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Phonon-drag magnetothermopower oscillations in GaAs/As„Gal „Asheterojunctions
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The tensor M which determines the heat flux U=ME in a weak electric field E is calculated for a
two-dimensional electron gas in a perpendicular magnetic field B. The dominant phonon-drag contribu-
tion is calculated using Boltzmann transport, allowing for the two-dimensional (2D) character of the
electron gas. The Landau levels are taken to have Gaussian line shapes with the rms level width
y=CB' where C is the only adjustable parameter. Setting C=0.5 meV T ' gives good agreement
with new experimental values of M~„obtained for GaAs/Al Ga& As heterojunctions when B varies be-
tween 2 and 10 T and the temperature varies between 1 and 5 K. M~ is negative and contains strong
magneto-oscillations in phase with the density of states at the Fermi level. The model also predicts
M,„=O,whereas experiment gives peak values of iM„„~up to 60% of those of ~M~„~. We demonstrate
that setting M, =0 in the calculation has little effect on the predicted thermopower component S,„but
yields poor approximations to the experimental values of S~ .

I. INTRODUCTION

The phono n-drag contribution to magnetothermo-
power dominates the response of the 2DEG in
GaAs/Al„Ga& As heterojunctions in the temperature
range 1 —10 K. ' It has been measured in quantizing
magnetic fields by several authors. Kubakaddi,
Butcher, and Mulimani make calculations in the quan-
tum limit. Quantum oscillations at lower magnetic fields
are discussed by Lyo, and Oxley et al. use a similar ap-
proach to interpret data for a Si metal-oxide-
semiconductor field-effect-transistor (MOSFET).

The calculations made in Refs. 2, 3, and 7 all proceed
by modifying the Boltzmann theory of phonon drag in
three dimensions (3D) (Refs. (i and 9) to allow for the 2D
character of the electron gas. The Boltzmann theory is
developed by calculating the tensor M which determines
the phonon heat Aux V=ME in a weak electric field E.
Macroscopic transport equations are used to express the
thermopower tensor S in terms of M and the resistivity
tensor p. In these papers attention is focused on the ob-
served behavior of S „which is reasonably well described
by the theory. In the present paper we reverse this ap-
proach. Theoretical values of M are compared directly
with values derived from experimental data for S and p.
We find that the theory gives a reasonable account of the
observed behavior of M„.However, we also point out
that the theory predicts M„„=O,in complete contradic-
tion to experiment.

The macroscopic equations relating M, S and p are
given in Sec. II. A detailed transport theory for a magne-
toquantized two-dimensional electron gas (2DEG) cou-
pled to 3D phonons is given in Sec. III. Previous ac-
counts ' ' are all very brief and concentrate on S so
that they do not reveal the major problem concerning

M„,. Experimental details aregiven in Sec. IV. Compar-
ison with new data for M and S in GaAs/AIGaAs hetero-
junctions is made in Sec. V, and a possible solution of the
M problem is discussed in Sec. VI. Technical details
relating to the calculations are given in the Appendixes.

II. MACROSCOPIC FORMALISM

TS „=p„M„—p „M„,
TSy py M +p „My„

(la)

We consider a 2DEG moving in the xy plane with a
scalar effective mass m *. We suppose that it is subjected
to a magnetic induction field B=(O,O, B) and is coupled
to 3D phonons. The entire system is assumed to be iso-
tropic in the xy plane. We are primarily concerned with
two 2D transport tensors: the resistivity tensor p
and the tensor M which determines the heat Aux U =ME
in an electric field E. The xy isotropy under proper rota-
tions ensures that p has the properties p =p and

p„~= —p~~. We work with p«and pyz Onsager symme-

try' gives p( —B)=p(B) so that p, and p „arerespec-
tively even and odd functions of B. We show in Appen-
dix A that M has the same symmetry properties as p.

In the experimental studies which we discuss, the ten-
sors measured are p(B) and the thermopower tensor

S(B). Onsager symmetry gives S(B)=II(—B)T ' at
temperature T where II(B) is the Peltier coefficient. This
coefficient determines the heat fiux U=II(B)J produced
by an electrical current density J. Since E =p(B)J, we
see that II(B)=M(B)p(B). The above Onsager symme-
try relation therefore reduces to TS(B)
=p( —B)M( —B)=p(B)M(B). Making further use of
the symmetry properties of p and M gives the equations
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where all the tensor elements are understood to be evalu-
ated for B=(0,0,8). We make extensive use of Eqs. (1)
and their solutions for M and M in terms of S„„and
S& in Sec. V.

III. MICROSCOPIC FORMALISM

To calculate M „andM „,we consider only the dom-
inant phonon-drag contribution to the thermoelectric
response of the system, and modify the standard
Boltzmann theory of magnetotransport in 3D (Refs. 8
and 9) to allow for the 2D character of the electron gas.
We confine our attention to the linear transport regime at
liquid-helium temperatures. Then it is necessary to con-
sider only acoustic phonons which interact weakly with
the heteroj unction and consequently retain their 3D
character. Thermopower calculations made on this basis
when B =0 are in good agreement with experimental
data. "' We therefore use the same approximation here.
We note, however, that in the nonlinear regime optic
phonons are generated, and they are affected significantly
by the heterojunction. '

It is convenient to label the acoustic phonons by Ro-
man letters: a, b, . . . , etc. The 2D phonon heat Aux in a
cube of side L is then

a, P, . . . , etc. label electron states in the magnetic and
electric fields and f is the occupation probability of state
cc. The quantities P ti(a) and P& (a) are the transition
rates for an electron in a full state cc(P) to an empty state
P(cc) involving the emission (absorption) of phonon a.
The factor of 2 accounts for spin degeneracy (we ignore
spin splitting throughout the analysis). The transition
rates are calculated in thermal equilibrium. Consequent-
ly P'& (a) and P& (a) are proportional to N, + 1 and N, ,
respectively.

To linearize X, in terms of the electric field, we write

f, =f, +f ', wheref:f (e—) = [ exp[(e e~—)/kii T]+ I ] (7)

N =—1
a (8)

is the Fermi-Dirac function and f is linear in E and
remains to be calculated. In Eq. (7), e is the energy of
state a in the magnetic and electric fields, eF is the Fermi
level, and T is the temperature. When f' is neglected,
Eq. (6) yields N,'=0 because of detailed balance. When

f ' is retained to first order we find, after some manipula-
tion of detailed balance relations, ' that

U=L g N, hco, v, , (2) where

where N„co, and v, denote the distribution function,
frequency, and group velocity of phonon a. Phonons
with the thermal equilibrium distribution function

N, = [ exp(irico, /ke T) 1]— (3)

The left-hand side of this equation is the total rate of
change of N, due to all phonon-scattering processes. In
the central section we have broken this up into a term

N", /r, which —does not involve electrons and a term
(c)N, /c)t), which does. Their sum must vanish in the
steady state. The relaxation time w, is given by
~, =A, /U, where A, is a measured phonon mean free
path.

We may write Eq. (4) in a form which is convenient for
iteration:

(5)

Phonon scattering by electrons is weak. In zeroth order
we neglect it altogether and X,'=0. In first order, we set
N,' =0 on the right-hand side of Eq. (5) to obtain

N,'=2r, gg [P'Tt(a)f (1 f&) P& (a)f&(1 f )]-, — —
a P

(6)

where we use the following notation. The Greek letters

make no contribution to U. We may therefore replace
N, in Eq. (2) by the perturbation N,' produced by the
electric field. To determine X,', we use Boltzmann's
equation for a homogeneous, steady-state phonon distri-
bution:

(4)

(9a)

(9b)

=f'(e ) f'(e )—
= —[df (e )Ide ]eEx (10)

When this result is substituted into Eq. (8), we must set
E =0 in all the energies involved to achieve a consistent
linearization. Leaving this understood, we find that Eq.
(2) reduces to U=ME, with

M =ggg (2~ ehco, /kii TL )I p(a)(x —x&)v,
„

a a P

(1 la)

and

Inspection of this equation shows that I &(a) may be
identified with the thermal equilibrium electron Aux ei-
ther from cc to P due to phonon emission or from P to a
due to phonon absorption. The two interpretations are
identical because of detailed balance.

To calculate f ', we follow Refs. 2, 3, 8, and 9 and sup-
pose that E is established adiabatically. Before E is ap-
plied, the energy of the magnetoquantized state a has a
zero-field value which we denote by e . The occupation
probability of state a is then given by Eq. (7) as f (e ).
By hypothesis, it does not change when a field
E=(E,O, O) is switched on. Hence f =f (e ) in the
presence of the field. However, the energy of state a does
change from e to e +eEx, where x is determined in
Appendix B. Consequently,
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M» =ggg(r 2e/kiiTL )I p(a)v, (x —xp) .
a a P

(1 lb) I (qs)=&q, (L /2rrl ) gg C„„,(qs)I„„,(Ace, ),
n n'

(16a)

Equation (11) summarizes our final formulas in the
general case. It only remains to fill in the details relevant
to GaAs/Al Ga, As heterojunctions which are given
in Appendix B. Thus a =(q, s), where q is a 3D phonon
wave vector and, in the usual approximation, s labels two
degenerate transverse acoustic modes and one longitudi-
nal acoustic mode. Moreover, in the Landau gauge for
the magnetic potential A=(O, Bx,O), crystal momentum
is conserved in the y direction which leads to Eq. (B5}:
xa xp l qy&

M = —(l22e/kii TL ) gg rq, ficoq, v, (q„q»/q)&(q~),
q S

(12a}

= —(l 2e/k&TL ) gg rq, hcoq, v, (q»/q)I'(q~),

(12b)

where

I (qs) =QQI p(qs) .
a P

(12c)

The xy isotropy of the system guarantees that I (q, s) is
independent of the orientation of

q~~
=(q, q» ). Conse-

quently Eq. (12a) gives M „=0.In Sec. V, we emphasize
that this result is in complete contradiction to experi-
ment, while Eq. (12b) gives a reasonable account of the
observed behavior of My~.

We see immediately that M is negative. To evaluate
it we follow Appendix B by putting a=nk» and P= n'k»,
where n and n' are Landau level indices and ky and k'
are wave numbers. Because crystal momentum is con-
served in the y direction, we find from Eqs. (12c), (9b),
and (B9) that

Xf («)[1 f—(«+Aro, )] . (16b)

Qnce I (q, s) is evaluated from Eq. (16), with the help of
Eq. (15) we may use Eq. (12b) to complete the calculation
of M . The theory contains only one parameter: y. A11
the other parameters of the heterojunction can be related
to measured quantities as described in Appendix C.

IV. EXPERIMENTAL DETAILS

The samples measured in Nottingham are long Hall
bars of width 0.25 mm and maximum voltage probe sepa-
ration 2.6 mm. They were grown by molecular-beam epi-
taxy (MBE), and at liquid-helium temperatures have a
mobility of 43 m v 's ' and an areal electron density
n, =5.2X10' m . The chip on which the device is
formed is 0.3 mm thick, 1 mm wide, and 12 mm long.

The samples are attached at their ends by indium faced
clamps to copper blocks which contain heaters and cali-
brated Ge thermometers. One of these is thermally
linked to a high stability 1-K pumped He pot and forms
the heat sink. The other forms the heat source. The ex-
perimental technique used to measure the temperature
gradient is described by Gallagher et al. ' We use the
resistances at two points across the sample as "thermom-
eters" to measure the temperature gradient. The temper-
ature difference established between the voltage probes is
set close to 50 mK at each measuring temperature. The
thermoelectric voltages are measured using an EM Elec-
tronics N11 rianovoltmeter with an overall accuracy of
better than 5%.

where the second factor is the degeneracy of the nth Lan-
dau level and

I„„.(A'co, ) =f d «p (« —«„)p( «+ ficoq, —«„)

I (qs)=gg+ I „k„,k (qs), (13) V. COMPARISON OF THEORY WITH EXPERIMENT

in which

I„„„,„,=C„„,(q~)N', f„',„,[1—f„'„]
X6[«„„—«„„qficoq, ], —

n n —
q (14)

p(x)=(yV'2') 'exp( —x /2y ) (15)

is a convenient normalized line-shape function with
linewidth y. Then we find that

where the factor C„„,(qs) involves matrix elements of the
electron-phonon interaction as described in Appendix B.

We see by inspection that k only appears in Eq. (14)
through the energies e„k and E'

k q
which are ran-n n —

q ~

domized by Landau-level broadening. We therefore take
a simple system average by integrating Eq. (14) over
E =E k and E =E k with a weighting factornk n —

q

p (« —«„)p(»'—«„),where «„=(n+ —,')A'co, is the energy
of the nth Landau level in the absence of disorder, and

We discuss first of all new measurements made at the
University of Nottingham, on a sample with
n, =5.2X10' m . The quantities p, p„„,S and 5

„

are all measured as functions of B. These values are then
used in Eq. (1) to determine M„andM„„.The results at
1.275 K are given in Fig. 1 for M „ascurve 1 and for
M „ascurve 2. We see that, as predicted, M is nega-
tive. Moreover, M

~
oscillates in phase with p, with

its minima located at the same B values as the Hall pla-
teaus.

Curve 3 in Fig. 1 is the theoretical curve for M „with
=0.75 mm (as measured) and y=CB'» meV with

C =0.5 meVT ' . The square-root B dependence has
previous theoretical and experimental support. ' ' Set-
ting C =0.5 meVT ' gives a reasonable fit to the ex-
perimental data. The magnitude of M

„

is sensitive to C.
Halving C roughly doubles the heights predicted for the
maxima of ~M ~. The experimental peak at 6 T associat-
ed with the n =1 Landau level is sharper than predicted
because of the effect of spin splitting. For higher Landau
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FIG. 1. A comparison of experimental and theoretical values
of M~„and M for a Nottingham sample with n, =5.2X10"
m at 1.275 K (Ref. 10). Curve 1: experimental values of M„.
Curve 2: experimental values of M„„.Curve 3: theoretical
values ofM„.For curve 3, y =0.5B ' meV and k~ =0.75 mm.

FIG. 3. A comparison of experimental and theoretical values
of M~„and M for Fletcher's sample 2 (Ref. 5) with

n, =4.8X10" m at 1.8 K. Curve 1: experimental values of
M . Curve 2: experimental values of M~ . Curve 3: theoreti-
cal values of M~ . In curve 3, y = 1 meV and A,~ =0.63 mm.

levels spin splitting is unimportant and the small
differences between theory and experiment originate from
our assumed Gaussian density of states. The predicted
shape primarily depends on the density of states within
the Landau levels, and is therefore not significantly
changed by introducing localized states into the level
tails. Curve 1 in Fig. 1 gives the experimental data for
M, . It has peak magnitudes comparable with those of

~

M ~. We recall that the theoretical prediction is
M =0.

Figure 2 shows similar comparisons of theory and ex-
periment for the same sample at 5.005 K, for which A, is
found to be 0.41 mm. At this temperature, spin splitting
is no longer resolved anywhere in the experimental data.
The theoretical curves are calculated in the same way as
in Fig. 1 with C=0.5 meVT ' . The behavior is not
significantly different from that found at 1.275 K.

We have also made calculations for some of the sam-
ples studied experimentally by Fletcher and co-
workers. ' We set y = 1 meV in all cases for comparison
with the result of Lyo. Figure 3 is drawn for sample 2 in

Ref. 5 at 1.8 K with n, =4.8X10' rn and A, =0.63
mm. Curves 1, 2, and 3 show experimental values of
M „,experimental values of M, and theoretical values
of M „,respectively. As before, the n = 1 Landau peak in

~

M „~is spin split experimentally whereas we ignore spin
splitting in the theory. This apart, we see that taking
y= 1 meV yields theoretical ~M~„~ peaks in satisfactory
agreement with the experimental data. In contrast to the
Nottingham data, however, M oscillates about zero.
The zeros follow no simple pattern. For sample BP4 in
Ref. 6 at 4.03 K with n, =6.24X10' m and A, =1.3
mm, ' we recover the results of Lyo for —S from Eq.
(la) by using his approximations p „=0 and

p»„= B/n, e In d—ete.rmining S~„from Eq. (lb), howev-
er, it is essential to use the experimental values of p be-
cause setting p„„=0and giving M its theoretical value
of zero yields Syz

Curve 1 of Fig. 4 shows experimental —S data for
the Nottingham sample at T =2.937 K. Curve 2 shows
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FIG. 2. A comparison of experimental and theoretical values
of 11' and M for the Nottingham sample with n 5 2 X 10
m at 5.005 K (Ref. 10). Curve 1: experimental values of M
Curve 2: experimental values of M~ . Curve 3: theoretical
values of M~„.For curve 3, y=0. 5B' meV and A,~ =0.41 mm.

FIG. 4. A comparison of experimental and theoretical values
of —S for the Nottingham sample with n, =5.2 X 10' m at
T=2.937 K. Curve 1: Experimental values of —S . Curve 2:
theoretical values of —S (M =0). Curve 3: —S„calculat-
ed using empirical M data. For curves 2 and 3, y=0. 5B'
meV and A,~

=0.6 mm.
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FIG. 5. A comparison of experimental and theoretical values
of S~ for the Nottingham sample with n, =5.2X10' m at
T =2.937 K. Curve 1: Experimental values of S~„.Curve 2:
theoretical values of S~„(M„„=O).Curve 3: S~~ calculated us-

ing empirical M „data. For curves 2 and 3, y=0. 5B' meV
and k~ =0.6 mm.

the corresponding theoretical results calculated from Eq.
(la) using the experimental values of p,„andp and the
theoretical values of M and M„.It is in good agree-
ment with the experimental curve 1, which is surprising
because we have shown in Fig. 1 that the theory is seri-
ously in error in predicting M =0. To see why this is
so, in curve 3 we show —S, calculated from Eq. (la) us-

ing the theoretical value of My& and the experimental
value of M . There is hardly any difference between
curves 1 and 2. The reason is that the second term on the
right-hand side of Eq. (la) is overwhelmingly dominant,
as emphasized by Fletcher et al. , and so the value of
M „has little effect on the predicted values of —S„,
which are always positive, as observed, with peak heights
in fair accord with the experimental data.

The prediction M „=0is only revealed as a serious
deficiency of the model for calculating S when the mea-
sured and calculated S curves are compared. Previous
theoretical interpretations of GaAs/(Al Gai )As data
have concentrated exclusively on S and have conse-
quently overstressed the success of the Boltzmann trans-
port theory because S depends so weakly on M„.'

Curve 1 of Fig. 5 shows experimental S data for the
Nottingham sample at T=2.937 K. Curve 2 is the
theoretical result obtained from Eq. (lb) using experimen-
tal p values and the theoretical values of M and M . It
is completely at variance with the data because S

„

is
very sensitive to M . To illustrate this, in curve 3 we
show S „calculated from Eq. (lb) using the theoretical
value of M and the experimental value of M . This
time, in complete contrast to the behavior of S, chang-
ing M in this way alters the predicted values of S „so
much that curve 3 is in very good agreement with the
data. This is because the first term on the right-hand side
of Eq. (lb) dominates the behavior of S~„to such an ex-
tent that the errors in the theoretical value of M of the
type shown in Fig. 1 have a negligible effect on the calcu-
lated values of Syx.

VI. CONCLUSIONS

The theoretical curves in Figs. 1 —5 are all drawn with

y —1 —1.5 meV, while the largest value of k&T-0. 5

meV. Thus in these samples we are always concerned
with relatively wide Landau subbands. In this case, the
oscillations of ~M „~and —S„„arein phase with those of
p „,which are in turn in phase with the oscillations of the
density of states at the Fermi level D (Ez). In Ref. 20, we

point out that for very narrow Landau subbands with

y (0.06B'~ meV, the peaks in D(EF) greatly enhance
screening by the 2DEG which suppresses the electron-
phonon interaction. In that case the theory predicts
minima for ~M

~

and —S „atthe corresponding mag-
netic fields, while the maxima of these quantities occur at
field values corresponding to D(E~) minima, for which
the screening remains small.

The Landau-level width is determined by parameter C
in the relation y=CB' . To secure good agreement
with experimental data here, we need to take C =0.5
meVT ', which is 8.3 times larger than the value of
0.06 meV T ' necessary to produce the 180 phase shift
between maxima in M, and D(EF). With C=0.5

meV T ', the predicted orders of magnitudes and
phases of the —S„oscillations agree well with experi-
ment, and the temperature dependence is qualitatively
correct.

The major discrepancy between the theory and the raw
experimental data, which is only revealed when the S

„

curves are considered, is the prediction that M„=O.
This has its origin in the assumption that the electrons
can be adequately described by a diagonal density matrix
which does not change when the electric field is switched
on. Before this assumption can be removed, a substantial
development of electron transport theory in the integer
quantum Hall regime is required. The electrons must be
described by a full density matrix and the Landau-level
broadening must be taken into account self-consistently.
Theories on these lines exist in the case when the electron
scattering is elastic, ' ' but they do not give a satisfacto-
ry account of the quantized behavior of p „.It is for this
reason that we have consistently used experimental values
of p in calculating S from M. This difticulty is not so seri-
ous in the interpretation of phonon-drag magnetothermo-
power data as the prediction M =0. Nevertheless, it is
another unsatisfactory feature of the theory. We suggest
that it should be looked at before the M problem is ad-
dressed. A deeper understanding of the calculation of p
in the presence of both elastic and inelastic scattering
processes would throw light on the theory of phonon-
drag rnagnetotherm op ower which is inherently more

complicated because it is dominated by inelastic scatter-
ing.
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APPENDIX A:
THE SYMMETRY PROPERTIES OF M(B)

e'„k =(n + —,')%co, +5e„(k), (84)

The xy isotropy under proper rotations implies that
M(B) has the same symmetry as p(B). Consequently
M =M and M = —M . Here we show that
M( —B)=M(B) when 8=(0,0,8), so that M and M
are respectively even and odd functions of B. Unlike the
corresponding identity for p, which is given in Sec. II,
this result does not follow from time-reversal symmetry.
It is, instead, a consequence of gauge invariance and xy
isotropy.

To see this we note that the magnetic induction field
appears in the Hamiltonian through the kinetic-energy
operators for the individual electrons K =(p
+e A) /2m *, where p= i%—V In. Appendix 8, we
write A =(O, Bx,O) to calculate M(B) in a right-handed
coordinate system Oxyz. Now let us repeat the calcula-
tion with a new vector potential Az=(8y, 0,0) which
reverses the sign of B. The result is M( —8) because
the system is gauge invariant. We may, however, put the
new Hamiltonian in the same form as the old by intro-
ducing new coordinates x ' =y and y

' =x. Then K be-
comes (p'+e A') /2m* with p'= i RV'— and
A'=(0, 8x', 0). When M is calculated from this new
Hamiltonian in Ox'y'z the result is simply M(8) again,
which transforms to M(B) in Oxyz because
M (8)=M~&(B). Thus we obtain the desired result
M( —8)=M(B).

APPENDIX B: THEORETICAL DETAILS

x —x = —1(k —k')a P y y

= —l q (85)

because, as we show below, I & conserves crystal momen-
tum in the y direction. The perturbation of g„k by thefl

electric field is negligible.
The electrons interact with acoustic phonons through

both deformation and piezoelectric potentials. The in-
teraction Hamiltonian in either case takes the standard
form

qs

(86)

where a, and a+, are phonon annihilation and creation
operators. To evaluate I &(a), we use Eq. (9b) with
a=nk, P=n'k~, and a =qs. Then we have

(87)l,„,(qs) =P',, , (qs)f,„,[1 f„„],—n k n

where, since phonon absorption is involved,

where m, =e8/m * is the cyclotron frequency and
5e„(k~) is a random energy which takes approximate ac-
count of the Landau-level broadening.

When E=(E,O, O), the scalar potential is eEx. To first
order in E the energy of state a=nk increases by
eZ( —i kz). Hence, in Eq. (10), x = —i k and, in Eq.
(11) (with /3=n'k'), x&= —l k'. Consequently,

At liquid-helium temperatures, only acoustic-phonon
modes contribute to phonon drag. We therefore write
the phonon label a as (q, s), where q is the 3D phonon
wave vector and s takes three values which label one lon-
gitudinal mode (s =i) and two degenerate transverse
modes (s = t) with group velocities u&

= u&q/q and
u, =u, q/q, respectively, where u& and u, are the speeds of
longitudinal and transverse sound waves.

We suppose that the electrons are entirely confined to
the GaAs side of the heterojunction. Only the ground
electric subband is occupied. We write its z-dependent
wave function in the form

X
l (nk, le""ln'k, ' ) l' . (88)

—
[b 2 /( b 2 +q

2
) ]

3 (810)

Inspection shows that the squared magnitude of the elec-
tron matrix is the product of the following three fac-
tors +227 23

L
L ' f dy exp[i(k~+q —k )y] =5„,„,(89)

0 k, k —
q

oo 2
A, (q, ) = f dz P(z) exp(iq, z)

P(z) = (b /2) '~ z exp( bz/2), —

where b is determined variationally to be'

b =k~[33e k„/32~eye, e~]'~3

(81) where we have used Eq. (81) and

lg X~„„.(q„)=f dyX„(x+i'k,)X„,( +i k, ),""

Here, ~, is the static dielectric constant and k~ and e~
are the Fermi wave number and energy when B =0.

We use the vector potential A=(O, Bx,O) for which
the electron state label a=nk where n =0, 1,2, . . . la-
bels the Landau levels and haik is the eigenvalue of p~.
When E=O, the 2D wave function is'

gk =L '~e 'X„(x+1k ) (83)

where L„denotes the nth harmonic-oscillator wave func-
tion and 1 =(A/eB)'~ is the magnetic length. The corre-
sponding energy is

=(n. '/ni'4' ' ' 'I:L.' '(X)]' (811)

qii=lqiil= q +q
and n& are the smallest and largest of n and n', respective-
ly, and L„(g)is the associated Laguerre polynomial In.
deriving Eq. (811), use is made of the momentum-
conservation condition Eq. (89) to eliminate k'. k~ may
also be removed by a uniform translation of the x coordi-
nate. Only the length ql~ of

q~l is involved in the final re-
sult, which is derived by using formula 7.377 in Ref. 24.
The quantity C„„.(qs) in Eq. (14) is identified by compar-
ing Eq. (14) with Eq. (87) to Eq. (811). Thus we find that
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C„„(qs)= b, (q, )b.„„(q~~) I V~, I
(B12)

Only the piezoelectric interaction contributes to Vq, I

for each of the transverse modes, and is given by

V, I
=f, (eh, ) A, /q

where

f, =& „I2(

(B13)

Here p and h &4 are respectively the density and piezoelec-
tric coefficient and A, =(8q~~q, +q~~ )/4q is an anisotro-

py factor. ' The longitudinal modes scatter off electrons
through the deformation-potential interaction as well as
the piezoelectric interaction. The e6'ects are additive and
we can account for both interactions by writing

IVqtl'=f, [D'+(eh, 4) A, /q ] . (B14)

D (B)=(~l )
' g p (e~ —e„) (B15a)

Here, ft =f, (v, /vi), D is the deformation potential, and
At =9q~~q, /2q is another anisotropy factor.

The quantity E(q~~ ) which appears in the denominator
of V, is the dielectric function which takes account of
the screening of the bare interactions. It is a scalar de-
pending only on

q~I
because we use the single subband ap-

proximation for an isotropic 2DEG. The function is only
weakly dependent on T and we evaluate it for T =0 with
the density response function set equal to the density of
states at the Fermi level D (B), i.e., in the Thomas-Fermi
approximation. ' ' We use the notation D(B) because
the density of states at eF is evaluated as a function of B
for each sample from the known electron concentration
n,, by using the equations

(B15b)

where p(x) is the normalized line-shape function (15).
With these approximations,

1+ [e D(B)/2eyc, q~~]F(q(()ENN(q~~), (B16)

where F(q~~ ) is the form factor

(„,= f .Jd. Iy(z)I'Iy(z )I "xp[—q„I.—'I]
(B17a)

=['+ qadi/" +3(qadi/ )']/8[1+q»l/b] (B17b)

which allows for the spread in the z direction of the elec-
tric subband wave function P(z) given by Eq. (Bl). The
matrix element b,~~(q~~ ) is given by Eq. (Bl 1), where N is
the index of the Landau level closest to the Fermi energy.
It allows for the localization by the magnetic field of the
electron wave functions in the xy plane. Both F(q~~ ) and
b, NN(q~~~ ) are unity when

q~~~
=0 and fall off with increasing

qII. When these two factors are set equal to unity, Eq.
(B16) reduces to the Thomas-Fermi approximation to
e(q~~ ) for an ideal 2DEG. '

APPENDIX C. PARAMETER VALUES

The numerical values of the GaAs parameters used in
the calculations are ~, =12.9, m =0.067mo, vI=5140
ms ', V, =3040 ms ', p=5300 kgm, D = —9.3 eV,
and h, 4=1.2X10 Vm '. Apart from I*,these are the
values used by Lyo, who puts m*=0.70mo. The pho-
non relaxation time r~, is given by A,~/v„where A,~ is a
phonon mean free path which is measured for every sam-
ple we discuss along with the electron density n, .
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