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The theory of the uniform electric-field distribution instability in superlattices is developed. The
instability with respect to high-field domain formation was discovered some time ago by Esaki and
Chang but no microscopic theory has been proposed so far. To determine the instability condition we
consider first the conductivity of a superlattice with a uniform electric-field distribution for arbitrary
relations between the width of the miniband, the electric potential drop per period, and the energy
uncertainty due to scattering. Such a general case can be described quantitatively with the help
of the density matrix if an effective electron temperature is larger than those three characteristic
energies. The instability threshold corresponds to an electric field for which the separation between
Stark levels in the superlattice becomes larger than the energy uncertainty due to scattering. The
physical reason for the instability is that any local increase of the field leads to a larger separation
between the Stark levels and to the local decrease of the current. The solution of the instability
problems shows that near the instability threshold only long-wavelength fluctuations are unstable.
At the initial stage of the development of the instability nonlinear effects accelerate the fluctuation
growth.

I. INTRODUCTION

Since the work of Esaki and Chang the instability of
the uniform distribution of electric Geld in superlattices
has been observed experimentally many times. These
experiments show that if an electric Geld applied to a su-
perlattice becomes greater than some critical value then
the uniform distribution of the field along the superlat-
tice breaks down and a high-field domain comes about.
Although no direct measurements of high-Geld domains
have been made, they are usually thought about as a
large potential drop across one of the barriers forming
the superlattice so that the first level in the well at one
side of the barrier is in resonance with the second level
in the well at the other side.

The physical reason for the formation of high-Geld do-
mains was shown by Esaki and Chang. They attributed
it to a negative differential conductance (NDC) predicted
for a superlattice in a high enough electric field. For
a continuous medium with an K-shape current-voltage
characteristic a simple phenomenological theory predicts
the formation of high-field domains propagating with
some drift velocity. ' Esaki and Chang assumed that
the uniform-field distribution in a superlattice is unsta-
ble for the same reason as in a continuous medium. This
reasonable assumption leaves, however, at least two ques-
tions which cannot be answered by such an analogy. The
Grst is that high-field domains in a continuous medium
drift while nobody has detected any motion of the do-
mains in superlattices. The second question is related
to the fact that the NDC in a superlattice results from a
rather small energy bandwidth in the direction perpen-
dicular to layers. A high-field domain destroys the one-
band propagation of electrons and so destroys the reason
for the NDC. That is, the question arises as to whether

the suggested instability would lead to the formation of
a high-field domain or to some nonstationary phenomena
due to the destruction of the one-band transport.

The first attempt to develop an adequate theory of
the instability in superlattices and answer these ques-
tions was made by one of the authors. In that work
a superlattice was modeled by a series of identical cir-
cuits consisting of a nonlinear resistor and a capacitor
in parallel. The capacitor and resistor described, respec-
tively, displacement current and tunneling current across
a barrier. Although this simple model explained the in-
stability, domain formation, and hysteresis detected in
superlattices, ' it also left a few unresolved problems.
The main problem is that the modeling of a superlat-
tice by a series of circuits is possible only in the case of
noncoherent tunneling across difFerent barriers. In other
words, a barrier can be modeled by a resistor if electrons
are scattered after each tunneling. In the opposite case
minibands are formed and tunneling is coherent across
all barriers at the mean free path of an electron.

The present work has been started to study the sta-
bility of the uniform electric-field distribution under the
condition of coherent tunneling. Actually we considered
a general case with any relation between the mean free
path and the period of the superlattice.

In Sec. II we describe the physical picture the con-
ductivity and instability in superlattices and show main
results of the work.

In Sec. III an equation for the electron density matrix
in a superlattice under an electric field is derived. We
consider only one miniband (or one level in each well)
and neglect tunneling or thermal exciting of electrons
in upper minibands. Even in this case the derivation
is not simple because the instability takes place in the
regime intermediate between the band conductivity and
hopping. In general, no quantitative theory exists at this
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situation. We prove, however, that in superlattices it is
possible to use the equation for the density matrix with
the collision operator calculated in the Born approxima-
tion.

In Sec. IV the current-voltage characteristic of the su-

perlattice in the case of the uniform electric-field distri-
bution is calculated.

In Sec. V we consider the instability of the uniform-
field distribution along the superlattice. In Sec. VA
the equation for a density-matrix perturbation bp is ob-
tained. bp depends on two Stark numbers, v and v'.
Because we study the stability of a uniform state the
equation for bp has a simpler form in the Fourier repre-
sentation with respect to (v+ v')/2. The self-consistent
electric-field distribution is found in Sec. V B.In Sec. V C
the stability of long-wavelength fluctuations is studied.
For a long-wavelength perturbation a superlattice can be
considered as a continuous medium. The dispersion rela-
tion for fluctuations with a short wavelength is obtained
in Sec. VD.

In Sec. VI the nonlinear growth of fluctuations in a
superlattice with a finite length is studied near the insta-
bility threshold.

Section VII contains the discussion of the results and
their comparison with available experimental data. In
particular we compare our results with the calculations of
Tsu and Dohler and discuss the experiments of Sibille
et g&.~5 37-4~

II. PHYSICAL PICTURE AND MAIN RESULTS

The electron transport in a superlattice is character-
ized by a few energy scales. The main scales are an over-
lap integral between electron states in adjacent quantum
wells A, an energy uncertainty induced by electron scat-
tering I', and an average potential drop per one period
eI"d (here e is the electron charge, I' is the average elec-
tric field, and d is the period of the superlattice).

Without an electric-field quantum-mechanical consid-
eration leads to the formation of a band with the width
4A. In a uniform electric-Geld E, the continuous spec-
trum in the band is replaced by a system of Stark levels
with the energy separation eEd. The spatial size of each
Stark state is A/eE i4's For differ. ent relations between A,
I', and eEd two difFerent transport regimes are possible
(Fig. 1).

If eEd « I' « A the Stark levels are not resolved
and the quantum number characterizing the electron mo-
tion perpendicular to the layers is momentum. Elec-
tron transport can be described by a distribution func-
tion depending on the electron momentum and satisfy-
ing the classical Boltzmann equation (region I in Fig. 1).
The only difference between this case and usual semi-
conductor transport is that one cannot use the efI'ective-
mass approximation and has to take into account the
real electron spectrum in the band. This approach was
used by Lebwohl and Tsu and Sibille et a/. who
used. the relaxation-time approximation. In a simpli-
fied version of this approach the Boltzmann equation
is replaced by balance equations or hydrodynamics

eI" d

FIG. 1. Diferent types of conductivity in superlattices.
Band conductivity takes place only in region I. In regions
II and III electrons are localized at Stark levels. In region
III the size of the Stark states is about one period. In region
IV electron are localized in wells of the superlattice due to
strong scattering. The instability threshold goes along the
boundaries between regions I and II and regions III and IV.

equations. ' The same case was studied also with
Monte Carlo calculations. '

There are two possible reasons for a violation of the
band spectrum and electron localization. The first is the
Stark quantization, when eEd )& I'. The distribution of
electrons is characterized by the occupation numbers of
the Stark levels and the transport mechanism is hopping
between them (regions II and III in Fig. 1). The case
of a Stark quantization was studied by Yakovlev, Tsu
and Dohler, Dohler, Tsu, and Esati, Movaghar and
Calecki, Palmier, and Chomette.

Another reason for electron localization is strong scat-
tering, when I' )& A. In this case an electron is scattered
after each tunneling across a barrier and no miniband
exists, no matter what value eFd takes (regions IV and a
part of region III in Fig. 1). Note that the localization in
separate wells of the superlattice takes place also if the
electric field is so strong that eFd )) A (region III in Fig.
1). The transport in this case is hopping between adja-
cent wells of the superlattice. This case can be described
with the phenomenological model.

NDC takes place at the boundaries between regions I
and II and regions III and. IV in Fig. 1. The physical
meaning of this result is very clear. ' For a weak
scattering, I « A, and in a small field, eEd « I', the
Stark levels are not resolved and the electron spectrum
is continuous. When the electric field exceeds the value
of I'/ed the continuous electron spectrum is split into
Stark levels, which impedes an electron space transfer.
Transitions between the Stark levels take place only due
to scattering and the current is proportional to the ratio
of I' to the separation between them, eEd. This is the
region of a NDC.

The same can be described in the classical language.
The electric field accelerates an electron and its wave
vector k grows proportionally to time, k eFt/h. Such
a free acceleration can last no longer than the relaxation
time h/I'. That is, in the case of eI"d « I the electron is
scattered before its wave vector reaches the value of vr/d
and it can experience the Bragg reflection from the top of
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the band. The current under this condition is limited by
scattering and, in general, goes up with the electric fi.eld.
In the case of eEd )) I' the electron Bragg reflection
limits the electron velocity and leads to a NDC.

In the case of a strong localization, I' )) A or eEd )) A,
the transition from region IV to region III in Fig. 1 with
an increase of the electric Geld leads to the violation of the
resonance between levels in adjacent wells and reduces
the current between them.

It appears that the instability of the uniform electric-
Geld distribution comes about along with the NDC, which
supports the original idea of Esaki and Chang. The ex-
planation of this coincidence is the following. For a weak
scattering and eEd I' electron scattering competes
with the Bragg reflection. In other words, it is possible
to think about Stark levels smeared by scattering. Any
local increase of the electric field moves apart local Stark
levels and impedes the current between them. As a result
charges of the opposite sign are accumulated on sides of
the electric-field fluctuation. The field created by these
charges is of the same sign as the initial fluctuation field,
which leads to a further decrease of the current, i.e. , to
a growth of the fluctuation. In the case of a strong scat-
tering a similar argument is applied to resonant levels in
adjacent wells.

In the phenomenological case, I )) A or eEd )) A,
electrons are localized in different wells and the den-
sity matrix is nearly diagonal in the number of the well.
Transitions between wells can be described in the Born
approximation. The opposite case is more complicated.
The problem is that the threshold of the NDC and the
instability corresponds to the transition between band
transport and hopping. The parameter of the perturba-
tion theory for band transport is the ratio of I to the
characteristic energy, which in the case of narrow bands
is the width of the band or eEd, whichever is larger. And,
in general, near the boundary between regions I and II
in Fig. 1 the perturbation theory fails. If we come from
the side of the hopping transport, the condition justify-
ing the perturbation theory is opposite, eI"d/I )) 1, and
it is also violated near the boundary between regions I
and II.

The situation in superlattices is dramatically simpli-
Ged because of the in-plane electron motion. In this case
there is another energy which characterizes the in-plane
electron motion, e.g. , temperature T. The condition
T )) I' is enough for the justification of the perturba-
tion theory. To make this fact clear, in Sec. III we derive
the equation for the density matrix with the help of the
Keldysh technique. The derivation is similar to that for
the Boltzmann equation.

We consider a strong elastic relaxation mechanism and
a weak inelastic relaxation mechanism. Although an ex-
pression for the elastic collision operator is written down
for impurity scat tering the explicit form of the scat ter-
ing matrix element is not used anywhere and all results
can be applied for the cases of the acoustic- or optical-
phonon scattering as well. Acoustic-phonon scattering is
quasielastic and leads to a momentum relaxation much
faster than the energy relaxation. Optical-phonon scat-
tering at temperatures below the phonon energy in the

first approximation also leads only to the momentum re-
laxation. Indeed, because of a small phonon dispersion
an absorption followed by the emission of a phonon does
not change the electron energy.

It is important to note that the energy uncertainty I'
results from elastic scattering. Apparently perturbation
theory is justified for a weak inelastic scattering. For
this reason we do not make a specific derivation for the
inelastic part of the collision operator, which is available
in textbooks.

The resulting equation for the density matrix is rather
complicated and in the following sections it is simplified
for the case when the width of an electron energy distri-
bution is much larger than eEd, I', and A. This is not
a very strong limitation. At high temperatures T, the
width of the distribution is T (we measure temperature
in energy units) and the required condition is satisfied.
At low temperatures the width of the electron energy
distribution is determined by an energy relaxation and
larger than T due to a heating of the electron gas.

For a uniform electron distribution the density matrix
depends on two Stark numbers, not separately but only
on their difFerence. The equations for the matrix ele-
ments resemble the Boltzmann equations for even and
odd parts of the electron distribution function in the
hot-electron theory for wide band semiconductors.
We consider acoustic-phonon energy relaxation. For this
mechanism the energy relaxation operator is reduced
to a difI'erential operator and the Boltzmann equation
can be solved analytically without any further approx-
imation. The electron energy distribution and current-
voltage characteristic is expressed in terms of an integral
containing I'(E), where E is the electron energy. For typ-
ical elastic scattering mechanisms (impurities, acoustic or
optical phonons) the dependence of I' on the energy is not
very strong and all qualitative features can be obtained
without an exact form of that dependence.

The study of self-consistent nonuniform electric-field
distribution j.n Sec. VB leads to a more complicated
equivalent circuit than in a simple model suggested in
Ref. 12. The main difI'erence is that a well is not a metal-
lic plate. It has a finite polarizability and an electric Geld
penetrates through it. Each well can be characterized by
an efFective dielectric constant and an efIective capaci-
tance. An equivalent electric circuit for a superlattice
is more complicated than that suggested in Ref. 12 (see
Fig. 2).

The dispersion relation connecting the frequency and

FIG. 2. Equivalent circuit for a superlattice. Electrons are
confined in points A while the potentials which affect them
correspond to potentials in points B'. The electron transport
can be described by the resistors only in the case of sequential
tunneling.
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the wavelength of fluctuations is rather simple for a long
wavelength. The most important parameter in this case
is cue~, where u is the frequency (or just the inverse time
scale) of a fluctuation and r@ is the energy relaxation
time. If w7@ && 1 the fluctuation can be described by
phenomenological equations (see, e.g. , Ref. 9). The evo-
lution of the perturbation is characterized by three phe-
nomenological coeKcients, a differential conductivity, a
drift velocity, and a diffusion coeKcient. The opposite
case is not described by phenomenological coeKcients be-
cause fluctuations also perturb the electron energy dis-
tribution. The main difference of this case from the first
one is that the drift can be neglected compared to the
diffusion. These results show another disadvantage of
the model used in Ref. 12 where a diffusion current was
neglected. The diffusion is not inherent exclusively to
long-wavelength fluctuations. It just reveals that for a
nonuniform electron distribution the current between ad-
jacent wells depends not only on the potential difference
between them but also on the difference of electron con-
centrations.

The dispersion relation for any wavelength can be stud-
ied only numerically. The most important result is that
for any set of parameters which we checked the instabil-
ity came about first for long-wavelength fluctuations (see
Fig. 3). Then the question arises how such an instabil-
ity leads to a high-field domain with the length of one
period. A possible answer comes from the study of the
nonlinear evolution of fluctuations.

In general, two situations are conceivable. Nonlinear
effects can limit the growth and lead to a nonuniform
stationary state. The other possibility is that nonlinear
effects intensify the growth of fluctuations until other
physical phenomena become important or a stationary
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but time-dependent regime (e.g. , periodical) is set up.
We considered the nonlinear growth of fluctuations when
the electric field is very close to the instability thresh-
oM and the instable region includes only one degree of
freedom of the superlattice. It appears that at the initial
stage nonlinear effects accelerate the growth of fluctu-
ations in superlattices with parameters usually used in
experiments. This means that high harmonics excited as
a result of nonlinear interaction can substantially reduce
the characteristic length scale of growing fluctuations.

III. DERIVATION OF THE KINETIC EQUATION
FOR A SUPERLATTICE

It is convenient to start calculations in the Wannier
representation (i.e. , the representation diagonal with re-
spect to electron states in different wells) because in this
representation it is easy to write down the Hamiltonian
of a superlattice. Electron wave functions in the Wannier
representation are

where to (x —nd) is the wave function of the level with
the energy E in the o.th well, d is the period of the
superlattice, p and r are the in-plane wave vector and
coordinate, and S is the normalization area. The electron
Hamiltonian of a perfect superlattice in a uniform electric
field I' is

Here e and m are the electron charge and mass, respec-
tively, E„= 5 p /2m, and A is the tunneling matrix
element between nth levels in nearest wells. We neglect
tunneling on the distance more than one period. Also we
consider the electric field I" so small that eFd is much
smaller than the distance between energy levels in a well.
The mixing of the levels due to the field and the tunneling
between different levels in the nearest wells are neglected.

Eigenvalues of the Hamiltonian Eq. (2) are E „~
+E„—eFdv, and eigenfunctions are expressed in terms

of Bessel functions

O. Q

me

rr/d

FIG. 3. The dimensionless attenuation coeKcient,
—Irncu jI', as a function of the fluctuation wave vector, k, for
typical superlattice parameters. Positive values of Im~ cor-
respond to unstable fluctuations. When the electric field ex-
ceeds the threshold value the instability appears first at small
k.

We will use subscripts n and P for the Wannier represen-
tation, and p and v for the Stark representation in which
the Hamiltonian Eq. (2) is diagonal.

Without a scattering the Stark quantization takes
place in any small electric Beld. Only in zero electric field
the Hamiltonian Eq. (2) gives a band spectrum with the
width of the bands 4A

We assume that the Fermi level is below the second
subband. Then below the stability threshold and on the
first stage of the development of the instability the sec-
ond and higher subbands are empty. So hereafter we
assume that only the Brst subband is occupied and omit
the energy Fq and the subscript showing the number of
a subband.
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The total Hamiltonian contains 'Ro, a self-consistent
electron potential energy induced by a nonuniform dis-
tribution of electrons among the wells e4, and a scat-
tering potential U. We consider that the main scattering
mechanism is impurity scattering. The overlap of elec-
tron wave functions in different wells is small and only
diagonal elements with respect to the wells 4 and U
will be taken into account. Matrix elements of the op-
erators eC and U in the Stark representation have the
form

Go~'Gg2 ——o~ + o.~Ej3G32 )

G02*G]2 = oz + ~13G32&z .

The matrix Keldysh Green function G~2 depends on two
sets of variables, (p„p, t), and a sum and integral with
respect to the variables with the subscript 3 is implied
in Eqs. (6) and (7). The operators in the left-hand sides
(lhs),

0
G = ih ——'Rg,

ot
contain the Hamiltonian

(5)

The argument 2AjeI" d in Bessel functions will be omit-
ted.

We will assume an arbitrary relation between the width
of the subband 4A, the electric potential drop per period
eEd, and the energy uncertainty due to scattering. All
these energies, however, will be considered much smaller
than the width of the electron energy distribution in each
layer of the superlattice. The last assumption allows us to
derive a kinetic equation for the electron density matrix.
We will make use of the Keldysh technique and derive this
equation in the same way as the Boltzmann equation is
usually derived.

In the Keldysh technique the kinetic equation results
from the Dyson equation which can be written in two
equivalent forms,

'Rg ——(E„—eFdv) b„+eC'„

o is the Pauli matrix.
Green functions depend on two times, tq and t2. In-

stead of them the difference, tq —t2, and the sum,
t = (t, + t )2/2, times can be introduced. The charac-
teristic values of the difference time is of the order of h
divided by the characteristic energy, i.e. , the maximum
of the Fermi energy and temperature. The time t charac-
terizes much more slow variation of occupation numbers.
So, in the right-hand sides (rhs) of Eqs. (6) and (7) all
functions can be considered dependent on the same time
t and the integration with respect to t3 is reduced to
the integration with respect to difference times. Then
the Fourier transform with respect to the difference time
leads to the Green functions depending on t and a fre-
quency ~ which is a spectral variable.

The density matrix can be expressed in terms of G +.
The difFerence and half of the sum of (—+) matrix ele-
ments of Eqs. (6) and (7) has the form

[ I~ +l» = xs s2 zs s2 + zs s2 xs s2 ~Ot

n G;,+ —
—,'(Z„G-+),.= —,'(Z"„G;,+ —Z;,+G;, —G"„Z;,+ + G;,+Z;, ) .

(10)

For the calculation of self-energies we need also equations
for advanced and retarded Green functions. Equations
for them are obtained from Eqs. (6) and (7),

RuG" —-('R, G") = 1+ -'(Z, G }
12 G21

Here [a, 6] = ab —ba and (a, b) = ab + ba
The superlattice is uniform in the y, z plane and Green

functions as well as self-energies are diagonal with respect
to p. We consider the case of a weak scattering when the
energy uncertainty due to the scattering is much smaller
than the width of the in-plane electron energy distribu-
tion, the electron temperature, or the Fermi energy. The
important point is that the self-energies can be calculated
in the erst approximation. The correction to this ap-
proximation (diagrams with crossings of impurity lines)
contain the ratio of the energy uncertainty to the Fermi

Z i (cd, p) = NIGH@, ~uvI
d '

i
V

i
G„,((u, p'),

~„p (~~ P) = ~„~(~~P) ~

(14)
(15)

energy or electron temperature, whichever is larger. In
the case of a superlattice with narrow minibands such a
characteristic energy can be the energy of in-plane mo-
tion, i.e. , electron temperature. This fact makes possible
the development of the quantitative transport theory for
superlattices in the regime intermediate between band
transport and hopping. It is worth noting that this is
not the case in three-dimensional (3D) narrow-band semi-
conductors where the characteristic energy (for one-band
transport) does not exceed the width of the band.

For simplicity we assume that electrons in different
wells are scattered by different impurities. It implies that
the screening radius is smaller than the period of the su-
perlat tice. Then
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Z„+(cu, p) = N—IC„„„

where

(16)

p„„(p,t) = 5 G„+(ur, p, t),
27ri

has to be determined with the help of Eq. (10). The
equation for the density matrix can. be obtained by the
integration of Eq. (10) with respect to cu,

Nl is the two-dimensional (2D) density of impurities, and
V» is the matrix element of one impurity potential.

The retarded Green function can be found from Eqs.
(12) and (14). Equations (ll) and (16) are linear and
uniform with respect to G +(p) and this function cannot
be found from them. Actually, Eqs. (11) and (16) can be
used to And only the dependence of G + on w. The
integral of G + with respect to ~, the density matrix

G(d (Z"G + —Z +G + G"E +
27r

In the rhs of this equation it is necessary to substitute
the solution to Eqs. (11) and (16).

The operator of the electron velocity in the x direc-
tion in the Wannier representation has the form v p

——

(iAd jh)(8 p+i —6 p i). So, the current density between
the o.th and (n+ 1)th wells is

dp 2(J vJ +i—~
—J +i ~J ~)p~~ (»t) .

27r 2 (2o)

Equation (20) is reduced to the expression used by Tsu and Dohler in the case of hopping conductivity and a
uniform electric-field distribution (see Calecki, Palmier, and Chomette ).

IV. CONDUCTIVITY OF SUPERLATTICE WITH UNIFORMLY DISTRIBUTED ELECTRIC FIELD

If the electric field is uniformly distributed along the superlattice C = 0. Then, for a weak scattering, terms
containing self-energies in Eqs. (11) and (12) can be neglected compared to he@ and solutions to them are

~ —E„+eFdv+io '

r v+ v'5
+, (~, p) = 27ri p ~ (p, t) 8

~

Ru —E„+eFd
2 ) (22)

The substitution of these expressions in Eq. (19) gives

(v —v') p (p)

iN (2~), E„—E„+eFd(v —"+2" ) + i 0 E~ —E„+eFd(v' —"+"
) —i0

»p'v' pvV, ' (p) Guvl '
23E„—E„+eFd(p, — +"

) —i0 E„—E„+eFd(p — "
) + i0

p- (p) = t --- (p) . (24)

We will solve Eq. (23) only in the most interesting
instability case when

Making use of the identity C~+
C»l„~ it is easy to show that Eq. (23) is translation-
ary invariant. A stationary solution to Eq. (23) has the
same invariance, i.e.,

A, eFd&&T, (25)

where T is the effective electron temperature which char-
acterizes the width of the electron energy distribution.
(We do not assume that a real distribution is the equilib-
rium one with the temperature T . This quantity is used
only for estimates. ) In the case of an effective energy re-
laxation T T. In the case of low temperature and an
appreciable heating of the electron gas T ~ T. The esti-
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mate of T, under difIerent conditions will be given later
in this section [Eqs. (37) and (38)].

The energy difFerences E& —Ez in the collision opera-
tor are of the order of T, and the collision operator can be

expanded in terms of eEd/T, . After the expansion sums
with respect to numbers of the Stark levels can be calcu-
lated explicitly (see Appendix A). Keeping only terms of
the first and the second order in Eq. (23) we get

~ eEd
i —vp„(p)

d '

+2A'~-, 0[p.(P') —po(P)]~" (Ep —Ep )—

+A( p, (p')+ p .(p')]~..—p. (p')(&.,.+ &-,—.)+ p-+ (p)+ p-- (P))~'«. - E. )

1 eEdv
( ) (26)

The last term in the rhs of Eq. (26) is diferent from the
first one in the lhs only by a factor. It can be considered
as a renormalizaton of the electron charge and can be
neglected. Then one can see that if the terms of the
order of A/T, are neglected at all the equation for po
is separated &om equations for p„with v g 0 and does
not contain an electric field. This is natural because po is
the distribution function in a layer and without tunneling
it does not "know" about the electric field. Along with

the tunneling in this equation it is necessary to take into
account inelastic scattering which was not considered so
far. The operator of the inelastic collisions, I;„po, can be
added into Eq. (26) without making use of the Keldysh
technique.

Equations (26) with v P 0 show that p (A/T, ) ~ ~po.
That is p~„~ with ~v~ ) 2 can be neglected and we come
up with the following equations:

2~Nr
h , IVpp I'[po(p') —po(p)][~(Ep —Ep ) + 2A'~" (Ep —Ep )] + I'-po(p)

NrA+ , IVpp I'[»(p') + p-i(p') +»(p) + p-i(p)]~'(Ep —Ep ) = o, (27)

.eEd 1 2+Nr A
p+ (p) = --„r(E„)p,(

I

, IVpp I' »(p) —p. (p') ~'(Ep —E. ),

where for an isotropic energy spectrum and scattering
(i.e. , or ~V&p ~

depending on ~p
—p'~ ),

equations are

I'(Ep) = 27rNI
I

iV i
6(E„—E„.) (20)

~l p, (E)+A r(E)»(E)+p, (E)+2A "' =0,dE dE

depends only on the energy.
The first term in Eq. (27) describes an elastic relax-

ation in separate wells and it is the largest one. If all
other terms are neglected it leads to a distribution func-
tion depending only on the energy, i.e. , po(p) = pp(Ep).
An equation for this function can be obtained by the av-
eraging of Eq. (27) with respect to the energy. 2' s The
elastic relaxation is averaged out. For po depending on
the energy p~~ also depends on the energy. The resulting

pieEdp~, (E) = —I'(E)p~, (E) —AI'(E)

where IE, is the operator of the energy relaxation. Equa-
tions (30) and (31) remind us very much of the Boltz-
mann equations for the even and odd parts of the elec-
tron distribution function with respect to the electron
momentum in the theory of hot electrons in wide band
semiconductors.
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Near the instability threshold and for T, smaller than
the optical-phonon energy the main relaxation mecha-
nism is the acoustic-phonon scattering. The emission of
an optical phonon without a transition between difer-
ent Stark levels in this case is impossible. The optical-
phonon emission in transitions between Stark levels is
limited by a very wide minibands. The last possibility is
discussed in detail in Sec. VII. For the energy relaxation
due to acoustic-phonon scattering (compare Refs. 32 and

po is the crystal density, m is the in-plane effective znass,
d is the width of a well, and:- is the deformation po-
tential.

Equation (31) gives

AI'(E) d po
p+ {E)= —

1(E)~,,Fd dE (34)

and then Eq. (30) with the help of Eq. (32) is reduced to

33)

dpo
BI@ po(E) = Q(E) po(1 —po) + T (32)

Q(E) po(l —po) + T dpo

where

7r'm=' t' 3Emd' )QE =
ds 1+

2po „

I'(E) dpo+""""'r(E)+(.Fd) dE
=' ""

The solution to this equation is

po —— exp
2A2 {eFd) 2 I'(E)

o q(~) "'(~) + (~+~)' j (36)

where ( is a normalization constant. Even without an
exact calculation Eq. (36) allows us to estimate the im-
portance of the heating of the electron gas near the in-
stability threshold. We can estimate the momentum and
energy relaxation times as 7„6/I' and r~ hT, /Q, re-
spectively. Near the instability threshold, when eFd I',
the width of the electron energy distribution T, in the
case of a weak heating and the condition for weak heat-
ing are

T ~ T A 7.@
2
—«1.T' vp

(37)

Because of 7@ )) wz the condition Eq. (37) is satisfied
only for A « T. For the band width 4A 0.5 meV the
last condition is satisfied for temperatures about 30 K
and higher. This estimate shows that for lower temper-
ature or for a wider band one can expect an appreciable
heating of the electron gas. In such a case

1/2

T, -A/ —
/i.)

A
2
—)&1.T' vp

(38)

Now it is possible to justify Eq. (25). In the esti-
mate we assume that eFd I' because this region of
the electric field is important for the instability, and
I'2/A « w~/w„because in the opposite case the reso-
nance tunneling is smeared so much that the width of
the resonance can be of the order of the separation be-
tween the levels in a well. Then for a weak heating, Eq.
(37), T, T ) A(~&/~„)i~2 )) A, I . In the case of a
strong heating, Eq. (38), I'/T, « (I'/A)(&„/7z) « 1

and A/T, (r„/v@) ~ && 1. That is, in both cases Eq.
{25) is satisfied.

For a uniform electron distribution the expression for
current density Eq. (20) can be simplified with the help

of Eq. (A2) of Appendix A and takes the form

2ieA dp
, (p i —pi)j(F) =

2me FdA I'(E) dpo
~hs o I'~(E) + (eFd)2 dE

where m is an in-plane effective mass. This expression
shows that the Ohm's law is satisfied for eFd « I' and
j oc 1/F in the opposite case.

V. STABII ITY OF THE STATIONARY REGIME

A. Kinetic equation

In the stability problem we have to study a nonuni-
form distribution of electrons along the superlattice and
cannot assume that p depends only on v —v'. We have
also to take into account the self-consistent potential C.
It is important to note that the 4 modifies the electron
spectrum so that, strictly speaking, Eqs. (21) and (22)
are not justified in the presence of a nonuniform electric
field. However, the corrections to the spectrum are of the
order of e4/T (see Appendix B) and we neglect them.

The difFerence of the subscripts v —v' in p char-
acterizes the widths of the electron wave packet and its
position is (v+ v )/2 . It is convenient to study nonuni-
form perturbation in a uniform system in the Fourier
representation. For that reason we introduce the Fourier
transform of p with respect to (v + v')/2,

I II

~& i:(E~')= ) ' ' s -(t E) (4 )
v' —v"=v

Sums containing Bessel functions are calculated with the
help of Eq. {Al) and after the transformation Eq. (23)
takes the form
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g
h ——ieFdv p„g(o/, p) = —ie[C, p] g +iNI

Ot

The commutator in the rhs of Eq. (41) is

P 2

(2 ), I PP I

( . ol ( . o&x) p„/, ((u, p') A„k —ieF A„—k+ieF' )
X

E„« —E& + eFdv/2 + i 0 E„« —E„—eFdv/2 —iO

al & a&—p„ /, ((4/, p) A „—ieF Ao ieF
)

ikd(v —p)/2 e—iA:d(v —p, ) /2
X E —E + eEde/24-«0 Ee —Ee —eEde/2 —«0 )

(41)

(kp —k'v i
[4, p] g=) ) 2isinI d

I

A „(k —k') 4/, /, p„/, (P) .
l

Here we introduced the notations

(42)

and

) C,
—2k d«2 (44)

The stability of the uniform distribution of the electric field and electrons along the superlattice is determined by
the evolution of a small nonuniform perturbation bp I, of the density matrix,

p„A:(p, t) = b/, o to (P) + «'-)p, / (P t) . (45)

We linearize Eq. (41) with respect to bp„/, and put bp /, (p, t) = bp /, (p)e ' . We also expand this equation in
terms of eFd/T, and average over the surface with a constant energy in the same way as we did this in the uniform
case. The result has the form

ikey —ieFdv + I'(E—) 'bp
A, ((u, E)

= —ie[C, p] g+ I'(E) A (k) ) A„*(k)hp„/, (E)

t9 A
+AI'(E) bpg g(E) + bp g /, (E) b ()

—bpo/, (E) I

—4ik 8 () +8 g+ b„
OE )

A dr(E) (
+

2 dE bpx, / (E) + bp —z, a(E) b~ o —bpo /. (E) I. 4zk b~ o + bv, x + bv —x I)
+6p.„,(E)+6p. ..(E))+26.,6e r(E) ' +6 I bp (40)2 «9 Bbpo/, (E)

Derivatives with respect to E' in these equations are taken
into account in order to consider the perturbation of the
heating of the electron gas (compare with the case of
the stationary conductivity, Sec. IV). This perturbation
is important only for a small enough k (see Sec. V C).
Because of that reason all terms containing these deriva-
tives are calculated in the lowest order on magnitude in k.
Also, a linearized operator of energy relaxation is added
in the equation with v = 0.

The commutator in the rhs is simplified to

[4, p]„/, = 2i sin(kd/2)(A +, (k)p —z
—A„)(k)p))c/,

eEd
A

vA (k) Rep,

Equation (46) has to be supplemented with the equation
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for the self-consistent electric potential 4 which is deter-
mined from the Poisson equation.

B. Solution of the Poisson equation

The electric potential 4 results from the redistribution
of electrons between layers of the superlattice. It is also
modified as a result of a polarization of electrons in each
layer. That is, 4 satisfies the equation

2dpn —= n+8n =),J 1 p
27r 2

uu'
(50)

The integration of Eq. (48) leads to a potential drop
across the o.th barrier (o.d —d+ d /2 & x & nd —d /2)

in barriers and wells, respectively, g (x) is an electron
wave function perturbed by 4', and n is an average elec-
tron concentration in a well. The actual electron concen-
tration

d~C =0 (48)

within a barrier and

d 4
4vre —n ~g (x —nd)~2 —nm~2(z —ad) (49)

within the o.th well. Here e and e' are dielectric constants

where P+ = 4(ndkd /2) and D is an electric displace-
ment which is constant within any barrier.

The integration of Eq. (49) gives the following expres-
sions for the displacement and potential in the o.th well,
nd —d /2 & z & od —d /2,

D(x) = D + 4vre dx'(n ~&jr (x' —nd)~ —nm,'(x' —ad))
cKd —d /2

cxd+d /2
= D +g —4me dx'(n ~@ (x' —o.d)~ —nm (x' —o.d)), (52)

1
C'(z) = &: ——, D(x')dx' = P++ —,

ad+d /2
D(x')dx',

D +q —D = 4vrebn (54)

A 1Pf =—
2

dx/

Under the condition eEd && E'2 —Fq the perturbation
of the wave function in the first level is a linear functional
of the potential inside the well, and

nd+d /2
dx' f (z') . (57)

(55)

The operator K can be found explicitly with the help of
quantum-mechanical perturbation theory in terms of the
eigenfunctions of the separate well.

Even in the linear approximation the solution to Eqs.
(52), (53), and (55) is very cumbersome and requires
wave functions of all levels in the well. Actually this
solution is not necessary. We are going to show that
each well can be characterized by only two numbers, ef-
fective dielectric constant e,g and effective capacitance
C,g . For these numbers we will obtain formal analytic
expressions in an operator form.

Equation (52) can be written in a symmetric form

With the help of this operator the symmetrized Eq. (53)
has the form

(58)

The substitution of Eq. (58) in Eq. (56) leads to an in-
tegral equation for D(z). In this substitution one has
to take into account that a constant potential does not
change wave functions in a well, so that Kconst = 0 while
P 1 = (z —ad) g 0. A formal solution to the obtained
equation is

—1

2

D(z) = + 47rehn Pm~ +47renP kC, (56)
4xen-

+47rebn
(
1+ p g p

)

p~2,

where the operator P is de6ned by the relation which gives the following expression for the potential:



48 THEORY OF CURRENT-VOLTAGE INSTABILITIES IN. . .

@( )
4 + 4'-+i

2

4vren-PKP
i

D +i+D - ( 4vren-P 1+

4~ebn - (P 1+
E

Pu)i . (60)

notation A [f] = f(ri+ 1) + f(a —1) —2f(n) .
Equation (66) shows that an equivalent electrostatic

circuit for a superlattice is not just a chain of capacitors
connected in series as it was assumed in Ref. 12. It is
reduced to the chain of capacitors if the concentration n
increases and both e ff and C ff go to infinity. Equation
(66) in this case is reduced to

We assume that each well is symmetric with respect
to its center. Then wave functions in a well are odd
or even. The operator K being applied to an odd or
even function keeps its symmetry while the operator P
changes it. Then for x = rid + d /2 Eq. (60) gives

d~ D~ + D~+i
CX CX 2

(61)

where

eff
(62)

and we introduced another notation

(f)=d
d /2

—d /2
f (x') dx' .

We can calculate the diagonal matrix element of the
potential, 4—:4, using Eq. (60) and Eq. (59). The
result is

4 + bn =P — D =P++ D +i,jef eff eff

(64)

where

[C] =—47re(d —d )
A~ e (68)

( 7rd

( e sin (kd/2)

1
~

edbnk,

where

The appearance of the second term in the lhs in Eq. (66)
can be explained in the following way. Equation (68) de-
scribes the potential difFerences between the layers in an
external electric field. The sources of that Geld are the
charges of the layers. That is, each charged layer brings
about an electric Geld which induces the potential dif-
ferences between all other layers. However, a charge not
only brings about a Geld. It also changes the potential of
the charged layer according to its capacitance. This sec-
ond eKect is taken into account in the second term in the
lhs in Eq. (66). A valid equivalent circuit (Fig. 2) con-
tains an element which accounts for this efFect. A shift
of the potential in a layer proportional to the perturba-
tion of the electron concentration can be represented by
a capacitor which separates the point where electrons are
confined (A) from that where the potential is measured
(B). The using of this circuit is limited by the condition
eEd « E2 —E'& .

Equation (66) gives the following expression for the
Fourier component of the potential:

eff
—1

(PiUi)
i
1+, P K P

i
(Pvai)

(65)

bnA, = —) e '" bn

) A*(k) 2dp
)2@v k( p)

[4]+ A [bn] = bn-
eff

(66)

reminding us of the usual Poisson equation. Here

d —d d+
&eff

(67)

is an average dielectric constant, and we introduced the

In. the derivation of Eq. (65) we used the relation

(fiPf2) = —(f2Pfi)
The explicit form of the operator in the right-hand

side of Eq. (65) can be easily found in terms of the eigen-
A A A

functions of the operator PKP. The calculation of the
eigenfunctions can be made numerically for any speciGc
structure.

Eliminating the displacement and P+ from Eqs. (51),
(54), and (64) we obtain a relation between the potential
matrix elements and redistribution of electrons in wells,

The factor 1/d in Eq. (70) allows us to consider Snab as
the Fourier component of a three-dimensional electron
concentration in the superlattice. The expression in the
parentheses in Eq. (69) is positive because 1/C, s ( 7rd/e
according to Eqs. (65) and (67).

C. Stability with respect to long-wavelength
perturbations

The exact solution of Eqs. (46) and (69) is very com-
plicated and we start with the case of perturbations with
a long wavelength 2m/k. We have a few scales for the
wavelength and corresponding scales for A:. The minimal
length scale is the period of the superlattice d, and the
corresponding k 1/d. The next scale is the size of the
Stark states A/eE and the corresponding k eE/A. If
the perturbation wavelength is larger than both of those
scales,
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eEd
kd &(1, (71)

/A A
&o(k) = 1 —

I
k I, &+&(k) = —ik

qeF eE (72)

then the superlattice can be considered as a continuous
medium and the equations for the density-matrix ele-
ments can contain only the first and the second powers
of k which correspond to the first and the second coordi-
nate derivatives. Equation (71) allows us to simplify the
coefficients A„(k),

We will see that for small k a characteristic frequency
of instable fluctuations is also small and we can neglect
Ru compared to I'. Because of the same Eq. (72) we can
keep of all Eqs. (46) only those with v = 0, +1, which
takes the form

ihubpo —
g = —kdA(hp, g

—hp g A,.)

AI'(E)
~

hpg g+ hp g A., + 2A '
~

+ Q(E) (1 —2po)hpo I, + TrOhpo, ~ l Ohpo, ~ ~

)
[pieFd + I'(E)] hp~q q = +ekdp~q@q —ikI'(E) hpo g

—Ar(E)
A B~po, k

eF BE

The simple form of the first term in the rhs in Eq. (73)
is obtained with the help of Eq. (74).

Equations (69) and (70) in this case also take a more
simple form,

4ze
bnk,

~k2 8jJg: 0 d f ikl y + evgbn@ —e27ikbnjc (79)

[compare Eq. (20)]. In the second equation we neglected
small terms containing hp„j, with ~v~ ) 1. The result is
identical with the result of the phenomenological theory
in a uniform semiconductor [see Eq. (7.2) in Ref. 36 and
Eq. (2.41) in Ref. 35],

1 2dp
hnt, = — hpo y((d, E&)

27r 2 (76) and the only speciflcs is in the expressions for the coeK-
cients, the differential conductivity,

which is equivalent to the Poisson equation.
It is worth noting that Eqs. (73) and (74) are very

similar to the kinetic equation describing fluctuations in
a uniform semiconductor under a strong uniform electric
field (see, e.g. , Ref. 35).

Even in the continuous-medium approximation the
competition of the electron transfer in the real space and
in the energy makes the study of fluctuations very dif-
ficult. Because of this reason we consider only extreme
cases when one of those phenomena dominates. We start
with the case of the very-long-wavelength fluctuations
when the transfer in the real space, i.e., the erst term
in the rhs in Eq. (73), can be neglected compared to the
energy relaxation, i.e., the last term in the braces in Eq.
(73). In this case a strong energy relaxation prevents
fluctuation of the electron energy distribution. Only the
space electron distribution can fluctuate,

(Oj l""='OF ~

Po

2me dA

vrh3

I'(E) —(eFd) ' Opo

[I'(E) + (eFd)']' OE

the drift velocity

Bj
Vg =

e On
2meFd2A2

vrh3

r(E) O2&, „r (E)+(,Fd) O.OE"

and the diffusion coeKcient,

(80)

Po
happ I, —— dbnI, . (77)

2md~A2

~$3
I'(E) OV. „I'2(E) + (eFd)2 On

The space fluctuations determine all time scales so that
the condition for Eq. (77) can be written as cur~ &( 1 .
The last inequality also justifies the omission of Lu in the
parentheses in the lhs in Eq. (74) because Ru &( h/r~ &(
h/r„= I'.

Substituting Eq. (77) in Eq. (74) we can calculate the
electric current density perturbation

The derivative with respect to F in Eq. (80) is calculated
for a constant po, i.e., only with respect to explicit F in
Eq. (39). It is identical with the derivative without such
a limitation in the case when the heating of the electron
gas can be neglected.

By the integrating of Eq. (73) we obtain the conserva-
tion law for the electric charge,

—xkdcxojg ——g j~ ~+i e —ie~bnI, + ikbjI, = 0 . (83)

2ieA dp , (hp —x,k —hpi, l. )27' 2 (78) Equations (79), (83), and (75) lead to the well-known
dispersion relation (see Refs. 36, 9, and 18)
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. (4~
~(k) = kvu —z I:od;f+&k

) (s4)

~

—iRu+ 2(kd)
~

bpo i,

I'2 (E) —(eFd) dpo= 2(kd) A I'(E) „„e@i,.

One can express bnk in terms of e'g using Eqs. (85) and
(76). The comparison of this expression with Eq. (75)
results in the dispersion relation

Equation (84) shows that the instability is related to
the negative difFerential conductivity which eventually
takes place for high enough electric Beld. Near the in-
stability threshold, when ~odif

~

is small, only fiuctua-
tions in the region 0 ( A: ( k are unstable, where
k = (4zr~o'z;i~/e 'D) is limited by diffusion. The grow-
ing Buctuations drift with the velocity vp.

Now we consider the second extreme case, w7E )) 1.
This condition allows us to neglect all the terms with the
derivatives with respect to E in Eqs. (73) and (74). Then
eliminating bp~i & from Eqs. (73) and (74) we get

tion w = ilm~ and Imu(k) is a monotonous function.
~(0) = —47rio~;r/e is an exact solution, so the instabil-
ity threshold is og;p ——0 in any case. If crd;f ( 0 then
Huctuations are unstable in the interval 0 ( A: ( k
where

4me2 I'2(E) —(eFd)2 dpo
eh2d 0 I'2(E) + (eFd)2 dE (88)

me2dA2 E —Eth
0dif ~3~ ~ )

is an exact solution to Eq. (86). That is, the qualitative
behavior of u(k) in the case of wv'@ )) 1 is difFerent from
the phenomenological case only by the lack of the drift.

Equation (80) shows that the electric field at the in-
stability threshold Eth satisfies the condition eEqhd I'.
If in the integral in Eq. (88) I' —eFd I' and pp(0) 1
(a high enough doping) then k q, /d, where q,
2me2/eh2 is the screening parameter. Usually q, d & 1
and the condition Eq. (71) is violated. It means that the
condition Eq. (71) is satisfied only in a small vicinity near
the threshold, E —Eth (( Eth . The same condition also
justifies the omission of Lu in the parentheses in the lhs
in Eq. (74). Indeed, near the instability threshold Eq.
(80) gives the estimate

8me2dA2 I'2 (E) —(eFd) 2 dpo

[r'(E) + (eFd)']' "E
which means that Ru/r q, d(A/1 ) (F —F,i,)/Fzi, .

A2F(E)—zhcu + 2(kd) (r, (@)+( ~~), )

= 1. (86) D. Dispersion relation for short-wavelength
fiuctuat ion

In Eq. (86) the functional dependence u(k) is determined
not only by the distribution function po(E) but also by
I"(E) and it cannot be presented in a more simple form.
In the case when the energy scale of the variation of I (E)
is larger than T, we can put I'(E) = I'(0) in Eq. (86) and

The results of Sec. VC can be generalized for large
values of k. For this purpose we neglect in Eq. (46)
the energy relaxation operator and all terms containing
derivatives with respect to the energy. Then we obtain

iRu —ieFdv+ I (E—) bp„k(~, E)
j4~

(u(k) = i
~

—o.g—;i + &k
e ) (s7) = —ze[@, p] A, + I (E) A (k) ) A„*(k)bp„,y(E),

which reminds us of Eq. (84). A weak dependence of
I' on E leads to a renormalization of the difFusion co-
eKcient. The energy dependence of I' is determined by
the scattering potential [see Eq. (29)]. Typically ~V~& ~

monotonously decreases with ~p
—p'~ and in such a

case I (E) is also a monotonously decreasing function.
Our numerical calculation show that then there can be
only one unstable solution to Eq. (86). For this solu-

where the commutator in the rhs is defined in Eq. (47).
Because of the lack of a scattering potential correlation
in difFerent wells the integral operator in the rhs of Eq.
(90) appears to be degenerate. It means that Eq. (90)
easily can be solved with respect to the sum in the rhs.
The result is

i her + I'(E„) . — A*(k) [I,p],i
i~+ r(E„)g(~, k, E„) —ibsen —ieFdv+. I'(E„) '—A* k bp„ I, ~, Ep ———ie (91)

where we introduced a notation

g(~, k, E) = 1 —) A„'(k) . . A„(k) .r(E) —zr
(92)
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The rhs of Eq. (91) is also expressed in terms of g(cu, k, F) and we get

=1 ec'k

A —iku + r (E„)g((u, k, Ep)

eI'd ( 0 l
x —I' Ep —i~ g ~, k, Ep Repg+ A g w, k, Ep Impy

The integral of the left-hand side of Eq. (93) with respect to p is the Fourier transform of the perturbation of the
concentration, Eqs. (70). It means that integrating Eq. (93) we obtain a relation between bnk and 4y,

Snab = gi, (cu)eC g,

where

dE eId ( 0
Q~(~) ==

~n2Ad, in +r(z)g(~, k, z)
—[V(E) —iMlgI~, s, z)R~pi+

I
a a(~, &, &)

I ™PiI. (»)
2 ( OA

' )

The comparison of this relation with Eq. (69) leads to
the dispersion relation between ~ and k,

~d

& e sin (kd/2)
I R(~) =1

&.a ) (96)

VI. DEVELOP MENT OF IN STABILITY FOR
F & F~h

The development of the instability for I" ) Eth is deter-
mined by nonlinear effects. There are two main sources
of nonlinear effects in superlattices. The first is the non-
linear susceptibility of each layer, in other words, the
effect of upper levels. The second is the self-consistent

Under the condition of Eq. (71) and ~ (( I' Eq. (96) is
reduced to Eq. (86).

Equation (96) is very complicated and cannot be solved
analytically even in the case of a constant I'. It is possible
to obtain an analytical solution for eI d much larger and
much smaller than I'. Both cases, however, do not have
much practical interest and instead we show some results
of the numerical solution.

In all calculations we considered an infinitely long su-
perlattice. The main result is that as the Geld increases
the instability comes about Grst for small values of k.
The instability region of k extends with further increase
of the field. Typical results are shown in Fig. 3. Positive
values of Im~ correspond to unstable fluctuations. We
failed to find reasonable values of parameters for which
fluctuations with finite value of k become unstable at a
smaller field than fluctuations with infinitesimally small
k.

The instability at small k seems quite unexpected com-
pared to a high-field. domain which results from the devel-
opment of unstable fluctuations and has a characteristic
length of one period. It is very interesting in this rela-
tion to follow the nonlinear stage of this development.
Some simple study of the nonlinear problem is made in
the next section.

redistribution of the electric field along the superlattice.
Here we neglect the effect of the nonlinear susceptibility
because of end « f2 —t-i.

In the analysis of growing fluctuations it is important
to keep in mind that the superlattice has a Gnite length
and values of k are quantized. Nonuniform fluctuations
start to grow not at I' ) Eih, w'hen Imw(0) ) 0, but
at a larger field, F & Fih when Imw(k) ) 0, where k )
7r/L and L is the length of the superlattice. For a long
enough superlattice the minimal possible value of k =
7r/L appears in the phenomenological region. This case
is well studied (see Ref. 9 and the literature therein).
It was shown that nonlinear effects limit the fluctuation
growth and eventually lead to the formation of high-field
domains drifting in the direction of the electron drift. We
will consider here the opposite case, ~a~ )) 1.

The evolution of growing fluctuations is determined by
nonlinear effects which couple harmonics with different
values of k. The study of the evolution of many growing
and interacting harmonics is a very diKcult nonlinear
problem. We will consider here a situation very close to
the instability threshold when only the harmonic with
the minimal possible value of k appears in the region 0 (
k ( k and is growing up. Such a limitation allows us
to consider nonlinear effects in the lowest approximation.
The main question which we are interested in is whether
nonlinear effects intensify or hinder the growth of this
harmonic.

For the solution of the nonlinear problem we use Eq.
(83) in t representation, where current in the rhs is ex-
pressed in terms of 8p~i A, Eq. (78). It is necessary now
to find an expression for bpgi A. taking into account non-
linear effects. The only source of nonlinear effects is the
commutator in the rhs of Eq. (41). The nonlinear part
that we need is

ie[e ~p]+],Q —+ed ) (k k )@fg—/g'8p~i, k . (97)

In Eq. (97) we keep only terms of the lowest order in
k. To Gnd a nonlinear expression for bp~q I, we have to
add Eq. (97) in the rhs of Eq. (74). The iteration of the
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resulting equation leads to the necessary expression for
bp+i A... Equation (75) shows that in the lowest order in
k main terms are those containing 4A. . The result is

hjA, = e bnl, —— ) (k —k')Cp g k'4A,
(u(k) 1 B'j

X C gl I'll k eyllI/ (98)

B j(E) 2me dA dpo B
OE- -5 . "

dE BE-
r(Z)E

I'2(E) +. (eEd)2 (99)

cu(k) in Eq. (98) is the solution to Eq. (86).
Fluctuations of the electron concentration and electric

potential satisfy some boundary conditions. For simplic-
ity we assume that an external circuit maintains a con-
stant potential drop across the superlattice. Then phases
of bng can be chosen in such a way that Snj*, ——8n

Because only the Fourier harmonic bnp with the mini-
mum possible value of k is growing in the linear approx-
imation, it is enough to consider its coupling only with
the second harmonic bn2I, and neglect higher ones. Then
we come up with the well-known equations,

nI, = —iaaf]n/, —iPn2I, nk —ning~ n/„
n2y = —Nd2n2k + 4tpn~

(1oo)
(1o1)

where wi ——w(k), w2 ——ur(2k),

&4~&' e B'j (4~1' e' B'j
n = —~, , (1o2)

e ) 4k BE ( e f 6k BE

Near the instability threshold ~~ = —ip~, pz ( 0, and
p2 & 0. In this case it easy to show that nonlinear effects
can limit the growth of the fluctuations only if

4p2
+o, ) 0.

'72
(1o3)

We can estimate the lhs of Eq. (103) in the case of a con-
stant I' and very close to the instability threshold, when
k —k « k . Then p2 —317k2, and Eq. (103) is satisfied
for eE~'hd & 1.1I'. For so high field, however, k q, jd,
Eq. (71) is violated, and we cannot use the expansion
in II. . That is, in general, near the instability threshold
nonlinear effects intensify the fluctuation growth.

In general, the situation can be different, i.e., nonlinear
effects can limit the growth of fluctuation, in superlat-
tices with a small doping, when po(0) = sr' n/mT « 1.
We do not elaborate this case because in an experiment
there may be problems related to a nonuniform field dis-
tribution due to electron injection from highly doped con-

which essentially means the expansion of the current in
terms of the electric-field perturbation. Here, as in Eq.
(80), current derivatives are calculated for a constant po,
i.e. ,

tacts.
We want to note, however, that in such a case near the

threshold nonlinear effects determine only the amplitude
of the resulting steady state while the field distribution
corresponds to the most unstable harmonic. As we have
seen, in the most realistic situation nonlinear effect near
the threshold accelerates the growth of fluctuation and
further increases the nonlinearity. Such a development
eventually leads to the growth of high harmonics which
effectively reduces the characteristic length scale of the
fluctuations. This mechanism can explain the contradic-
tion between the long-wavelength instability and short
high-field domains detected in experiments.

VII. DISCUSSION

The most intriguing result of our paper is that near the
stability threshold only long-wavelength fluctuations ap-
pear to be unstable. This conclusion does not contradict
the formation of high-field domains with the length of
one period. Near the threshold nonlinear effects acceler-
ate the growth of unstable fluctuations which eventually
leads to the generation of high harmonics and the reduc-
tion of the characteristic length. We are not aware of
any experiment where the spectrum of unstable fluctua-
tions was measured. A possible check of our results could
be made in microwave experiments just below the stabil-
ity threshold. For large enough fluctuations the nonlin-
ear amplification overcomes the linear attenuation. So a
large enough microwave signal can excite linearly stable
fluctuations. The frequency dependence of the amplitude
necessary for the excitation can give some information
about the stability in different regions of the spectrum.

The main limitation of our theory is related to the
possibility of deriving an equation for the electron den-
sity matrix. As we already discussed in Sec. II an
equation for the density matrix can be easily derived
in cases of I' « eEd (in the Stark representation) and
eEd « I' « 4A (in k representation). In the intermedi-
ate case, when I' eEd, an equation for the density ma-
trix cannot be derived in a simple way in spite of k being
a good quantum number in a periodic system. The prob-
lem is that in this case the collision operator cannot be
written in the Born approximation and high-order correc-
tions have to be taken into account. We got around this
difficulty by considering a wide enough electron energy
distribution where the Born approximation is justified.

In the calculation of the conductivity in Sec. IV we con-
sidered only one energy relaxation mechanism, acoustic-
phonon scattering. The reason for this is that the typi-
cal width of the electron energy distribution of 2D elec-
tron gas is smaller than the optical-phonon energy Leo.
In general, the energy relaxation by the optical-phonon
emission is possible in a superlattice under electric field if
after phonon emission an electron goes to another Stark
level. If the miniband width is smaller than the optical-
phonon energy then this mechanism is reduced near the
instability threshold for the following reason. Usually
eEd I (( Ruo. This means that the emission of an op-
tical phonon is possible only for a transition from a Stark
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level with the quantum number vq to a level with the
quantum number v2 such that vi —v2 = v & ~o/eI" d
The distance between the centers of these levels is vd.
The transition is possible only in the case of an appre-
ciable space overlap between the Stark states, i.e., when
their size A/eE is larger than the distance between their
centers. We get the system of conditions

A ~o)vd&
eE eE ' (104)

which requires A ) Ruo. That is, the energy relax-
ation by the optical-phonon emission can be neglected in
superlattices with minibands narrower than the optical-
phonon energy.

Our result concerning the NDC threshold at eEd I'
seems to be different from that of Tsu and Dohler (see
also Ref. 29). In Ref. 23 the current falls off for end
larger than some energy which is sometimes close to the
width of the band, and there are oscillations of the I-V
characteristic even below this point.

First, one has to notice that the oscillations are ob-
tained only if the transitions between adjacent wells are
taken into account. Tsu and Dohler showed that the
inclusion of transitions to the next nearest wells elimi-
nated the oscillations. Our expressions for the current,
Eq. (20), and the first line of Eq. (39) are exact. In
the case of hopping conductivity the last equation can
be written in another form containing diagonal density-
matrix elements and the transition probabilities between
all of the wells. That is, we cannot expect the oscilla-
tory behavior in our results.

The comparison of the critical value of eEd is difBcult.
Tsu and Dohler considered electron —acoustic-phonon
scattering and implicitly assumed that the phonon en-
ergy transferred in one scattering event is larger than
the energy uncertainty due to scattering. Indeed, they
used a b function including the phonon energy for the
energy conservation. Our situation is opposite. We ne-
glect the energy transfer in the calculation of 1 . Actually,
for the electron (in-plane) wave vector 2 x 10s cm 1 and
the sound velocity 5x 10 cm/s the characteristic phonon
energy is less than 1 meV. A typical value of I' is usually
a few meV or larger. So we consider that our calculations
are more close to typical experimental conditions.

Recently Sibille et al. observed the NDC in
GaAs/A1As superlattices with very wide minibands. We
make an estimate for one of their samples for which we
found all necessary data. An estimate I' is obtained with
the help of Eq. (39). For a low electric field and I' in-
dependent of the electron energy the integral in the rhs
gives po(0)/1. po(0) is determined by Eq. (36) where in
low field exp(() = exp(E~/T) —1. As a result we obtain
the following expression for the conductivity:

For the nondegenerate electron gas Eq. (105) results in
the mobility

2eA2d2

srT (106)

For a superlattice with 13 monolayers of GaAs and seven
monolayers of A1As per period d = 57 A. , the calculated
width of the first miniband is 12 meV, ' and the mo-
bility p 40 cm /Vs. The measurements were made
at room temperature. This gives A = 3 meV Eq. (106)
and I =8.6 meV. The threshold field I' =22 kV/cm gives
eEd =12.5 meV. There are two possible reasons for the
difference between I' and eFd values. One is the diKer-
ence between calculated and actual values of the band
width by 20%. The other is the simplification which we
made in the derivation of Eq. (105), actually I' depends
on E. This dependence is different for difFerent scatter-
ing mechanisms and different doping (because of screen-
ing). It is possible that different instability thresholds
in diferent samples are explained by difFerences in the
scattering mechanism.

In conclusion we would like to make a remark concern-
ing short superlattices with a very low doping. In such
superlattices the NDC can exist without any instability
of nonuniform fluctuations. Really, cry;r in Eq. (87) is
proportional to the electron concentration while the dif-
fusion coeKcient does not depend on it. That is, for a low
concentration and large minimum value of k = 7r/I the
diffusion term in the rhs of Eq. (87) is greater than the
first term and the instability threshold is not reached.
The suppression of the NDC instability by difFusion is
well known in continuous medium.
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APPENDIX A

A specific case of the addition theorem for the Bessel
functions has the form rsee, e.g. , Ref. 42 Eq. (8.530.1)]

) J„(z)J„(z)e'"~= J
~

2z sin —
I

e'

) Jg(z) Jk+ (z) = b o,
k

) k Jp(z) Jk~ (z) = —(8,i + 8, i) .

(A2)

(A3)

(A1)

From this equation it is easy to obtain two identities nec-
essary for the calculation of the sums over Stark levels,

2meAd ~ /T1 —e
vrh3I

(105)
Making use of Eqs. (17), (A2), and (A3) we get

).&o-~~ p~-p (p') = ~,opo(p') (A4)
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) o»p'P~ —p'(p) = )~ ~~I I 'Py'(p) = P~(p) I (A5)

p+ p'l z) &-o~~ P~-~ (P')
I

v —
I

= -((~-,~ + ~-, -~)Po(P') —~-,o[»(P') + P-~(P')]k
)

/).&-. P — (P') = —-((~-, +~-,—)P.(P') —~-, [P (P')+P- (P')])
PP

( v+p') z P).+o». P- .(p-) I ~ —
I

= —-[P--~(p) + P-+~(p)] ——P.(p),
2 j 2 2

( p') z V).C'-» P~ (P) I
~ ——

I

= --[P--~(P) + P-+~(P)] + —P-(P) .2) 2 2

(A6)

(A7)

(A9)

APPENDIX B

S is a matrix which diagonalizes the Hamiltonian 'Rq, i.e. ,

) S (Ep —eFdv)b „+e4 „S„„——(Ep+ E„)h~~
vv'

(Bl)

In this new representation we can neglect the efFect of scattering on the spectrum and use expressions for Green
functions similar to Eqs. (21) and (22), e.g. ,

G + ((u, p) = 2~ip„~ (p, t) 6
I

Ru —Ep-( E+E
2

Then the inverse transformation to the Stark representation gives

G„+(~,p) = 27ri ) S„„p„~(p, t)h
I

Ru —E„— "
I
S,'„, .

( E, +E„)
1'1' XX

If the energy corrections E~ + E~~ in the b function can be neglected compared to a characteristic electron energy
then Eq. (B3) is reduced to Eq. (22).
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