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Optical modes in GaAs-based quantum wells
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This paper describes some results obtained by using a theoretical formulation of a long-wave
phenomenological model for polar optical phonons in heterostructures which takes full account of
(i) the coupling between the mechanical vibration u and the electrostatic potential ¢, (ii) the fact
that u in general has longitudinal and transverse parts, and (iii) the simultaneous satisfaction of all
mechanical and electrostatic matching boundary conditions. The system of simultaneous differential

equations thus established is explicitly solved without approximations.

Two distinct classes of

solutions are obtained. One consists of shear horizontal purely mechanical vibrations. The modes
of the other class have mixed character and describe coupled electrical and mechanical vibrations.
The results compare very well with experimental evidence and have the correct symmetry pattern.

Polar optical modes play an important role in electron-
phonon processes such as scattering rates, polaron effects,
and resonant Raman scattering! 3 in quantum wells and
superlattices. Besides microscopic calculations® it would
be desirable to have a satisfactory phenomenological
model to study the long-wave limit, to which experi-
mental evidence is essentially circumscribed. Indeed,
considerable theoretical effort has been devoted to this
purpose® ! with substantial differences among the vari-
ous proposals. The issue concerns the matching bound-
ary conditions and, as stressed recently,'? also the math-
ematical structure of the differential equations which em-
body the physical model.

A formulation of the basic phenomenological model
from which all further developments stem,!® which takes
full account of all the couplings between electrical and
mechanical excitations and accounts for all matching
boundary conditions, mechanical and electrical, without
ad hoc assumptions, has been presented elsewhere.!* On
this basis one can study the single heterojunction, where
all the essential physics arise, and obtain a satisfactory
understanding of the nature and spectral properties of

the solution thus obtained.!? In particular one can then

identify the interface modes as essentially electrical in
nature, thus explaining why interface modes can be ac-
counted for by the dielectric models which, on the other
hand, literally applied fail to explain the experimental
symmetry pattern observed in quantum wells.’® The me-
chanical vibration amplitude has been treated!® in a way
which is similar in spirit'? but different in detail as it
depends on whether Awo—the difference in resonant fre-
quency at zero wavelengths for the two materials—is
large or small. When it is large, for instance, the am-
plitude can be assumed to vanish at some chosen plane.
The relation with the model of'® and of various other
models proposed in the literature is discussed in Refs. 12
and 14. Here we present some results obtained when the
formulation presented in Ref. 14 and applied in Ref. 12
is used to study a quantum well.
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The problem is to solve a system of four coupled dif-
ferential equations for three mechanical vibration am-
plitudes (ug,uy,u,) and one “electrical amplitude” ¢,
that is, the electrostatic potential, for heterostructures.
We choose the geometry so that z is normal to the sur-
faces and k, the two-dimensional wave vector parallel to
the surfaces, is in the y direction. One shear horizontal
mode with amplitude u,(z)exp(iky), purely transverse
and mechanical, propagating in the y direction is then
decoupled from the rest. Thus the problem is to study
a field consisting of excitations in which the three am-
plitudes (uy,u,, ¢) are coupled and the normal modes of
this field have mixed electrical and mechanical character.
Let u denote the vector (uy,u;). This in general consists
of a longitudinal part uz(V X ug = 0) and a transverse
part up(V -ur = 0). The matching boundary conditions
couple ur to ur, which is coupled to ¢. Thus the elec-
trical excitation ¢ drives the full mechanical excitation
u and vice versa.

A convenient way to study this problem, which allows
for an easy separate identification of the electrical and
mechanical spectral strength of the normal modes, is pro-
vided by the surface Green-function matching (SGFM)
method, which has been described in detail elsewhere.®
This yields the full Green function G, of the matched
system in terms of the bulk Green functions of the con-
stituent media. Knowing G, from this one can obtain
the dispersion relations w(k) for the normal modes of the
system and all spectral functions of interest. The SGFM
analysis of the matching problem at one interface!? is
readily extended to the simultaneous matching at two
coupled interfaces at finite distance.!” The algebra for
the present calculations was carried out by means of
MATHEMATICA,'® with which closed-form expressions are
obtained for the elements of the full Green function.
Mass density and the background dielectric constants
were obtained from a linear interpolation of the value for
the pure materials—AlAs and GaAs—according to Ref.
19. If we study the matching to GaAs then we assign

5672 ©1993 The American Physical Society



48 BRIEF REPORTS 5673

to the ternary alloy the values of the frequencies for the
LO and TO modes found experimentally for the GaAs-
like modes in this alloy.!® The 8; and Br parameters
giving the quadratic dispersion for the bulk modes were
estimated from the experimental curves of Ref. 20.

We consider a GaAs well of width d = 20 A with
Alg.9Gag.1 As outside. Figure 1 shows the dispersion re-
lations for the GaAs eigenmodes. Since all the modes
are different eigenmodes of the same eigenvalue problem
we can label them by a discrete label m = 1,2,.... We
adscribe m = 1 to the highest mode, so m grows on
going downwards in frequency. We have concentrated
mainly in the range of k from zero to values of order 107
cm™!, which represent a very small fraction of the Bril-
louin zone and yet span the range of physical interest.
We stress that the labeling of the eigenmodes by increas-
ing m on moving downwards holds for all k, either before
or after the crossovers seen in the figure. The frequency
eigenvalues are in fairly good agreement with experimen-
tal data,'® especially in their spacings, with only a small
systematic difference in the absolute value, which could
be easily accounted for by a small inaccuracy in the de-
termination of the well width.

Before discussing the details of the crossover of modes
1 and 2 in Fig. 1, it is interesting to see the physical na-
ture of the normal modes in this range and we note that
for k < K. (the crossover value of ) the first mode is the
more dispersive, while for k > k. the first mode is almost
flat and the more dispersive branch has become the mode
m = 2. The clearest way to characterize these modes is to
separate out from the local density of states the spectral
strengths corresponding to the electrical and mechani-
cal excitations. In the present calculation this is done
by separating out the contribution of the fourth diagonal
element of the Green function G,. Figure 2 shows the
results for the first two modes in the neighborhood of k..
Electrical and mechanical spectral strengths are given for
£k=11x10cm™! < k. and Kk = 1.4 x 106 cm™! > k..
For k < k. [Fig. 2(a)] the electrical spectral strength is
practically all in the first mode, while the mechanical
spectral strength [Fig. 2(b)] is practically all in the sec-
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FIG. 1. Dispersion relations for the GaAs eigenmodes (in
cm™!) and varying & (in 10° cm™'). Note the splitting of the
degeneracy of the modes m = 6 and 7 for xk # 0.
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FIG. 2. (a) and (c) Electrical and (b) and (d) mechanical
spectral strengths for the upper and lower modes in the im-
mediate neighborhood of the crossover between modes m =1
and m = 2. (a) and (b) £ = 1.1 x 10° cm™" and (c) and (d)
k = 1.4 x 10 cm™!. Spectral strengths in arbitrary units and

win cm™t.

ond mode. Thus the first mode for very low values of
consists mostly of an electrical excitation, while the sec-
ond mode is mostly mechanical in origin, although both
have, qualitatively speaking, a mixed character. This is
transferred between the two modes for kK > k., where it is
now the first mode that is mostly mechanical [Fig. 2(d)]
while the second mode is mostly electrical [Fig. 2(c)].
Figure 3 shows the spatial dependence of u, and ¢
for the first three modes when k£ = 2 x 106 cm™! > k..
There is a nonvanishing amplitude u,, which is never-
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FIG. 3.
left-hand side) and electrical (¢, right-hand side) amplitudes
for Kk = 2 x 10° cm™?, modes m = 1,2,3. The mode number
is indicated in brackets and the abscissa z is in angstroms.
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theless much smaller and is not displayed. These modes
are no longer strictly longitudinal, as expected for « # 0
when matching at interfaces is involved. However, ex-
plicit evaluation shows that |V x u] is still much smaller
than |V - ul, so these modes are still in practice quasi-L
for this low value of k.

Figures 2 and 3 show the transfer of character which
takes place at the crossover of the first two modes. Both
the parity of ¢ and the predominance of electrical or
mechanical character are interchanged. If E/O denotes
even/odd z dependence, then the parity sequence for ¢,
to 5 is O,E,0,FE,0 when k < k. and it changes to
E,0,0,E,0O when & > k..

Returning now to Fig. 1 we note that starting from
K = 0 there are two very dispersive modes which even-
tually cut across the rest of the spectrum. The lower
one (m = 6) originates the second crossover with mode
m = 5 for low k. On looking at the entire system of eigen-
mode branches there are two, for every x, which have
predominantly electrical character. In the upper part of
the spectrum this is m = 1 for kK < k. and m = 2 for
K > K¢, as has just been discussed and illustrated in Fig.
2. A similar situation holds about the lowest crossover,
between modes 5 and 6, among which the electrical and
mechanical spectral strengths are also transferred in the
manner of Fig. 2.

It is in order to remark that while the physical system
under study—the quantum well—is symmetric, the dif-
ferential system under study is not invariant under the
reflection z — —z. The vibration amplitude u, is decou-
pled from the other amplitudes, thus only u,, u,, and
¢ are related. It follows from the field equations that
uy(z) and @(z) have always the parity opposite to that
of u,(z), a fact which also shows in Fig. 2. Thus we
can still compare the parities of different modes on the
understanding that this refers only to one of the am-
plitudes. More specifically, we shall refer only to the
parity of ¢(z). In fact, for k # 0 the L and T polariza-
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tions are all in principle coupled in all the normal mode
solutions. Consequently, mode mixing also takes place
between modes 1 and 2, on one hand, and 5 and 6, on
the other hand. The transfer of character which takes
place at these crossovers occurs very sharply and requires
working with careful accuracy in these frequency ranges.
In practice the situation is significantly different in the
crossover between modes 5 and 6, due to the fact that
at kK = 0 mode 5 is totally L and mode 6 is totally T.
In the crossover a strong mixing of the L and T polar-
izations takes place, verified in our results by evaluation
of |V x u| and |V - u|, which are then comparable. On
moving backwards from k. towards kK — 0 we find that
the mixture of L and T character is still significant, so
that even below . mode 5 soon ceases to be quasi-L and
mode 6 to be quasi-T.

Finally, the model also yields the transverse modes
m = 7,8,9,10. These are strictly T for all k, as they have
only the amplitude u,, which is factored out in the full
4x4 determinant. These modes are purely mechanical
and correspond to the shear horizontal wave one always
encounters in the theory of elastic surface waves.'” The
parity sequence of u,(z) for these modes is E,O, E,....

Thus, inasmuch as one accepts a phenomenological
model to study long waves, we have obtained a satis-
factory solution which satisfies all simultaneous match-
ing boundary conditions without conflict and appears to
compare well with experimental evidence and provides a
simple basis for the study of electron-phonon interaction
in heterostructures.
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