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In the spin-wave approximation the energy spectrum of one-hole states of the two-dimensional z-J
model is considered in the parameter range 0.01 <J /¢ <1, where J is the exchange constant and ¢ the
hopping-matrix element. Attention is focused on single-particle states (in contrast to hole-magnon con-
tinua) that form energy bands characterized by different values of the z component of the total spin S,
corresponding to ferromagnetically ordered regions of different size around the hole. For an infinite lat-
tice, the shapes and relative positions of the lowest bands are computed by means of the Lanczos
method. The formation process of the ferromagnetically ordered region in the one-hole ground state is
discussed. It is connected with a characteristic dependence of the band energy on J /¢ for different S,.
The shapes of the magnon cloud around the hole and the point symmetries of the eigenfunctions are
determined for various points in the Brillouin zone and for different bands of interest.

I. INTRODUCTION

The Hubbard model and the related z-J model are the
subject of an intense study because these models are sup-
posed to describe the behavior of charge carriers in the
CuO, planes of high-T, cuprate superconductors.! How-
ever, there is still a number of unresolved problems with
respect to the character of the elementary excitations in
these models. One of the open questions concerns the na-
ture of the one-hole low-energy excitations. The
knowledge of their properties is essential, for example,
for an understanding of various phenomena of relaxation
and transport processes. It is the purpose of the present
paper to present a detailed investigation of the one-hole
excitations in the framework of the #-J model.

There are two different approaches to treat the prob-
lem in this model: One can either perform exact calcula-
tions for small clusters (see, e.g., Refs. 2—4) or employ
various types of approximations which allow one to con-
sider an infinite lattice (see, e.g., Refs. 5-7). Simple com-
binatorial arguments show that the size of the basis
which is necessary for a straightforward numerical diago-
nalization of the ¢-J Hamiltonian increases extremely fast
with the number of lattice sites considered. Therefore,
clusters of not more than 20 sites can be taken into ac-
count by exact methods.?”* With respect to the infinite
lattice this corresponds to an investigation of only a small
number of points in the Brillouin zone. Therefore, the
overall shapes of the energy bands cannot be determined
precisely. Even more important is the influence of the
cluster size on the eigenstates of the Hamiltonian. For
small J /¢ (where as usual ¢ is the hopping matrix element
and J is the exchange constant) the low-energy one-hole
excitations of the ¢-J Hamiltonian are characterized by
the formation of a ferromagnetically ordered region
around the hole (so-called ferron states).®~!! It will be
shown below in particular for parameter values presum-
ably realized in cuprate perovskites that for some of these
low-lying excited states the size of the ferrons is compara-
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ble with the size of the clusters used in the exact calcula-
tions mentioned. Accordingly, the results of the cluster
investigations can be expected to suffer strongly from
finite-size effects.

To avoid these problems it is necessary to consider an
infinite lattice, which requires approximate methods.
The main problem in this case is to take into account the
transversal spin fluctuations described by the Heisenberg
Hamiltonian. It is worth noting that previous considera-
tions of the 7-J model on an infinite lattice either did not
consider ferron states (e.g., Refs. 5—7) or considered them
without taking into account the transversal spin fluctua-
tions (e.g., Refs. 8—11).

The fluctuations can be adequately considered in the
framework of the spin-wave approximation, which ap-
pears natural in view of experimental observations of the
long-range antiferromagnetic order in lightly doped sam-
ples of the cuprate perovskites at temperatures lower
than the Néel temperature.'? The spin-wave approxima-
tion is known to be remarkably accurate in determining
the ground-state energy and the sublattice magnetization
of the Heisenberg antiferromagnet!® as well as a number
of other properties of the undoped system.!* Moreover,
eigenenergies of small-spin one-hole excitations obtained
with the help of this approximation for an infinite lat-
tice!® are in satisfactory agreement with the results of an
exact diagonalization for the 4 X4 cluster.?® (Note that
the energy is measured from the ground state of the un-
doped lattice, so that we can compare energy differences
only.) The point symmetry of the eigenstates at those
points of the Brillouin zone, which can be compared with
the cluster, is the same in both studies, and the parameter
values, for which the ferron states become the ground
states, are also in close agreement. Thus, the spin-wave
approximation can be supposed to be appropriate for the
description of the energy spectrum and the eigenstates.

Accordingly, we employ the spin-wave approximation
in the subsequent investigation. Here we extend the re-
sults of a previous paper'® about the formation of ferrons
in the one-hole ground state. For this purpose we study
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the eigenenergies for different values S, of the z com-
ponent of the total spin which is the integral of motion of
the Hamiltonian in the spin-wave approximation. A
larger value of S, reflects a larger number of spins which
are flipped with respect to the Néel state. The flipped
spins form a ferromagnetically ordered region around the
hole. The hole together with the surrounding flipped
spins constitutes the quasiparticle, the ferron, so that the
value of S, characterizes the ferron size. Relative posi-
tions, shapes and widths of the lowest one-hole bands are
computed for the parameter range 0.01<J/¢t<1. The
shapes of the ferromagnetic region around the hole and
the point symmetries of the eigenfunctions are deter-
mined for the different bands in various points of the
Brillouin zone. In particular, we analyze the dependence
of the eigenenergy on the parameter J /¢ at certain points
in the Brillouin zone. The slope of these curves grows
monotonically with increasing S,. We show that this
behavior can be connected with the process of the forma-
tion of ferrons in the one-hole ground state.

II. THE SPIN-WAVE APPROXIMATION
AND THE CALCULATION PROCEDURE

The two-dimensional ¢-J Hamiltonian can be

represented in the following form:

J

H=—1tP 2 aIT+aaaI¢7P+ 2 2 (sl+asl_7/nl+an1) ’ n
la

lac
where P is the projection operator onto the subspace of
states without doubly occupied sites, a;, creates an elec-
tron with spin label o ==1 on site I of a plane square
lattice, n;=3.,a,,a;, is the density, and the spin
operator s; is composed from s; =200a;r0a1,,/2 and
s;’=sf+ias}’=afaa,’_a. The summation over a
proceeds over nearest neighbors only. It is worth noting
that the Hamiltonian (1) can be derived from the extend-
ed Hubbard Hamiltonian'®!7 which gives apparently the
most realistic description of the CuO, planes of cuprate
perovskites. In this picture, the operator a,,P creates the
hole state with a large admixture of the Zhang-Rice sing-
let state!” for parameters presumably'® realized in
La,CuO,. For these parameters y =~%. Although the last
term in Eq. (1) yields only some constant for the energy
of one-hole states, it is worth noting that for y >0 this
term describes the static attraction of holes. !®
The spin-wave approximation can be introduced with
the help of the transformation!’

si ' =@b, P +blg P, s = (s
st=eMn;/2—b[b)), ¢,=V 1-b]b,,

where P =[1+o0 exp(ill-1)]/2 and II=(m,), the lat-
tice constant is taken as a unit of length. The spin-wave
operators b; satisfy the following commutation relations:

(2)

(b;,b) 1=8;un;, [b1,b]1=0 . 3)

One of the two Néel states |N) constitutes the vacuum
with respect to these operators, i.e., b;|N)=0, and
h}=S Pfa,, creates a hole in the Néel state |N ).

The spin operators s; in the Hamiltonian (1) can be
substituted by the spin-wave operators b; according to
the transformation (2). The essence of the spin-wave ap-
proximation is the neglect of the terms of third and
higher orders in b;. The remaining quadratic form ob-
tained in this way contains nondiagonal terms describing
transversal spin fluctuations. It can be diagonalized by
the unitary transformation'®

k

1+ 4)
1 Yk 1 .

ak=§1n T—r | yk=2§ exp(ik-a) .
In accordance with Eq. (3) the operators

by =N"123 b, exp(—ik-I) satisfy the boson commuta-
tion relations with an accuracy up to the order O(n)
where n is the number of holes per site.

Omitting terms which are unessential for the con-
sidered one-hole states the transformed Hamiltonian
reads

H=UHU=t 3 hh (g _a+Vva)bi_p

lam

Fup+vy bl ]
J ¥
+ 2 > ogbyby . (5)
k

where u; and v; are the Fourier transforms of cosh(2a,)
and —sinh(2a,), and w, =41 1—yi. A more detailed
derivation of Hamiltonian (5) can be found in Ref. 15.
Analogous Hamiltonians have been considered in Refs.
19 and 20.

Due to the fast decrease of u, _,+v, with growing
|m|, only the components of the sum in the kinetic term
in Eq. (5) with m equal to one of the primitive transla-
tions are retained. [It can be exactly shown that
Up—atvy=0 for m=(m;,m,) with m,+m,
=0,2,4, ... .] Moreover, it is sufficient to consider the
contributions of

on=N"13 exp(ik-m)w,
k

in the magnetic energy term with m=(0,0), (£1,%1),
(£2,0), (0,+2), because w, also decreases fast with
growing |m)|.

The energy spectrum of the one-hole states consists of
single-particle levels and hole-magnon continua. The
former yield energy bands characterized by different
values of the z component of the total spin and different
irreducible representations of the wave-vector group.
The latter are composed of scattering states of single-
particle excitations and one or more magnons. Excited
single-particle states are thus immersed in the continua
corresponding to lower bands and, consequently, are res-
onant states characterized by finite widths. In the
present paper attention is focused on the lowest single-
particle bands. Decay lifetimes and quasiparticle residues
of the states are not determined here. But it is worth not-
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ing that the residues can be small, especially for small
values of J /t and large S, corresponding to large ferrons.
Accordingly, the single-particle excitations can effectively
vanish in the surrounding scattering continuum. This is
the reason why only the lowest states corresponding to a
given wave vector k and z component of the total spin,
which can be supposed to produce pronounced maxima
in the density of states, are considered in the present pa-
per.

For this purpose, approximate eigenfunctions and ei-
genvalues of the Hamiltonian (5) have been obtained with
the help of the Lanczos algorithm.?! In one step of this
algorithm we determine a final state |f) from an initial
state |i ) according to the procedure

(iliY=1, E;=(il#i), VIf)=(H—E)|i). (6

Here V is a normalization constant which follows from
(f|f)=1. We note that the algorithm automatically en-
sures the orthogonalization { f|i ) =0. After one Lanczos
step (6) the energy is minimized in the subspace of the
states |i) and |f), and the corresponding optimized
function is used as the initial function |/ ) in the next step
of the Lanczos and optimization procedure, until a
desired accuracy is reached.??

If the initial function |i ) belongs to an irreducible rep-
resentation of the space group, and has a definite spin
component S, then the complementary function |f)
possesses the same symmetry and the same S,. There-
fore, it is possible to obtain the lowest eigenvalues of #
and the corresponding eigenstates of a given symmetry
and a given spin by constructing starting states |i ) with
the desired properties, which can be easily achieved by an
appropriate linear combination of a few spin waves.

In the general case an eigenstate contains an infinite
number of components describing a magnon cloud
around the hole. Consequently, the number of com-
ponents in the approximate eigenstate will grow from
step to step of the procedure described above. Usually,
however, for an appropriate choice of a starting function,
the most significant components with large amplitudes
show up in the first few steps while smaller corrections
appear in further steps. This indicates the way to over-
come the bottle-neck of available computation time and
necessary computer memory which is due to a fast
growth of the number of spin waves taken into account in
later steps of the procedure: After the energy minimiza-
tion the expansion of the respective approximate eigen-
state is restricted in each step to the j components with
the largest amplitudes. After renormalization this re-
stricted state becomes the initial state for the Lanczos
procedure (6) in the next step of the recursion.

As usual the Lanczos algorithm yields the extreme
eigenstate. Due to the discussed restriction to the largest
J components, in the present case an upper bound of the
ground-state energy for a given symmetry and spin is ob-
tained. The accuracy of this approximation can be es-
timated by changing j. A detailed description of the cal-
culational proceedings has been published elsewhere. >

In our calculations j was varied between 40 and 200.
For the considered Hamiltonian and the investigated
range of parameters j =100 was found to be sufficient to

(—ﬂ.!l) ( n,n)
L
kx
(-n,—n) (n,—m)

FIG. 1. The full and magnetic (shaded) Brillouin zones.
Symmetry lines along which the energy is calculated are indicat-
ed. The wave vectors of the high symmetry points ', X, and M
are k=(0,0), (7/2,m/2), and (0, 7), respectively.

obtain the energy with an accuracy better than 2%.
About 30 Lanczos steps were required for convergence if
the point symmetry of the starting state coincides with
that of the lowest state for the given k and S,. The sim-
ple procedure of selecting the largest components in each
recursion step may, however, change the point symmetry
of the state so that even an initial state with the wrong
symmetry will converge towards the respective ground-
state approximation with the correct symmetry. But the
convergence may be rather slow in this case and require
sometimes up to more than a hundred steps. The selec-
tion procedure can be changed easily so that the symme-
try of the starting function is preserved.?> For our pur-
pose the simplest restriction to the largest j components
is sufficient because we are interested in the lowest state
of arbitrary symmetry for a given k and S, .

As explained above, the antiferromagnetic ordering is
implied in the beginning. Therefore, the examination of
the one-hole quasiparticles can be limited to wave vectors
in the magnetic Brillouin zone shown in Fig. 1. To deter-
mine the correct symmetry of the lowest states in the
high symmetry points I', X, M and along the symmetry
lines connecting these points, we have used starting func-
tions belonging to different representations of the wave-
vector groups Cy,, C,,, and C;. We varied S, between 1
and £, and J /¢ in the range from 0.01 to 1. It should be
noted that this interval comprises the value of J /¢ which
is presumably realized?* in La,CuO,, where the effective
parameter J/t was estimated® to be in the range
0.1=J/t=<0.3.

III. RESULTS AND DISCUSSION

As discussed in the previous section, we investigate in
the present paper the lowest one-hole bands in depen-
dence of J /t, but we do not study the hole-magnon con-
tinua, the quasi-particle residues and the lifetimes of the
single-particle states. In the following we present in de-
tail our results for the relative positions and the shapes of
the lowest bands and show also the spatial extension of
the corresponding ferromagnetic clusters which are
formed around the hole.
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For J/t>0.02 the lowest two bands are those corre-
sponding to S, =1 and 2. In Fig. 2 the general shape of
these two bands is displayed for the moderate parameter
value J/t =0.15. The maximum of the band with §,=1
is located at the I point while there are four equivalent
minima on the edges of the magnetic Brillouin zone at
the X points with k=(xm/2,+7/2), in agreement with
previous investigations?~ "-!>1% of small clusters by exact
diagonalization as well as infinite systems by approximate
methods. Around these minima the band shows a quasi-
one-dimensional behavior: The effective mass perpendic-
ular to the boundary of the magnetic Brillouin zone is al-
most an order of magnitude smaller than the effective
mass parallel to this boundary. A detailed analysis of
the respective components of the effective mass tensor
shows? that this behavior is typical for the §,=1 band in
the parameter range J /¢ > 0.05.

In contrast, the S,=2 band displayed in Fig. 2(b)
features degenerate maxima along the XM lines and a
minimum at the center I" of the Brillouin zone. Figure
2(b) shows that the curvature of the band around the
minimum at the I" point is nearly the same in every direc-
tion.

In Fig. 3 the dependence of the energies on the param-
eter J/t is shown for these two bands along the high-
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FIG. 2. The lowest-energy bands in the magnetic Brillouin
zone at J /t =0.15 corresponding to (a) S, =1 and (b) S, =3.

symmetry lines of the magnetic Brillouin zone. The
overall shape of the band with S, =1 does not change in
the considered parameter range, except for very small
J /t (<0.05) for which the maximum of the band is some-
what shifted from the I’ point. We attribute this
behavior to the crossover with another band which is
characterized by a different symmetry. A detailed
analysis of this question would require additional exten-
sive computations, because as discussed above in the
present investigation we have not attempted to preserve
the symmetry of the initial function during the recursion
procedure and we have not obtained solutions of a
specific symmetry in the crossover region.

A close investigation shows that the band width of the
S, =+ band in Fig. 3(a) is not a monotonous function of
J/t. The maximum of the band width is obtained for
J/t=~0.9, and it is of the order of ¢ in agreement with
previous investigations.®'* In the high-symmetry points
of the Brillouin zone the states of this band are
transformed in a fully symmetric way under the opera-
tions of the corresponding point groups. The same
behavior was obtained by the direct diagonalization® of
the z-J Hamiltonian for a 4X4 cluster. The agreement
with the cluster calculations?™* is also good with respect
to the values of the band energies. For example, at
J/t =0.25 the energies counted from the ground state of
the undoped system in the cluster® are 10—15 % higher
than those in Fig. 3. This energy shift may be attributed
to the restricted spatial extension of the magnon cloud in
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FIG. 3. The energy along the symmetry lines (compare Fig.
1) in the bands with (a) S,=1 and (b) S,=3 for J/t=0.01,
0.03, 0.05,0.1,0.2,0.3, 0.4, ... 1.0 (from bottom to top).
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the cluster.

The behavior of the band with S, =2 is qualitatively
different, as can be seen in Fig. 3(b). This band changes
its shape in dependence on J /¢t. For small J /¢ its shape is
represented by Fig. 2(b). Near J/t =0.35 the overall ap-
pearance changes and for large J /¢ the shape of this band
is similar to the S, =1 band in Fig. 2(a). This means in
particular that the position of the minima and maxima
are exchanged. At the crossover J/t~0.35 the band-
width is very small, it is of the same order of magnitude
as the numerical accuracy.

This drastic change of the overall shape is not connect-
ed to a change of symmetry in the corresponding wave
function. Over the entire considered range of J/t wave
functions of the lowest band with S, =3 belong to the B,
and E representations of the point group C,, at the I
and M points, respectively, and to the 4, representation
of the group C,, at the X point. Along the I'M symme-
try line the wave functions are transformed according to
the A" representation of the C; group, and along the two
other symmetry lines in Fig. 1 they belong to the 4’ rep-
resentation of the group C;. In the 4 X4 cluster calcula-
tion® the symmetry of the eigenfunctions for the band
with §, =3 has only been determined for the I" point and
the representation has been found to be B,, in coin-
cidence with our result.

In Fig. 4 the energies at the high-symmetry points are
compiled for both bands, S,=1 and 2, for the entire
range of the parameter J/¢. Obviously the bands inter-
sect in a wide range of J/¢t. Only for J/t >0.92 the
ground-state energy is given by the S, =1 band in the en-
tire Brillouin zone. For smaller J /¢ the lowest energy in
the center of the Brillouin zone is characterized by
S,=2. Near J/t=0.053 the overall ground-state
changes from k=(xw/2,+7/2) and S,=1 to k=(0,0)
and Sz=%. This can be seen in more detail in Fig. 5,
where the energies for all investigated bands are shown
for small values of J/¢t. For S, =1 and 2 the positions of

the minima and maxima are explicitly shown. With in-
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FIG. 4. The energy at high-symmetry points I" (0), X (O),
M (+) for the bands with S, =1 (solid lines) and S, =2 (dotted

lines).
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FIG. 5. Relative energies of the lowest bands. Positions are
indicated at the high-symmetry points X (O) and I" (O) for the
bands with S, =% (solid lines) and S, =% (dotted lines). Due to
the small bandwidth an average energy only is displayed for the
bands with §,=3, 1, 2, 1L, L and £ (broken lines, from bot-
tom to top for large J /¢).

creasing S, the band width decreases drastically, already
for §,=2 it is of the order of the numerical accuracy, so
that it is sufficient to display an average energy for the
bands with larger S,. It is not surprising that these bands
are so narrow, because a large value of S, corresponds of
a large ferron, i.e., a large number of flipped spins sur-
rounding the hole. Accordingly the effective mass of the
quasiparticle is large.

It can be seen in Fig. 5 that the lowest energy of the
bands grows monotonously with increasing S, for
J/t >0.053. Thus the band with S,=1 contains the
ground state for larger values of the parameter J /¢.

The energy varies linearly with J /¢ for small values of
this parameter. This can be observed for all bands in Fig.
5, except for the maximum of the §,=] band at
k=(0,0), as discussed above.

The steepness of the E /t—J /t curves in Fig. 5 grows
monotonously with increasing S,. As a consequence, for
smaller values of J /¢, the bands corresponding to larger
values of S, become lower in energy than those with
smaller S,, i.e., states with a more extended ferromagneti-
cally ordered region around the hole become energetical-
ly more favorable. As discussed above, the one-hole
ground states belong to the S, =1 band for J /¢ >0.053.
In the range 0.02 <J /¢ =0.053 the S, =3 band yields the
lowest energy while in the range J/¢t <0.02 the ground
state occurs for S, > 1. We did not check states with
S, = 4 due to numerical difficulties, but the monotonous
decrease of the energy with increasing S, for small J /¢
suggests an even higher value of S, for the ground state
in this range. Thus, there is a large jump in the value of
S, in the ground state for J /¢t =0.02. These pecularities
of the energy structure provide an explanation for the
spatial growth of the ferron in terms of the band picture
because a more and more extended ferron becomes ener-
getically more and more favorable for smaller J/t. A
consideration of this rapid growth in small clusters is lim-
ited because the size of the ferron quickly reaches the



548 J. SABCZYNSKI, M. SCHREIBER, AND A. SHERMAN 48

cluster size. Nevertheless, it is possible to compare the
critical values of J/t at which the state corresponding to
the smallest ferron size (S, =3, one flipped spin) becomes
the lowest one. For the 4X4 cluster this happens®3 at
J/t =0.075, in reasonable agreement with J /¢t =0.05 ob-
served above for the infinite lattice. It is obvious that for
a small cluster the critical value should be larger because
in the infinite system the surroundings prevent the ferron
formation.

The previous discussion has been concerned with the
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FIG. 6. Ferromagnetic clusters around the hole for
(@) S,-1, J/t=0.8 at the X point; (b) S,=73, J/t=0.05 at X;
() S,=2, J/t=0.05 at X; (@) S,=32, J/t=0.05 at T;
(e) S, =2, J/t=0.02 at T". The left and right panels show spin
configurations of the wave-function components with the hole
positioned on different sublattices of the Néel state. The circled
sign in the center indicates the respective spin label o of the re-
moved electron. Circles and crosses show the relative positions
of the hole and the spins that are flipped with respect to the
Néel state. The size of the symbols is proportional to the proba-
bility of finding a flipped spin at the indicated distance and a
hole on the indicated sublattice, respectively. The size of the
symbols would equal the lattice constant (indicated by the ticks
on the axes), if the probability were equal to unity.

eigenenergies of the one-hole states of the ¢-J Hamiltoni-
an, and with the symmetry of these states. The obtained
approximate eigenfunctions allow us to visualize the
shape of the magnon cloud around the hole in different
states. Figure 6 displays these clouds for several states
including those of the lowest energy, thus showing
different typical shapes of the ferromagnetic cluster.
Contributions of the selected j spin configurations with
largest amplitudes were used with their respective weight
in obtaining the probabilities shown in this figure. The
wave function contains components with a hole posi-
tioned either on the spin-up or on the spin-down sublat-
tice of the Néel state. Corresponding magnon clouds are
shown in separate plots. It can be seen from Figs. 6(a)
and 6(b) that for fixed S, the size of the magnon cloud
grows with a decrease of J/t. Similarly, Figs. 6(b), 6(d),
and 6(e) demonstrate the growing size of the ferron with
an increase of S, for a fixed J/t. In Fig. 6(c) an example
for an asymmetric magnon cloud is displayed.

In summary, within the framework of the spin-wave
approximation the energy spectrum of the single-particle
one-hole states of the two-dimensional ¢-J model has been
considered in the parameter range 0.01<J/t<1. The
spectrum consists of bands characterized by different
values of the z component of the total spin S, and corre-
sponding to different sizes of ferromagnetically ordered
regions around the hole. The formation process of such a
region in the ground state has been discussed. It can be
attributed to a monotonous growth of the steepness of the
E /t-J/t curves with increasing S,. The shapes of the
magnon clouds around the hole and the point symmetries
of the lowest eigenfunctions were determined for the
different bands in various points of the Brillouin zone.

As mentioned above, the value of the parameter J /¢t
for La,CuO, is supposed to be in the range
0.15J/t50.3 which is far from the critical value
J/t =0.05 where the state corresponding to the smallest
ferron (S,=2) becomes the lowest one according to our
calculation. Thus, the lowest hole state is characterized
by S, =1 and there is no ferromagnetic region around the
hole. This fact, however, does not mean that ferron
states will not be observable. It is clear that any relaxa-
tion process will include these states. A rather localized
magnon distribution around the hole in some of these
states implies that the lifetime with respect to a decay to
a ferron with a smaller spin and a magnon can be large
and the states can be observed as long-living metastable
states. Due to their large spin these states are especially
important for the magnetization processes. On the other
hand, there are several classes of crystals characterized
by anomalously small values of the effective parameter
J /t, e.g., metamagnetics.2?® For such crystals the results
obtained above and their straightforward extension to the
3D case give the quantitative description of the process of
ferron formation in the ground state. Returning to cu-
prate perovskites it is worth noting that the above-
mentioned quasi-one-dimensionality around the minima
of the S, =1 band effectively leads to a large sensitivity of
the ferron state to the interaction with phonons. Accord-
ingly the carrier transport is strongly anisotropic in this
case.
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