
PHYSICAL REVIEW B VOLUME 48, NUMBER 8 15 AUGUST 1993-II

Simple formula for the surface energy by a shifted-step-potential approximation
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The jelliumlike free-electron model is used, and the efFective one-electron potential m & is ap-
proximated to be the step-function which is shifted to satisfy the neutrality of the charge. The
eigenfunctions can be obtained in analytic form. Although not self-consistent, the calculated dis-

tribution of the electron density is very similar to the self-consistent field (SCF) jellium results by

Lang and Kohn. A simple formula for the surface energy is obtained. The surface energy is given as

a function of the Fermi energy and the work function. The formula suggests that the surface energy
is sensitive to the Fermi energy and is not sensitive to the work function, i.e., the surface energy is

approximately in proportion to the fourth power of the Fermi energy. The calculated surface energy

approaches the SCF jellium results by Lang et al. and the structureless pseudopotential results by
Perdew for small electron density.

I. INTRODUCTION

Simple 8p-bonded metals are nearly-free-electron sys-
tems. The metals are often described theoretically by the
jellium model, for a systematic understanding of mate-
rial properties at the low-electron-density limit, although
some corrections are required to obtain realistic results
at higher density (r, ( 4).i Perdew, Tran, and Smith2
propose perhaps the simplest model viable for all r, by
using a structureless pseudopotential model.

This paper is based on the general theory of the in-
homogeneous electron gas. Consider the case with semi-
in6nite positive background. The total energy per va-
lence electron in the bulk is written as

H = Hk+H, +H.,~„,
where HI, is the kinetic energy of the electron and H„,
is the exchange and correlation contributions. H tb, in-
cludes the external potential and the electrostatic poten-
tial energy in the theory by Kohn and Sham. In the the-
ory by Perdew, Tran, and Smith, the H &p, includes the
average Madelung energy, the band-structure energy, and
the non-Coulombic contribution of the pseudopotential.
In any approximation, an effective one-electron potential
is defined and the barrier height of the potential can be
obtained as a function of the interaction energies stated
above.

In turn, if the work function C is given as an empirical
parameter, the effective potential height can be given by
C + c~, where r~ is the Fermi energy. Furthermore, as-
suming that the effective potential can be approximated
to a step function, the electronic wave functions are writ-
ten in simple analytic form. In Sec. III, we present a
comparison between the results and the self-consistent
field (SCF) results by Lang and Kohn. The results are
not self-consistent. However, one can obtain the more
simpli6ed formula on the trend of the surface energy.

The simplicity of this approximation proposes a rough
understanding of the relation between the surface energy
p„ the Fermi energy c~, and the work function I .

II. A SHIFTED STEP-POTENTIAL
AP PROXIMATION

The jelliumlike free-electron model with shifted step
potential is used. If the approximation of Lang and
Kohn would be used (also see Ref. 4), the effective one-
electron potential energy for a state would be defined
self-consistently from the electron number density.

In order to simplify and obtain the analytic form of
the electronic eigenfunctions, the effective potential v g is
approximated to be the step function as shown in Fig. 1.
The o; is de6ned so that the electronic distribution obeys
the neutrality condition. The potential energy is

0 (x(o.)u.tr(x) = ~ ( )

V =ay +4,

Potential energy jeff jeff ))

F.L.

0/

FIG. 1. Relation between the electron work function 4,
the Fermi energy c&, and the efFective one-electron potential
energy.

where V is the total barrier height, assuming that the
Fermi energy c~ and the work function 4 are known.

Now, it is not necessary that the one-electron poten-
tial be written as the functional of the electron density.
We take the assumption that the effective one-electron
potential can be written as Eq. (2) on the basis of one-
electron approximation. The exchange, correlation, and
other contributions are included in the v ff.

The solution of the wave equation,
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'R = — V' + v, tr(x),
5

2m

can be written following Lang and Kohn:

4 = A4 C„C, = A@ exp( —ik„y —ik, z),
sin [k(x —cr) + b(k)] (x & n)
0 (x -+ oo), (5)

and

(3b)
where

sin(2vrKX + b) (X &0)

exp( —2~xv'r —K') (0 & X),

) K = P )
kF EF

(
!

h = h(r, K) = arctan!
P —K

(?)

(8)

+*(~-) = ~*(~+),

z
*(~—) =

z *(~+) . (6b)

Now, the solution of Eq. (3a) can be written in analytic
fol m)

where the eigenfunction [Eq. (5)] and its difFerential
should be continuous at the singularity x = o. , i.e., The coeKcients of Eq. (?) are defined from the electron

density of the bulk. The electron density is

n(x) = Ki(X, r),

kwhere the 3F, is the bulk density. The relative electron
density Ki(X, r) is the function of X and r [see Eq. (8)],

(1 —r. ) sin (2~KX+ h)dK (X & 0)
K, (xr) =

q

3
2T (1 —r. )r. exp( —4vrx/r —Ir2)dr. (0 & X) .

The surface energy p, of a crystal is the energy required, per unit area of new surface formed, to split the crystal
in two along a plane. p, can be calculated from the total energy change in the splitting process.

The total energy per valence electron is the observable of the Hamiltonian. By using the Hamiltonian in Eq. (aa),
the distribution of the energy density is written

4*'R4 d3A:
20

Penergy
&sphere

n2I '
,~ K, (x,.), (i2)

where

K2(x, r) = g

(1 —Ir, ) sin (2vrKX+ b)dK (X &0)

5
4). (1 —K )r exp( —4vrx/r —lc )dK (0 & X) .

A2A:
K, (r), (14)

where

—a/AF
K, (r) = (K, —1)dX+

a/AF
K,dX . (15)

The total energy is the integral of Eq. (12) over the space.
So, the surface energy is given as
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As shown in Eq. (14) with Eqs. (8) and (2b), the surface
energy p, is expressed as a function of Fermi energy cF
and work function 4. Exchange, correlation, and other
contributions are obscurely enclosed in these material pa-
rameters.
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Distance x/X, F

F)G. 2. Electron-density dsstrsbutron near metal surface for

„, = 5, r = 2.35 (the solid line), which corresponds to SCF
jellium result by Lang and Kohn (the broken line).
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III. CALCULATED RESULTS AND DISCUSSION

Equation (11) gives the relative eleE e re ative electron density as a
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IV. CONCLUSION
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