. The simul-
taneous occurrence of bct and bce structures is a conse-
quence of an extremely low barrier in total energy be-
tween them, a barrier that is much smaller than the
thermal energy kT at the temperature at which the ex-
periments were performed. The bcc structure appears to
be stable up to very high pressures, 1.2 Mbar at least, ac-
cording to the experiments by Desgreniers, Vohra, and
Ruoff.’® It has been suggested that a bcc—hcp transi-
tion might occur in Sn at very high pressures. The exper-
iments of Ref. 6 did not confirm this, but as pointed out
there, ® the experiments carried out at room temperature
could not exclude that such a transition could take place
at low temperatures. Our calculations suggest that the
becc—hep transition indeed cannot occur. Neither is a
transition to the fcc structure possible. We also include
the primitive cubic (sc) and hexagonal (phex) structures
as well as the double-hexagonal close packed (dhcp)
structure in the present study. Also these have higher
enthalpy than bcc-Sn at all positive pressures, at least up
to 2 Mbar, the upper pressure limit in our calculations.

The most detailed theoretical study of the structural
properties of Sn under pressure was published very re-
cently by Cheong and Chang.!* They performed calcula-
tions within the local-density approximation (LDA) to
the density functional theory (as we do also). They found
the transition sequence 3-Sn—bct—bce consistent with
experiment. The transition pressures, though, differ
somewhat from experimental values. This is not surpris-
ing in view of the very small values of the total-energy
differences involved. For such a sensitive system it is
especially important to perform calculations by means of
different methods. Our results are in many respects simi-
lar to those of Ref. 14, but differences exist in numerical
detail. The calculations of Ref. 14 indicate that the
becc—hep transition does occur, but the energy
differences involved are so small that numerical errors
may affect the conclusion. Cheong and Chang used the
norm-conserving ab initio pseudopotential method, and it
is possible that this becomes less accurate at strongly re-
duced volumes due to core overlap.

We apply the full-potential linear muffin-tin-orbital
(LMTO) method.?*~?? This has the advantage that a
very small basis set is needed, and its application is not
limited to cases without d and f states in the band struc-
ture. The LMTO basis set can be chosen such that the
accuracy where it can be tested (sp materials) is at least as
good as the ab initio pseudopotential calculations.

Some details of the calculation method are given in
Sec. II, and we discuss in particular the importance of
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treating the corelike Sn-4d states as valence-band states.
It is shown here that the energy of these states relative to
the other valence band is a critical parameter in deter-
mining delicate structural energy differences. Also, we
examine the effects of including the spin-orbit coupling
and, of particular interest to the applications of the
LMTO method, we examine the accuracy of the atomic-
sphere approximation?®® (ASA). The transition pressures
as well as characteristic parameters, such as lattice con-
stants, bulk moduli, ¢ /a ratios are given in Sec. III. The
calculated I'; and I's phonon frequencies and mode
Griineisen parameters are discussed in Sec. IV, whereas
Sec. V gives a short summary.

II. CALCULATIONAL METHOD

Some of the structural energy differences that we need
to calculate are very small, =1 mRy or less. This is, in
particular, the case for the “frozen-phonon” calculations
in Sec. V. This means that the calculational scheme must
be numerically very accurate. The pseudopotential
method as used in Ref. 14 is well suited for the LDA cal-
culations for Sn (and semiconductors). The plane-wave
basis set can be kept relatively small for these materials,
and the nonspherical charge distribution is accurately de-
scribed. We wish to use the linear muffin-tin-orbital
(LMTO) method? because it uses a small basis set. This
implies that the matrix dimensions are considerably
smaller than in the case of the pseudopotential scheme,
and we can therefore sample within reasonable comput-
ing times large numbers of points in k space. This
reduces Brillouin zone integration errors. A density of k
points corresponding to more than 500 points in the irre-
ducible bcc wedge is needed. The bee and bet structures
are calculated with the same (bct) zone in order to obtain
cancellation of numerical errors. The number of k points
was in all cases increased until the energy differences
could be considered sufficiently free of integration errors,
less than 10 uRy. The exchange-correlation terms are
calculated in the LDA using the parametrization by von
Barth and Hedin.?

The version of the LMTO method most frequently
used employs the atomic-sphere approximation (ASA).
Within the ASA, total energies are obtained from a func-
tional with potentials and charge densities that are made
spherically symmetric inside space-filling atomic spheres.
The ASA has been surprisingly successful for many appli-
cations, sometimes with inclusion of ‘“combined correc-
tion” terms,2° and, for open structures, with introduction
of “empty spheres.”?*~2° According to experience we ex-
pect that bct-bee structural energy differences, elastic
constants and phonon frequencies cannot be calculated
within the ASA, but require application of a method that
retains the nonspherical shape of the charge distribu-
tion.?”?® The results presented in the subsection below
confirm this. We therefore use the full-potential LMTO
method as implemented by Methfessel and co-
workers.2"?° This still contains “spheres,” but now only
to define the basis set, the region in which the envelope
functions are augmented. The spheres are also used as fix
surfaces in the interpolation?! of the nonspherical charge
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densities. But, apart from these applications of “spheres”
(which do not overlap), there are no shape approxima-
tions. In order to obtain sufficient accuracy the basis set
is expanded in comparison with usual LMTO-ASA calcu-
lations. The latter usually employs (for semiconductors)
s, p, and d states on real-atom sites as well as interstitial
positions.?>?* But only one type of envelope function?® is
used. This is for convenience taken to be the one corre-
sponding to the interstitial kinetic energy «? equal to
zero. The FP-LMTO basis set that we use here employs
up to three « values. On each Sn site we place s-, p-, and
d-basis functions corresponding to three, three, and two «
values, respectively. In cases (like a-Sn) where empty
spheres are used, no orbitals are, nevertheless, needed on
these sites. Consequently, the basis has 22 functions per
Sn atom, and empty spheres are only used to obtain
sufficient accuracy in the density fit between the “atoms.”
Basis-set convergence was checked by increasing their
size, and by varying the muffin-tin-radii. The result of
these convergence tests is that the basis set described
gives the accuracy needed for comparison of the various
high-pressure phases of Sn, and this agrees with the con-
clusion of a similar study of the structural and dynamical
properties of Si.%?

The relativistic shifts are included, but spin-orbit (SO)
coupling is omitted, i.e., the calculations are scalar rela-
tivistic. Spin-orbit coupling does not shift the bands, to
first order, it merely introduces level splittings. Thus, it
is usually assumed that it does not affect total energy cal-
culations noticeably. In some solids with heavy elements,
like Pb, there may be an effect.!® A preliminary investi-
gation®® indicated that the spin-orbit coupling does not
affect the structural energy differences at P =0, but in
view of the smallness of the energy differences we find it
necessary to calculate the effects over a wide pressure
range. This is done by performing fully Dirac->' and
scalar-relativistic ASA calculations for a- and -, as well
as bct-Sn.

A. ASA calculations, spin-orbit coupling

The structural differences in free energy versus pres-
sure are obtained by calculating the total energy E as a
function of volume for each of the structures considered,
derive the pressure P, and then the enthalpy,

H(P)=E +PV .

The minimum in the total-energy function, E (V), has to
be lowest for the a phase, but, in order to be consistent
with observations, only slightly lower than that of 5-Sn.
The scalar-relativistic results illustrated in Fig. 2 ob-
tained within the ASA already violates this requirement.
This is mainly due to a difference in accuracy between the
a calculations and the others in the ASA because the dia-
mond structure includes “empty spheres.” But it is seen
that the B minimum is slightly below that of the bcc
structure, and a B—bct transition is predicted. Figure 3
shows the enthalpy variation with pressure, and it follows
that the ASA scalar-relativistic calculation predicts the
transition to occur around 500 kbar, but the transition is
to bcc, i.e., ¢ /a =1.00, which is in contrast to observa-
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FIG. 2. Total energies of a-, B-, and bcc-Sn as functions of
volume as calculated by means of the scalar-relativistic LMTO-
ASA method. Two energy panels are used here; the Sn-4d
states are included in a separate lower-energy panel.

tions, and also in disagreement with the model calcula-
tion®? in Ref. 18. Considering the magnitude of the total
energy differences this error may at first not seem to be
serious, but it does in fact reflect a fundamental difficulty
in straight ASA calculations when applied to calculate
small energy changes associated with symmetry-breaking
distortions.?” For Sn this is illustrated in Fig. 4, where
the enthalpy, calculated within the ASA at the fixed pres-
sure P =200 kbar for the bct structure is plotted as a
function of c¢/a. A minimum close to c¢/a =0.90 is
indeed found, but the enthalpy curve does not exhibit the
proper symmetry around ¢ /a =1.00 (bcc). The total en-
ergy should predict the bcc to be locally stable, i.e., an ex-
tremum should appear at ¢ /a =1.00. This ASA error is
observed at all pressures, and the ASA thus fails to pre-
dict correctly the bct—bcc transition, and pure ASA
cannot yield proper elastic shear constants for bce-Sn. 2’
The entire calculation for a-, -, and bct-Sn was re-
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FIG. 3. Free energy of some bct phases of Sn, relative to f3-
Sn, as calculated by means of the scalar-relativistic LMTO-ASA
method.
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FIG. 4. LMTO-ASA calculation of the free energy (at T =0)
of bct-Sn as a function of the axial ¢ /a ratio. The pressure is
fixed at P =200 kbar. Note that the curve does not exhibit a lo-
cal extremum at ¢ /a = 1.

peated, still within the ASA, but using the Dirac-
relativistic LMTO. This means that spin-orbit (SO) cou-
pling is now also included, and not just as a perturbation.
Figure 5 shows that Sn-a still is above the B phase [Fig.
5(b)]. The B—bct transition occurs at a slightly higher
pressure than in the scalar-relativistic case. But the SO
correction to the transition pressure is marginal. Still,
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FIG. 5. Similar to Fig. 3 (i.e., still ASA), but using the
Dirac-relativistic LMTO method. The low-pressure regime is
shown in Fig. 3(b), which also includes the results for a-Sn.
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the ASA error is present that predicts a f—bcc transi-
tion rather than a transition to a tetragonal structure
with ¢ /a smaller than 1.

The calculations here show that for the purpose of cal-
culating the delicate total-energy differences associated
with the structural transformations in Sn we cannot rely
on the accuracy of the ASA. The comparison between
scalar- and Dirac-relativistic LMTO-ASA calculations
suggest that the effects of the spin-orbit coupling on the
predicted pressure-induced transitions are negligible.

The calculations of the structural properties of Sn
under pressure are therefore calculated by means of
the full-potential-linear-muffin-tin-orbital (FP-LMTO)
method, and spin-orbit coupling is omitted, i.e., the cal-
culations are scalar relativistic.

B. The Sn-4d states

The semicore like 4d-states lie low in energy, but reach
so far into the outer part of the atom that they should be
treated as ‘“‘band states” on the same footing as the other
valence states (compare also to the Ga-3d states? in
GaAs). It is not sufficient to treat them as relaxed core
states. The contribution to the cohesion from the 4d
states becomes increasingly important as pressure is ap-
plied. Due to the finite range over which the lineariza-
tion is accurate, this problem is usually treated in the
LMTO by introducing several “energy panels” (see Fig. 6
of Ref. 25). We therefore first used two panels [the ASA
calculations in subsection A4, as well as the FP-LMTO
calculation in Fig. 6(a)]. In a lower panel the lineariza-
tion energies [E (I)] are in the Sn-4d band center,
whereas E (d) in the upper energy panel is located in the
neighborhood of the bottom of the (unoccupied) 5d band
[E,(d) cannot be allowed to adjust freely to the center-
of-gravity of the occupied part of the upper valence
bands due to occurrence of nonphysical bands at certain
volumes]. Figure 6(a) shows this type of LMTO calcula-
tion yields very good relative positions of the energy-
volume curves for the 8- and a-Sn phases, but the total
energies for the bect and bee [only bee is shown in Fig.
6(a)] lie too low, their minima being between those of a-
and 3-Sn. Consequently, the energy of the 3 structure is
better than in the ASA, but this calculation still does not
reproduce the observed transition pressure sequence.
The reason is that the two-panel calculation for Sn un-
derestimates the effects of the hybridization between the
4d states and the top of the 5p band. One should there-
fore rather include the 4d states in the same panel as the
5p’s. Doing that, we obtain an a-f3-bct-bee sequence that
is consistent with experiment, but the minima of the
total-energy curves are far too far apart. This follows
from Fig. 6(b). The calculated transition pressures are
therefore too high. The minimum a-phase energy is now
5.1 mRy below that of 3-Sn. The pseudopotential calcu-
lations'* predict this energy difference to be 2.5 mRyj, still
too large when the relative stability (Sec. I) of the two
phases is considered. It appears that the one-panel
LMTO calculation overestimates the effects of hybridiza-
tion to the 4d states. This is a result® of the LDA which
yields too high lying 4d states due to incomplete cancella-
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tion of the self-interaction in the exchange term for these
very localized states. We do not perform a complete
self-interaction corrected (SIC) (Refs. 34 and 35) calcula-
tion, but decided rather to simulate the small changes in
the total energies by performing the LDA calculation
with the 4d’s somewhat downshifted. Thus, we do not in-
clude a SIC potential. Therefore, the shift that has to be
applied to the 4d energies is given by the orbital
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FIG. 6. Total energies (per atom) as functions of volume (per
atom) calculated by means of the full-potential LMTO method
for a-, B-, and bce-Sn. ¥V is the observed equilibrium volume
for a-Sn. (a) represents a two-panel calculation where the 4d
states are calculated in the lower-energy panel, and where the
upper panel couples to essentially the 5d states (see text). In (b)
the 4d’s are included in the same valence-band panel as the 5p’s,
i.e., the band structure calculations use only one panel. The re-
sults in (c) are obtained from a calculation like that in (b), ex-
cept for the fact that the 4d states have been downshifted by 1.5
eV. The total energies are in all cases given relative to the
minimum in the a phase.

exchange-correlation energy corrections, 8,,, as defined
in the work by Perdew and Zunger. 3

The order of magnitude of the shift can be obtained
simply by integrating the orbital density, n,,(r):

800 =0.2 [ 4, (r)**dr(Ry) .

Using a spherically symmetrized density, the crude es-
timate yields 8,, =2 eV, and we have chosen to downshift
the 4d’s by 1.5 eV. Other choices were examined also. A
2-eV shift gives essentially the same results as those ob-
tained with 1.5 eV, whereas downshifting the 4d’s by 3.0
eV appears to overestimate the correction. A detailed
fitting procedure is not necessary.>> The expression
above is also used to estimate the volume dependence of
the correction. Due to the strong localization this is very
small. We find

dInd,;/d nV=4X10"3,

and we can therefore use a volume-independent shift in
the pressure range considered here. The downshift of the
4d states by 1.5 eV is accomplished by redefining the
E (d) values in each iteration. This does not affect the
total energy differences calculated for the high-pressure
phases, but leads to an a-Sn energy curve that has its
minimum 0.7 mRy below that of £-Sn, and simultaneous-
ly the bce- and bcet-total-energy minima are lowered with
respect to those of a- and 3-Sn. This is seen in Fig. 6(c).

The more detailed study of the pressure-induced transi-
tions presented in Sec. III is based on calculations of the
latter type, i.e., the one-panel FP-LMTO with the 4d
states included as valence-band states, but downshifted
by 1.5 eV (110.25 mRy). Since the calculations in this
way do contain a feature of arbitrariness, we do not at-
tempt to include the SO corrections, estimated above,
and we also neglect corrections to the total-energy
differences due to different zero-point motion energies of
the various structures (except for the a—f3 transition,
where we make an estimate of this contribution). The
core-state shift does not affect the optimization of the ¢ /a
ratios for the bct and S phases.

ITI. PRESSURE-INDUCED TRANSITIONS

Total energies E (V) were obtained from self-consistent
LMTO calculations for 16-23 different volumes (¥) for
the a phase, the 5-Sn with ¢ /a ratios 0.52, 0.53, 0.54,
0.5518, and 0.56, respectively. The bct structure was
similarly calculated for a range of ¢ /a: 0.85, 0.88, 0.89,
0.90, 0.91, 0.92, 0.93, 0.95, 0.98, 1.00 (bcc), 1.02, and
1.04. Also, in order to examine a possible bcc— fcc tran-
sition, a series of calculations were made for c/a>1,
choosing the values 1.12, 1.20, 1.25, 1.30, 1.35, V2, 1.45,
and 1.50. The c/a ratio V2 makes the bct structure
identical to fcc. The hcp structure was also examined
over a range of c/a values allowing an optimization at
each pressure value. For each of these structures the
energy-volume relation was obtained by a least-squares fit
to six functions of volume (V): V~2*/3 n=0,...,5.
From these fits pressures (P) and bulk moduli (Bg) vs V
were deduced. Interpolation on a fine grid was then used
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to calculate Gibbs free energy at zero temperature, the
enthalpy H (P) as a function of the theoretical pressure.
The structure that at a given pressure has the lowest
enthalpy is the one that is stable (at T =0). The «a struc-
ture was studied for pressure up to 600 kbar, whereas the
others were followed to 2 Mbar.

The calculated properties of nine Sn phases at zero
pressure are listed in Table I (where we also compare to
some experimental data’®"3%). The theoretical equilibri-
um volume for a-Sn is 3% too large,39 and therefore the
calculations yield a theoretical bulk modulus, i.e., B, cal-
culated at the theoretical equilibrium volume, that is
smaller (447 kbar) than measured (530 kbar). The
theoretical value of B, at the experimental volume is 509
kbar, i.e., in good agreement with the experiment of Ref.
38. The value, 512 kbar, obtained in Ref. 14 for the bulk
modulus appears to agree better with experiment than
ours, but that result was obtained!* at a volume that is
too small, V' /V;=0.962.

The equilibrium volume of 3-Sn is found to be 20%
smaller than that of the a phase, in good agreement with
observations. Our calculated equilibrium volume for S3-
Sn is 2% larger than observed. The pseudopotential cal-
culation!* yielded a volume that is 6% too small. The ax-
ial ratio c¢ /a obtained by minimizing the total energy for
B-Sn is 0.541, in good agreement with experiment,*
0.546, as well as the calculation of Ref. 14, 0.545. The
pseudopotential calculation by Corkill, Garcia, and

TABLE 1. Sn. Zero-pressure properties. ¥V, is the experi-
mental equilibrium volume per atom of Sn in the a phase. It
corresponds to a lattice constant a,=6.483 A (Ref. 36). The
table lists the equilibrium volumes ¥V, bulk moduli B, (in kbar)
for nine structures, and the axial ratios ¢/a. The bulk moduli
are calculated at the theoretical equilibrium volumes, but in two
cases we also give (in parentheses) the values calculated at the
observed equilibrium volumes. Ej is the minimum total energy
(in mRy per atom) with the a structure as reference. ‘calc.”
refers to the present FP-LMTO calculation. The ¢ /a ratios for
the f3-, bct-, and hcp structures were calculated (total-energy
minimization), but those for phex and dhcp were chosen
without detailed optimization.

V/V, B, (kbar) c/a E, (mRy)
a 1.030 447 (509) 0.000 calc.
1.000? 530° expt.
B 0.801 544 (593) 0.541 0.719 calc.
0.784° 579° 549¢ 0.546° expt.
bct 0.778 520 0.90 5.052 calc.
bee 0.776 497 5.594 calc.
fce 0.791 508 5.262 calc.
N 0.842 484 7.071 calc.
hep 0.783 616 1.628 4.808 calc.
dhcp 0.788 517 3.266 5.220 calc.
phex 0.818 500 1.000 6.215 calc.

2Reference 36.
"Reference 38.
‘Reference 37.
9Reference 4.

°Reference 40.
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Cohen®? yielded the value 0.546. The Sn atom at the ori-
gin (0,0,0) has four neighbors at (+a/2,0,c/4) and
(0,+a/2,—c/4) and two neighbors at (0,0,%c¢). In an
“ideal” B structure these six atoms will all be nearest
neighbors, i.e., the coordination number is exactly 6. Set-
ting the distances equal, the ‘““ideal” ¢ /a ratio is therefore
(£)1/2=0.5164. The actual B-Sn structure thus differs
from the “ideal” one, and theory and experiment agree
with respect to the deviation. The calculations further
show (Fig. 7) that the c¢/a ratio does not change when
pressure is applied.

Since we wish to calculate the pressure dependence of
the phonon frequencies (Sec. IV), we must ensure that
our theoretical T =0 isotherm (P-V relation) agrees
sufficiently well with its experimental counterpart. Fig-
ure 8 shows a comparison between the theory and a Mur-
naghan equation with B,=520 kbar and B;=4. These
parameters result from the Murnaghan regression with
B, constrained to 4 for 8-Sn at 25°C using a large data
base (see Ref. 7, Table 4). The largest difference between
theory and the fit to experiments, Fig. 8, is 3 kbar in the
range 0-100 kbar, the pressure range in which the S
structure exists.

Table I also lists the calculated minimum total ener-
gies, E, all relative to that of the a phase. It is seen that
E, for bet with ¢/a =0.90 is lower than E for bcc-Sn.
Although the equilibrium volumes (V/V;,=0.778 and
0.776) are the same within computational accuracy, this
does not exclude that, with increasing pressure, Sn first
transforms to bet and later to the bee structure. The P-V
curves increase more rapidly with P in bct than bcc, a
fact that is also reflected in the larger bulk modulus of
bct-Sn than of the bee structure at equilibrium (Table I).

The main results of the calculated pressure-induced
structural transitions are summarized in Fig. 9 showing
the enthalpies of the a, 3, and a bct phase (¢/a =1 is
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FIG. 7. Calculated free energy (7 =0 K) of B-Sn at four
different pressures, 0, 50, 100, and 200 kbar, as functions of the
axial ratio, ¢/a. Symbols represent the calculated values, the
curves second-order least-squares fits. Within the accuracy of
the calculation no change with pressure is found for the c/a
value corresponding to the energy minimum.
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FIG. 8. Zero-temperature isotherms of 3-Sn, pressure P vs
volume P [normalized by the B-phase equilibrium volume,
Vo(B)]. The full line represents the present theory, dashed a
Murnaghan fit to experiments (see text), and the points are the
“raw” experimental data from Ref. 7.

chosen here). The calculation shows that the a—f tran-
sition should occur at 2 kbar, and the S—bct at 104
kbar. The latter will be examined in more detail below,
but this first result is close to the experimental value of
the transition pressure, 95 kbar, obtained® at room tem-
perature. The experimental transition pressure at 7"=0
K is estimated to be =~ 130 kbar, or slightly less, (see Sec.
V). The a—pf transition pressure is very low, as one
should expect. Its actual value, though, depends on
zero-point-motion corrections, and at finite temperatures,
of course on entropy contributions. The contribution to
the total energy from the zero-point motion may be es-
timated as E,=9/8kz0,, where 0, is the Debye temper-
ature. Experimental*"*? values of 6, are for the a and
the B phases 220 and 195 K, respectively (at zero pres-
sure). The zero-point correction will, therefore, lower the
energy minimum of 3-Sn by =0.16 mRy with respect to
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FIG. 9. Enthalpies for a-, -, bct-Sn (bcc) vs (theoretical)
pressure. The 3 phase is taken as a reference. The insert shows
the regime close to P =0 on an expanded scale.
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that of a-Sn. Still, the a phase has the lowest free energy
at zero pressure and temperature.

The axial ratio of the B8 phase does not, as mentioned
above, change within the pressure range where this struc-
ture is stable. But the bct structure, on the other hand,
does change its ¢ /a ratio when P is increased. In Figs.
10(a)-(c) we show how the calculated enthalpy at pres-
sures ranging from O to 500 kbar varies with c/a. At
P =0 [Fig. 10(a)] the optimized value of ¢ /a is 0.90. Just
at the transition pressure, P =100 kbar in Fig. 10(b), we
find two minima in the enthalpy curve (note the similarity
with the results in Ref. 14, Fig. 2, obtained for a some-
what more compressed lattice). At this pressure the
slightly more stable bct structure (¢ /a =0.91) is separat-
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FIG. 10. BCT-Sn. Enthalpy vs axial ratio, c¢/a, at various
pressures, P. (a) P =0; (b) 100 kbar; (c) 500 kbar. The curves
(spline fit) are drawn through the calculated points marked, and
serve only as a guide for the eye. The numerical scatter in the
calculations is £0.02 mRy. The curves shown here do not have
a common energy reference.
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ed from the bce minimum (¢ /a =1.0) by a small energy
barrier, =0.2 mRy. This is, at room temperatures, much
smaller than a thermal energy, = 1.8 mRy, and we would
therefore expect the “bct” phase of Sn to consist of a
mixture of bct crystals with c¢/a ranging from maybe
~0.85 to a value above 1.0. As the pressure is increased
we find that the bcc minimum drops with respect to the
one near ¢ /a =0.9, and above 400 kbar we find only one
minimum in the enthalpy versus c¢/a curves [Fig. 10(c)].
Thus, at finite temperatures Sn is for pressures above
=~ 100 kbar expected to have bct structures with ¢ /a ra-
tios covering a finite range. At high pressures the bcc
structure (¢ /a =1) will prevail.

The calculations show that the transition (at 7 =0)
from the bct to the bee structure is not continuous. The
¢ /a ratio does increase with pressure, but it can never be
forced above!® 0.96 without jumping abruptly to 1.00
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FIG. 11. BCT-Sn. Enthalpy vs axial ratio, ¢ /a > 1, at vari-
ous pressures P. (a) P=100; (b) 500 kbar; (c) —45 kbar.
c/a =V"2 corresponds to the fcc structure.
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FIG. 12. Enthalpy differences, bce-Sn is reference, for bet
structures with different c¢ /a ratios > 1.0. (The calculation was,

for ¢/a =1.00, 1.02, and 1.04 extended to 2 Mbar, but the
enthalpy for ¢ /a =1.00 remains the lowest.)

(bce). The calculated rate of increase of ¢ /a in the bet
phase is, close to P =100 kbar, d(c/a)/dP = 10~4
kbar~!. The observed rate is almost twice as large at this
pressure.® The simple model of Ref. 18 yields a pressure
coefficient of ¢ /a that is close to the result of the present
full calculation.

The calculations were extended to ¢ /a > 1 as illustrat-
ed in Fig. 11. A weak local minimum in the free energy
is found for ¢ /a =V'2, the fcc structure, but there is no
positive value of the pressure for which fcc-Sn would
have a lower energy than bcc-Sn. Rather [see Fig. 11(c)]
a slight expansion is needed to make fcc more stable.
Figure 12 summarizes the free-energy calculations of
bet-Sn for ¢ /a ratios above 1.00 (bec). The bee structure
remains stable up to very high pressures against tetrago-
nal distortions.

The hexagonal close packed (hcp) structure of Sn was
examined as well. The axial c /a ratio varies slightly with
pressure (Fig. 13). Our calculations predict that the c¢/a
ratio in the hcp phase should be slightly smaller than the
ideal 1.633, whereas Ref. 13 suggests that it should be be-
tween 1.63 and 1.65. In Fig. 14 we show the calculated
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FIG. 13. Hypothetical hcp structure of Sn: Total-energy op-
timized c¢ /a ratio versus (calculated) pressure.
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FIG. 14. Calculated enthalpies of bcc, fcc, hep, sc, and dhep
phases of Sn as functions of pressure. The bcc phase has been
taken as a reference.

enthalpies of simple cubic (sc), primitive hexagonal
(phex), fcc, hep (¢/a=1.63 chosen here), double-
hexagonal close packed (dhcp) phase of tin, all relative to
bee-Sn. It follows that no high-pressure transition from
bece to any of these other structures is predicted (actually,
the calculations covered pressures up to 2 Mbar).

IV. T'; and I's PHONONS IN B-TIN

In this section we describe the calculation of the
optical-phonon frequencies of S-Sn in the long-
wavelength limit, and the results are compared to those
obtained by inelastic neutron scattering*® and to recent
Raman measurements.® At the Brillouin zone center the
modes are of I'; and I's (doubly degenerate) symmetry,
respectively. Details of the symmetry properties are
given in Ref. 44.

The phonon frequencies are derived from “frozen-
phonon” calculations, i.e., a series of distortions () con-
sistent with the symmetry of the mode considered are in-
troduced, and the total energy calculated. For each of
the modes we chose seven distortions, all displacements
being less than 1% of the lattice parameter a. For each
of these distortions we calculated the total energies for 18
volumes, yielding for each distortion E(V,u) and P(V)
relations using the least-squares fitting described in the
preceding section. The phonon frequencies as functions
of V are subsequently derived by making a polynomial fit
in u to E(V,u). The coefficient of the second-order term
yields the frequency.

The calculated frequencies are at P =0, v(I';)=45
cm™!, and v(I's)=130 cm™!, respectively. These are
both higher than determined by the Raman experiment,®
42.44 and 126.60 cm ™!, but slightly lower than the neu-
tron scattering results,*> 46.5 and 132.5 cm~!. The cal-
culated pressure dependence of the phonon frequencies is
compared to the Raman results in Fig. 15. An excellent
agreement is found, although the sublinearity of the I's
mode is somewhat weaker in the theory than the experi-
ment. It was found that, within experimental error, the
pressure dependence could be expressed (with P in kbar
and vincm ') as®
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FIG. 15. Frequencies of the I'; and I's phonon modes in S3-
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ment of Ref. 8. The present theoretical results are shown by the
curves without data points.
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w(['3)=42.4440.1179P —0.436 X 10 3P,
w(I'5)=126.60+0.5517P —1.219 X 107 3P .
Similar fits made to the calculations yield
w(T';)=45.08+0.1460P —0.538 X 10~ 3P2 |
v(I'5)=129.90+0.5349P —0.512X 107 3P2 .

The mode Griineisen parameters were also calculated,
and in Fig. 16 we compare to the results obtained® from
the Raman experimental data. The agreement is best for
the I'; mode. Theory predicts that the Griineisen param-
eter for I'; for very large compressions will go negative,
but the pressure where this would occur is way beyond
the B—bct transition, 95 kbar (where the experimental
data in Fig. 16 end). Such behavior has been found?® in
the B-Sn phase of Ge.

V. CONCLUSIONS

We have performed theoretical calculations, using the
density functional theory, of the structural properties of
tin under pressure. They yield the correct transition se-
quence, a—fB—bct—bcec. Neither fcc nor hep struc-
tures are expected as stable phases even at very high pres-
sures. The calculated transition pressures agree well with
experiments, and so do the optimized axial ratios (c /a)
for the B and bct structures. The calculated pressure
coefficient for ¢ /a in the bct structure is smaller than ob-
served, but it has the correct sign. The smallness of the
energy barrier between bct-Sn with ¢ /a =0.9 and the bec
structure suggests that at room temperature a range of
¢ /a values should be observed for the bct phase. This
was observed, ® but mainly at the high end of the pressure
range in which bcet is found. At 7=0 and P~ 105 kbar
the calculation predicts the structure to be bct with
c¢/a =0.91 (as observed, Ref. 6). The transition pressure
obtained in Ref. 14 is higher, 190 kbar. Corkill, Garcia,
and Cohen! find an even larger value, 250 kbar, but esti-
mate the zero-point vibrations to reduce the theoretical
transition pressure to ~235 kbar. A value larger than
the 95 kbar as measured® at room temperature is indeed
expected at T'=0 K, which is most relevant for compar-
ison to the calculations. From the phase diagram in Ref.
7 we estimate the “experimental” transition pressure to
be =130 kbar (an upper limit, in fact) at zero tempera-
ture. The data in Ref. 7 agree with the experiment of
Ref. 6 at room temperature. The zero-point motion con-
tribution needs to be calculated, but if we assume that the
estimate of the correction made in Ref. 13 is realistic, we
conclude that the errors in the calculated transition pres-
sure are similar, concerning magnitude, in Ref. 14 and
our work (but the signs are opposite). An estimate based
on the earlier phase diagram of Sn presented by Jayara-
man, Klement, and Kennedy** suggests that the transi-
tion at 7 =0 K to the Sn-II phase should occur between
170 and 190 kbar. This would agree very well with the
theory of Ref. 14, but, on the other hand, the room-
temperature value of the transition pressure used in Ref.
45 appears to be too high, 113-115 kbar, measured by
Jamieson.*>*® The calculation of Ref. 13 predicts that
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¢ /a varies from 0.87 to 0.90 for pressures between 100
and 500 kbar. These ¢ /a values are slightly smaller than
our results and those measured.

The reason why 3-Sn does not transform directly into
the bec structure was explained elsewhere!® as being re-
lated to the splitting of the H 5 level just below the Fermi
level when a tetragonal strain is applied to bce-Sn. In
bee-Sn the triply degenerate Hys (py,p,,p,) state is occu-
pied, but the strain along % splits it into (p,,p,) and p,.
The latter moves above the Fermi level, and the electrons
left over from its depopulation are redistributed over s -p
states at Ep (which then increases slightly). The energy
gained by this level splitting is opposed in part by a shift
in the center-of-gravity of the p,, p,, and p, states. In a
“frozen-potential” approach it is the competition be-
tween these two one-electron energy changes that deter-
mine the relative stability of the bct and bece structures as
well as the value of ¢ /a in bct-Sn. !'® By means of adjust-
ment of one single parameter the simple model could be
tuned to yield accurate numerical values of ¢ /a and the
bct—bcec transition pressure. This model yielded a pres-
sure coefficient for ¢ /a close to the one obtained from the
full calculation here, i.e., still smaller in magnitude than
observed.

The pressure-volume relation (the 7'=0 isotherm) of
B-Sn is in close agreement with experimental data, and
the zone-center optical phonon modes vary with pressure
in excellent agreement with recent Raman measurements.

The actual calculations were performed by means of
the full-potential version of the LMTO method. It has
been demonstrated that the simplest version of the
LMTO, the atomic-sphere-approximation (ASA), is not
sufficiently accurate for calculating some of the tiny
total-energy differences. It is interesting, though, to ob-
serve that errors in the ASA total energies in several
cases are quite small, and for bct-Sn even ASA predicts
local minima close to ¢ /a =0.9. In this phase of Sn the
major ASA error occurs for ¢ /a near 1.0 (bcc) where it
fails to yield proper lattice stability. This error is associ-
ated with the improper calculation of the electrostatic in-
teractions in the outer parts of the atomic spheres when
spherically symmetrized charge densities are used.?”*
The fact that ASA yields the (meta)stability of the bct
structure near ¢ /a =0.9 reflects that this feature is ener-
getically favored by a minimum in the one-electron ener-
gy sum alone. This is consistent with the applicability of
the simple model of Ref. 18 (the band structure). *

An extension of the calculations to include atomic and
dynamic properties to tin oxides (SnO and SnO,) will be
presented elsewhere.*® Also in those cases agreement
with phonon frequencies is found for several modes ob-
served by Raman spectroscopy.
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