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The phase diagram of one-dimensional dimerized ¢-J model is investigated by exact-diagonalization,
quantum tranfer-matrix, and quantum Monte Carlo methods. The spin gap persists near but away from
half-filling as well as in a strongly dimerized region, while the charge can be described as a Tomonaga-
Luttinger liquid in the entire region. The spin-gap region extends to the weak-dimerization region as
well as to the Haldane-gap region. Critical exponents of various correlation functions are discussed.
The pairing correlation shows remarkable enhancement and by far dominates over other correlations
near half-filling. At quarter filling, charge-gap formation is observed.

I. INTRODUCTION

More than one decade ago, the phase diagram of the
one-dimensional (1D) extended Hubbard model was ob-
tained by consideration of both exact solutions of the
model for some special parameters and the weak-
coupling renormalization-group analysis known as g-
ology.? The 1D extended Hubbard model describes a
class of strongly correlated systems and is defined by the
following Hamiltonian:

H=—t 3 (cle;ptHe)+U I nyn +V 3 nin; .
(ij),o i (ij)

(1.1)

In the continuum limit, it is related to the Fermi-gas
model. The Fermi-gas model has two fixed points, name-
ly the Tomonaga-Luttinger (TL) fixed point and the
Luther-Emery (LE) fixed point. The TL fixed point
governs the positive backward-scattering region (g, >0)
and the LE region is represented by g, <0 to which the
Luther-Emery exact solution® belongs. The essential
difference between the TL and LE regions lies in the spin
degrees of freedom. The TL region is characterized by
the so-called TL liquid both for spin and charge degrees
of freedom, while in the LE region, the charge is de-
scribed by the TL liquid but the spin degrees of freedom
have a gap. In terms of the extended Hubbard model
away from half-filling, the TL region corresponds to
U>2V.

Recently the critical exponent of the TL liquid in the
TL region has been determined for the entire range of in-
teraction strength in the Hubbard model with the help of
the Bethe ansatz solution with an assumption based on
conformal field theory.*> The critical exponent of the su-
persymmetric ¢-J model has also been determined in a
similar way.®

From these analyses, the previous speculation on the
TL fixed point for the extended Hubbard model has been
confirmed on a firmer basis. The extended Hubbard
model with U > 2V and the ¢-J model, except at very low
filling, show similar behavior with both gapless spin and
charge degrees of freedom. In a region of the U-V or t-J
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diagram, triplet pairing is the most dominant correlation
for the uniform part followed by logarithmically weaker
singlet pairing correlation. This region is sandwiched by
the spin-density-wave (SDW) dominating region and the
phase-separation area. In the entire region of the TL
fixed-point class, the spin is gapless and the spin suscepti-
bility remains finite at temperature T =0.

Essentially different behavior is seen in the LE region,
U <2V where the attractive interaction plays a crucial
role. The spin has a gap instead of the TL liquid. In the
ground state, either the charge-density-wave (CDW) or
the singlet pairing correlation is the most dominant
correlation, depending on the parameter value. The at-
tractive Hubbard model belongs to the LE region. The
phase diagram of the extended Hubbard model away
from half-filling is summarized in Fig. 1.

In contrast to the non-half-filled band, the charge may
have a gap at half-filling. For example, the repulsive
Hubbard model (U >0, ¥ =0) has the charge gap A. >0
while the spin is gapless. The attractive Hubbard model
has both the charge gap A, >0 and the spin gap A, >0
for U <0< V. Therefore we can realize all the possibili-
ties, namely (1) A,=0, A;=0 (LE region), (2) A, =0,
A, >0 (TL region), (3) A, >0, A;=0 (repulsive Hubbard
at half-filling), and (4) A, >0, A; >0 (attractive Hubbard

v U=2v
cow
LE region TL region
SDW(CDW)
SP 0 U

-l | TR(SP)

FIG. 1. Schematic phase diagram of the extended Hubbard
model away from half-filling. SP, TP, CDW, and SDW indicate
that the dominant correlations are singlet pairing, triplet pair-
ing, CDW, and SDW, respectively. Parenthesized correlations
show logarithmically faster decay than the dominant ones.
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with ¥ >0 at half-filling).

In 1D systems, correlation functions decay either ex-
ponentially or algebraically as a function of distance ac-
cording to model parameter value and filling. We intro-

duce four types of correlation functions: The CDW
correlation

Cepw(ri—rp)=(mn;)—(n;){n;) , (1.2a)
the SDW correlation

CSDW(ri-—rJ-)=<Si-Sj) , (1.2b)
the singlet pairing correlation

Csplr,—r;)=(0%04) , (1.2¢)
and the triplet pairing correlation

Crplr;—r))=(0£0r;) , (1.2d)
where

OSiz‘/Li(ciTci+1l_cilci+1T) (1.3a)
and

OTi:—lr(CmCHuJFCuCHH) : (1.3b)

V2

In the TL region, the asymptotic forms of these correla-
tions are given by

a _
Cepw(r)~—>+aycos(2kprir <! (1.42)
¥
by —(6,+1)
Cspw(r)~— +bcos(2kpr)r ¢ , (1.4b)
r
Csp(r)~clr‘(l/ecH)+czcos(2kpr)r_(0”+l/9”) , (1.4¢)
CTP(r)~d1r—(1/96+1) , (1.4d)

where the critical exponents of the algebraic decays are
characterized by a single parameter 6.. We have
dropped the logarithmic corrections in these expressions.
Although Ccpw and Cgpw have the same critical ex-
ponent for the oscillating part, the logarithmic correction
is In73/%(r) for Ccpw and In!’%(r) for Cgpyw, and hence
Cspw shows logarithmically larger correlation.””® The
same is true for the uniform part of Cgp and Cyp, where
Cp has logarithmically larger correlation than Cgp.

In the LE region, the spin has a gap and Cgpw and
Crp decays exponentially. Because the contribution from
spin excitations vanishes, the critical exponents of Cpw
and Cgp also change and the asymptotic forms are given
by

ap , —6
Ccpw(r)~— +ajcos(2kpr)r °, (1.5a)
r

1/6

Csp(r)~cir ¢ (1.5b)

Therefore, the singlet pairing correlation becomes dom-
inant over the CDW correlation if 6, > 1. The tempera-
ture dependence of the CDW and the pairing susceptibili-
ties should be

—2+6,

Xcow~T » (1.6a)

and

—2+(1/6
Ysp~T (1/6,) ,
respectively, at low temperatures.

In connection with mechanisms of singlet supercon-
ductivity, it is obvious that the spin degrees of freedom
have to die out in the singlet superconducting state ir-
respective of its symmetry and dimensionality. Below the
s-wave critical temperature, the spin susceptibility falls
exponentially and it is replaced with a power law in the
d-wave state. In any case the spin susceptibility is, of
course, zero at T =0. These features should be seen, for
example, in the attractive Hubbard model. These are a
general aspect of singlet superconducting state.

In one dimension, although the superconducting long-
range order is absent, all the 1D models corresponding to
superconducting multidimensional systems such as the
attractive Hubbard model show vanishing spin suscepti-
bility at T=0. This is related to the fact that the spin
gap appears even from the short-range part of particle-
particle correlation and it is not sensitive to the dimen-
sionality, while superconducting long-range order itself is
realized only in a part of this region. In this respect, al-
though we have to be careful about the difference be-
tween the 1D system and its multidimensional analogy, it
is important to extract a model belonging to the LE re-
gion from essentially repulsive systems even in 1D.

The author has proposed®!° a mechanism of supercon-
ductivity where the dimerization of spins from either ex-
trinsic or intrinsic origin triggers a spin-gap formation
and it is directly connected with the superconductivity.

In 1D systems,”!° the author has examined several
possibilities such as the dimerized ¢-J model, a frustrated
t-J model with the next-nearest-neighbor exchange and
the spin-1 model with the Haldane-gap state. In this pa-
per, the dimerized ¢-J model is investigated in detail and
the quantitative analysis of critical exponents is given.
This model is also related to the spin-1 system with the
Haldane gap as we will discuss below. The region of
Luther-Emery fixed point is investigated and its pairing
correlation is shown with the help of the exact diagonali-
zation of small clusters and the numerical transfer-matrix
method. A possible importance of the dimer pairing
mechanism in real high-T, cuprates has been discussed in
a separate paper'' by a mean-field analysis of the super-
conducting phase, where several novel features of this
pairing have appeared and they have been compared with
experimental indications. In Sec. II, we introduce the
dimerized ¢-J model. The results from the exact diago-
nalization and the numerical transfer matrix are present-
ed in Sec. III. Section IV is devoted to conclusions and
discussions.

(1.6b)

II. DIMERIZED ¢-J MODEL

The one-dimensional dimerized ¢-J model Hamiltonian
is defined by

H=H,+H, , (2.1a)
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H,=—t 3 Pylclciotc},cin)Py, (2.1b)
(ij)

o

H;=J 3 [1+y(—=1)[S;'S; 11— Lmn; 111, (2.1¢)
i

where, on the ith site of the 1D ring, the fermion creation
(annihilation) operator c,-t,(c,.a), the spin-J operator S;
and the number operator n; are introduced. We assume
0=y =1. The projection operator P; is introduced to
prohibit the double occupation of fermions on the same
site. This model will be sometimes discussed in a
modified form where §;'S; | —in;n; ., in H; is replaced
with S;-S; ;. Namely, the modified form of the Hamil-
tonian is defined as

H'=H,+H, , (2.2a)

H;=J 3 [1+y(—=1)1S;S; ;. (2.2b)
1]

Qualitatively, correlation functions of (2.2) show similar
behavior to (2.1). In the half-filled case, the Hamiltonians
(2.1) and (2.2) are reduced to a dimerized Heisenberg
model expressed only by H;. This model H; has a spin
gap for y50. Its quantitative features have been exam-
ined by many authors!?~'* with various methods ranging
from the Hartree-Fock, bosonization, phase Hamiltonian
to numerical studies. Two quantities characterize the di-
merization of spins. The first quantity is the gain of the
ground-state energy E, in the presence of the dimeriza-
tion:

AE=Ey(y)—Ey(y=0)=—Ay°. 2.3)

The second is the energy gap between the first excited-
state energy E,; and the ground-state energy E:

Epy=E (y)—Ey(y)=Bvy". 2.4)

The critical exponents a and b are defined for small y.
Although the Hartree-Fock approximation predicts a =2
except the logarithmic correction, the numerical diago-
nalization study with a finite-size scaling analysis shows
much smaller value a ~1.4. Because the lattice distor-
tion loses the elastic energy proportional to y2, the nu-
merical results show that the lattice is unstable to the
spin-Peierls distortion. Then the energy gap opens in the
spin excitation spectrum as in (2.4), where the critical ex-
ponent is estimated to be b ~0. 8 in the diagonalization of
finite-size systems combined with the finite-size scaling
study,12 while bosonization and the phase Hamiltonian
approach predict a little bit smaller values.

It should also be noted that, in (2.1) and (2.2), one of
the exchange interactions expressed by J(1—7) becomes
ferromagnetic for ¥y >1. The dimerized ¢-J model at
half-filling is mapped to the spin-1 Heisenberg model if
two kinds of exchange bonds J; and J, are taken such
that J, is an antiferromagnetic (positive) constant with
ferromagnetic J, in the limit J,— — o as pointed out by
Hida.'> In fact, it has been shown that the spin gap in
the dimerized Heisenberg model and the Haldane gap in
the spin-1 system are continuously connected with each

other in the parameter space of the dimerization at half-
filling.!> Therefore, the spin gap exists for 0 <y < o, at
least at half-filling. Because J,=J(1—¥) changes the
sign to ferromagnetic by increasing y through 1, we are
able to see the crossover between the weak-dimerization
and the Haldane-gap region in (2.1) and (2.2) not only at
half-filling but also away from half-filling where the effect
of doping can be seen. We will also note that the doping
of Haldane-gap system with spin-half mobile fermions
may lead to interesting and rich physics as we will discuss
below.

When the system is adopted away from half-filling, the
charge degrees of freedom may participate in low-energy
excitations. We first consider the case of strongly dimer-
ized limit J >>¢ and 1—y <<1 to elucidate the meaning
of the spin-gap formation in the non-half-filled case. In
this limit, the ground state of the half-filled system is de-
scribed by independent singlet paris, where pairs are
formed on the stronger bonds. When even number of
holes are doped, in the lowest order perturbation of z /J,
a hole always makes a pair with another hole on the
stronger dimerized bonds to gain the singlet formation
energy 3(1+y)J /4. Hopping of the holes only occurs as
a pair tunneling through the virtual pair breaking in the
fourth order of z/J. The Hilbert space of the effective
Hamiltonian may be expanded only by the singlet Bose
operator

1
&?:_‘/_E(cinctj’-kll _CiTichn) (2.5)

for even site i. The effective Hamiltonian has the form

H.z=—1(8$, ,+H.c.), (2.6)
where
4 ¢t 1 1
= |= + L@
3] {(J(+y))? lJ(1+7/) 2Jy ]

The Hamiltonian (2.6) is the same as the effective Hamil-
tonian of the attractive Hubbard model in the strong-
coupling limit. In the strong-coupling limit of the attrac-
tive Hubbard model, the pair hopping 7 is given by

=272/|U]| ,

where U is the on-site attractive interaction and 7 is the
fermion transfer energy. Two paired sites on a stronger
bond in the dimerized ¢-J model correspond to one site in
the attractive Hubbard model. A remarkable point in the
dimerized ¢-J model is that it does not show phase sepa-
ration in the strongly dimerized limit in contrast with the
case of large J /¢ in the uniform ¢-J model.

The 1D attractive Hubbard model belongs to the
Luther-Emery (LE) region except in the half-filled case.
In the half-filled case both the spin and charge have gaps
and the long-range CDW order appears in the ground
state for U <0 and ¥V >0. Corresponding to this fact, the
dimerized z-J model has a charge gap in the quarter-filled
case at least in the strongly dimerized limit and the long-
range CDW order exists. Except for quarter filling, the
charge gap closes and the charge degrees of freedom be-
long to the TL liquid, while the spin has a gap at least in
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the strongly dimerized limit.

Therefore, it is clarified that the spin gap seen in the
half-filled band persists away from half-filing at least in
the strongly dimerized limit. As in the case of the attrac-
tive Hubbard model, the singlet pairing correlation is
dominant in this LE region. For smaller values of J /¢,
the numerical analysis is the only available tool to see
quantitative features of the spin gap and the pairing
correlation, which will be discussed in the next section.

III. NUMERICAL RESULTS

In this section, results obtained from the exact diago-
nalization of finite clusters are presented to discuss the re-
gion of intermediate strength of J /¢t. The exact diagonal-
ization has been performed up to 16 sites using the stan-
dard Lanczos algorithm. We also discuss finite tempera-
ture properties computed by the numerical transfer-
matrix method for large system size. The algorithm of
the numerical transfer-matrix method is described in Ref.
16. We will mainly show results obtained from the Ham-
iltonian (2.1) and they will be given except the cases
where (2.2) is specified. Throughout this paper, the ener-
gy scale is set by t =1.

The chemical potential u(p) at the filling p is defined
by

2n +1
N

=%[E0(n +1,n+1)—Ey(n,n)] . (3.1

Here Ey(n,m) is the total ground-state energy of n up-
spin and m down-spin fermions in the system of size N.
When charge gap opens, it is defined as

2n
Ac‘N

2n +1
N

(3.2)

2n —1 |
N

If the charge gap vanishes in the thermodynamic limit,
the charge compressibility «(p) is obtained from

2

2n | _
© N[p((2n +1)/N)—p((2n —1)/N)] °

N

K (3.3)

Since the ground state is a singlet at zero magnetic field,
the spin gap is obtained from the energy difference be-
tween the lowest triplet energy and the single ground-
state energy as

2n

A
N

=Eo(n+1,n —1)—Ey(n,n) . (3.4)

s

The spin and the charge gaps have been computed for
finite clusters up to 16 sites by using the Lanczos method
and they are extrapolated to the thermodynamic limit.
To make the extrapolation more reliable, the quantum
Monte Carlo results up to 32 sites have also been used.
The method of the Monte Carlo calculation is based on
the standard checkerboard algorithm, which is discussed
in Sec. 2.7 of Ref. 17. The Monte Carlo calculation can
be performed for larger lattices than the Lanczos method
but with statistical errors and provides complementary
results. The critical exponent 6, is obtained from the
charge compressibility x and the charge velocity v, with

the help of the relationship!®!°

0.=mv.k/2 . (3.5)
The charge velocity is calculated from
ve=X B (n,n)— Eo(n,n)] , (3.6

2

where E; —E, is the charge excitation energy. If the
charge gap is absent, finite-size effects for v, and « are
small. Therefore, in this paper, we will show exact diago-
nalization results on 6., v, and « in the 16-site system,
which is expected to be close to thermodynamic results.

Figure 2 illustrates the spin gap as a function of the di-
merization y and the filling. It shows that the gap opens
at a finite dimerization y, for a fixed concentration of
holes. The threshold value y_. tends to vanish if the
filling p approaches the half-filled. This suggests that the
spin gap A, is finite for any positive y if the filling is
sufficiently close to the half-filled. The TL region with
spin-gapless ground state seen in the uniform ¢-J model
may be adiabatically continuated with the spin-gapless
region of Fig. 2 if the system sufficiently deviates from
half-filling. On the other hand, at half-filling, the spin-
gapless ground state is unstable against the arbitrarily
small dimerization perturbation. The LE region with a
spin gap extends to a weaker and weaker-dimerization re-
gion for the system nearer to half-filling, while the TL re-
gion shrinks. If ¥ > 1.0, one of the two types of bonds is
ferromagnetic and the crossover to the Haldane-gap re-
gion may be seen as discussed above. We notice that the
spin-gap region seen in the weak dimerization region is
continuously connected with the Haldane-gap region
even in the non-half-filled case. It is generally seen that
the gap persists more deeply away from the half-filled in
the Haldane-gap region (y>1) than in the weak-
dimerization region.

Figure 3 shows overall sketch of the phase diagram for
spin and charge gap at t =1 and y =1. We note this pa-
rameter gives a typical intermediate point in the parame-
ter space of spin-gap region as we have seen in Fig. 2.
Because the behavior is qualitatively similar in the whole
region of finite spin gap, we will mainly show the data at
this parameter value to discuss the nature of the spin-gap

4.0 ¢ T F T
° ]
E © o
tm 3.0 :— o o ]
< - o° A p=05 ° E
2.0 _ o m p=0.75
I o o p=1.0 F
£ 3
2 (o]
10F S [ I I
E o « 1 1 1 PO S
- ' 3
0.0 E L 2 6 g 1 1 E
0.00 0.50 1.00 1.50 2.00
Y

FIG. 2. Spin gap A, /t as a function of the dimerization y for
the filling p=0.5, 0.75, and 1.0. For the part y=1.0,
(1+y)J /2t is fixed at 1.0, while for ¥ <1.0, J /¢ is fixed at 2.0.
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FIG. 3. Phase diagram of spin and charge gap in the plane of
J and filling factor p for the case y =1 and ¢ =1. Filled circles
show the existence of finite spin gap, while open circles show
the absence. The values beside the filled circles show the spin
gap A, in the thermodynamic limit. The cross points indicate
finite charge gap. The curves are for guide to the eyes to have
qualitative idea about contour lines of the spin gap.

region. Although the half-filled case with y=1 has a
trivial solution with independent local singlets, it shows
rich and highly nontrivial structure away from half-filling
as we will see below. The spin gap present in the strongly
dimerized limit persists into intermediate values of J /¢
and has larger value near half-filling. In particular, the
spin gap seems to be present at smaller J /¢ when one ap-
proaches half-filling. This result seems to suggest that
the spin gap does not close at arbitrarily small J /¢ if the
filling is sufficiently close to half-filling. For smaller
values of ¥, the spin gap becomes small. However, the
qualitative feature remains the same. Quantitative as-
pects and critical exponents in the limit of small dimeri-
zation away from half-filling remain for future study.
The spin-gap formation is also observed in finite tempera-
ture results. Figure 4 illustrates the uniform spin suscep-
tibility y calculated by the numerical transfer-matrix
method with the Hamiltonian (2.2).

In the strongly dimerized limit, the charge gap opens
at quarter filling as discussed in Sec. II. This is actually

0.3 T T T T T

AT A
- A -

A’l
0.2 . .
x

0.1 | E

0_0 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2

T

FIG. 4. Temperature dependence of the uniform spin suscep-
tibility for J=1.5 (triangles) and J =2.0 (circles) in the case
p~0.6and y=t=1.0.

2.4 T T T T

2.2 | -
=. - .

2.0 e

1.8 | 4

1.6 1 1 1 1
0.0 0.2 04 06 0.8 1.0

p

FIG. 5. Chemical potential p vs filling factor p at J =2.0,
t=y=1.0.

confirmed in Fig. 3. In addition, the charge gap does not
close at least until J~1 as seen in Fig. 3. It is not clear
whether the charge gap remains for smaller J because of
finite-size effects. Figure 5 illustrates the chemical poten-
tial vs filling at J =2.0, which shows the formation of a
charge gap at quarter filling. The charge gap for the
dimerized ¢-J model increases with the decrease of J simi-
larly to the case of the charge gap of the attractive Hub-
bard model in the strong-coupling region. The charge
gap A, is estimated as A,=0.63, 0.53, and 0.26 at
J =1.5, 2, and 4, respectively, for t =y =1.0.

The critical exponent 6, is obtained from the compres-
sibility « and the charge velocity v, illustrated in Fig. 6
by using Eq. (3.5). The obtained result is shown in Fig. 7
for the case of J=1.0 and t =y =1.0. Because of the
tendency to charge-gap formation, 6, has a dip at quarter
filling p=0.5, where finite-size effect is large. Except this
region, 6, monotonically increases with the increase of
the filling. Near half-filling, where the spin gap opens,
the critical exponent 6, also sharply increases indicating
strong enhancement of the pairing correlation. As given
in (1.5a) and (1.5b), the pairing correlation dominates
over CDW correlation for 6§, > 1. The CDW correlation
seems to be dominant only near quarter filling.

The pairing correlation of the type (1.2¢) and (1.3a) is
related to the order parameter of

0.8 T T ° T T 6.0
- .'“‘4.4>
0.6 I '
A ; 1 4.0 _
) ‘." \ pv
> 04t FY ]
N ¢ ;
.. \ 4 2.0
0.2 /o .
- ! \‘\\ 7
0.0 . . L L% 0.0
0.0 0.2 04 06 0.8 1.0
p

FIG. 6. Charge velocity v, (triangles) and the inverse
compressibility (circles) plotted as a function of the filling factor

p-
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FIG. 7. The critical exponent 6, as a function of the filling
factor p.
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k

In the dimerized ¢-J model, the order parameter of the
type

1 .
Os(q :ﬂ):\/_i }_‘,(—l)f(cj16j+1¢_cjlcj+lf)
J

=1/§l 2 (sinka)ckfc_k +al
k

10.0

XSP

0.1 0.5 1.0

10.0

Xsp

+ 1

0.1 0.5 1.0
T

FIG. 8. Temperature dependence of the pairing susceptibility
Xsp for (a) J=1.5and (b) J =2.0att =y =1.0.

should also be taken into account as discussed.!! The
pairing correlation of

Cspo(ri—7;)={04p:050;)
with

_(=1)
Ogp; = V3 (cjrcjr10—Cj1€5411)

shows the same power-law decay as Csp(r;,—r;) and
characterized by r 1/6e as well.

At finite temperatures, the pairing susceptibility should
show the behavior given in (1.6b) at sufficiently low tem-
peratures. However, at moderately low temperatures, the
pairing susceptibility obtained from the numerical
transfer-matrix method shows somewhat weaker temper-
ature dependence as is seen in Fig. 8, where the results
are obtained from the Hamiltonian (2.2). The results
from (2.1) are similar. Although it shows power-law
divergence, the power seems to be smaller than that ob-
tained from 6, in Fig. 6. It indicates that the asymptotic
behavior (1.6b) is restricted to very low-temperature re-
gion and a crossover should be seen below the tempera-
tures shown in Fig. 8. In any case, the pairing correla-
tion is the most dominant correlation for this model near
half-filling at sufficiently low temperatures as well as at
moderately low temperatures shown in Figs. 8.

IV. CONCLUSIONS AND DISCUSSIONS

We have investigated the phase diagram of the 1D
dimerized ¢-J model by the exact-diagonalization
method, the numerical transfer-matrix method and the
quantum Monte Carlo method. The model has spin gap
near half-filling and also in the strongly dimerized region.
This spin-gap region is continuously connected with the
strongly dimerized limit, where mapping of this model to
the attractive Hubbard model is established. The gap re-
gion is also connected with the spin gap in the dimerized
Heisenberg model as well as with the Haldane-gap state
in the spin-1 Heisenberg model. In the spin-gap region,
the correlation functions follow Luther-Emery fixed point
at sufficiently low temperatures, where spin and charge
are separated with the charge degrees of freedom show-
ing Tomonaga-Luttinger liquid behavior. At finite tem-
peratures, rich structure is expected with a crossover.
The pairing correlation dominates over CDW correlation
in the spin-gap region. The critical exponent shows that
the divergence of the pairing susceptibility at low temper-
atures are stronger when one approaches closer to half-
filling. At quarter filling, the charge gap opens at least
for the dimerization larger than a threshold value, where
the long-range order of CDW may exist. The attractive
interaction is not introduced explicitly in the dimerized
t-J model even in the spin-gap region, because the dimer-
ized ¢-J modal can be derived as an effective Hamiltonian
of a multiband Hubbard model with only repulsive in-
teractions under dimerized lattice structure. If the quan-
tum spin system with the dimerized exchange J is cou-
pled to itinerant fermions with the transfer ¢ by strong
Kondo coupling Jg, the model is mapped to the dimer-
ized ¢-J model. Although it introduces only repulsive in-
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teraction in the original model, the effective Hamiltonian
belongs to the same fixed point as the attractive Hubbard
model. It is in marked contrast with the one-dimensional
uniform ¢-J model where the spin gap does not appear at
least near half-filling.?°

Similar mechanisms for the pairing have also been dis-
cussed in different models. The 1D frustrated ¢-J model
with the next-nearest-neighbor exchange coupling J’ has
been discussed by the author® as another example belong-
ing to the Luther-Emery fixed point. In the limit J—O0
with J'/J fixed large, the existence of the spin gap has
been shown by Ogata, Luchini, and Rice near half-
filling.?! At finite J, it seems to be difficult at the moment
to see the spin-gap region explicitly from finite cluster
study because the spin gap seems to close very rapidly
away from half-filling. Because the dimer order exists in
the frustrated Heisenberg model,?? the mechanism of the
pairing should be essentially the same as that we have
discussed in this paper if the spin gap persists away from
half-filling. The 2D frustrated ¢-J model is another can-
didate of the spin gap in the region J'/J~0.5, if the
ground state has a dimer order. However, the nature of
the ground state is not clear at this moment even for the
half-filled case.

Recently, the double chain z-J model has been shown
by Dagotto and co-workers?»2* to have a spin gap even
for intermediate strength of the interchain exchange cou-
pling J'. The origin of the spin gap seems to be essential-
ly the dimerization and the singlet formation of two fer-
mions on different chains at the same site coupled by J'.
This would provide another interesting example belong-
ing to the Luther-Emery fixed point. The 2D analogy of
this mechanism has been examined by Hida?’ in the half-
filled system. It indicates that the spin-gap region is re-
stricted to somewhat larger J'/J region (roughly
J'/J =2.5).

In the case of the dimerized ¢-J model, the spin gap
may also exist in 2D for 0. Generally speaking, the
quasi-one-dimensional system is not favorable for the su-

perconductivity as compared to the quasi-two-
dimensional case because the localization effect is much
more serious in realistic systems. In this respect, the 2D
dimerized ¢-J model should be treated in the next step to
clarify the mechanism of superconductivity along the line
of this paper. The mean-field analysis of the pairing has
been recently done in 2D dimerized ¢-J model providing
a starting point for more reliable theoretical treat-
ment.!">26

In one dimension, the ground state of the Heisenberg
model shows an absence of the antiferromagnetic symme-
try breaking. The spin degrees of freedom leaves a large
amount of degeneracy in the ground state leading to a
finite spin susceptibility, which is sometimes viewed from
the formation of the spinon Fermi surface. The spin-gap
formation resulted from the mean-field theory of spinon
pairing in the uniform ¢-J model away from half-filling is
an artifact of the mean-field treatment at least in one di-
mension. This fact seems to apply also to 2D Hubbard-
type models. The condition for the spin-gap formation in
2D is a crucially important subject in clarifying the
mechanism of high-temperature superconductivity and
treatments beyond the mean-filed level are highly desired.
The ¢-J model with nearest-neighbor Coulomb repulsion
has recently been studied.?”?® Small cluster study indi-
cates the enhancement of pairing susceptibility near the
phase separation boundary. It would be interesting fur-
ther to explore the possibility of the spin-gap opening
even near the phase separation boundary in the thermo-
dynamic limit.

ACKNOWLEDGMENT

This work was financially supported by a Grant-in-Aid
for Scientific Research on Priority Areas, Computational
Physics as a New Frontier in Condensed Matter
Research from the Ministry of Education, Science and
Culture, Japan.

13. Solyom, Adv. Phys. 28, 209 (1979).

2V. J. Emery, Highly Conducting One-Dimensional Solids, edit-
ed by J. T. Devreese et al. (Plenum, New York, 1979), p. 327.

3A. Luther and V. J. Emery, Phys. Rev. Lett. 33, 589 (1974).

4N. Kawakami and S.-K. Yang, Phys. Lett. A 148, 359 (1990).

SH. Frahm and V. E. Korepin, Phys. Rev. B 42, 10553 (1990).

6N. Kawakakmi and S.-K. Yang. J. Phys. C 3, 5983 (1991).

7T. Giamarchi and H. J. Schulz, Phys. Rev. B 39, 4620 (1989).

8H. J. Schulz, in Proceedings of Adriatico Research Conference
and Workshop July 1990, edited by G. Baskaran, A. E. Ruck-
enstein, E. Tosatti, and Yu Lu (World Scientific, Singapore,
1991), p. 57.

9M. Imada, J. Phys. Soc. Jpn. 60, 1877 (1991).

10M. Imada, Physica C 185-189, 1421 (1991).

11M. Imada, J. Phys. Soc. Jpn. 61, 423 (1992).

12K . Okamoto, H. Nishimori, and Y. Taguchi, J. Phys. Soc.
Jpn. 55, 1458 (1986), and references therein.

I3M. C. Cross and D. S. Fisher, Phys. Rev. B 19, 402 (1979).

143, Inagaki and H. Fukuyama, J. Phys. Soc. Jpn. 52, 2504
(1983).

15K . Hida, Phys. Rev. B 45, 2207 (1992).

16M. Imada, J. Phys. Soc. Jpn. 59, 4121 (1990).

7M. Imada and Y. Hatsugai, J. Phys. Soc. Jpn. 58, 3752 (1989).

18H. J. Schulz, Phys. Rev. Lett. 64, 2831 (1990).

19F. D. M. Haldane, J. Phys. C 14, 2585 (1981).

20The spin gap at low concentration near the phase separation
has been claimed by M. Ogata, M. U. Luchini, S. Sorella, and
F. F. Assaad, Phys. Rev. Lett. 66, 2388 (1991).

21M. Ogata, M. U. Luchini, and T. M. Rice, Phys. Rev. B 44,
12083 (1991).

22T, Tonegawa and 1. Harada, J. Phys. Soc. Jpn. 56, 2153 (1987).

23E. Dagotto, in Computational Approaches in Condensed Matter
Physics, Proceedings of the Nishinomiya-Yukawa Symposi-
um, Nishinomiya, 1991, edited by S. Miyashita, M. Imada,
and H. Takayama (Springer-Verlag, Berlin, 1992), p. 84.

24E, Dagotto, J. Riera, and D. J. Scalapino (unpublished).

25K. Hida, J. Phys. Soc. Jpn. 61, 1013 (1992).

26M. Imada, Physica B (to be published).

278. A. Kivelson, V. J. Emery, and H. Q. Lin, Phys. Rev. B 42,
6523 (1990).

28E. Dagotto and J. Riera, Phys. Rev. B 46, 12084 (1992).



