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Master-equation approach to macroscopic quantum tunneling of charge
in ultrasmall single-electron-tunneling double junctions
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It is known that classical Coulomb blockade effects of single-electron-tunneling (SET) devices are dis-
turbed by higher-order tunneling efFects denoted as macroscopic quantum tunneling of charge (q-MQT)
or cotunneling. Starting from the von Neumann equation, a master-equation approximation of cotunnel-

ing is given for ultrasmall SET double junctions in the limit T =0. The inAuence of an external elec-
tromagnetic environment modeled by an additional impedance in the circuit is studied both in the low-
impedance and high-impedance limits. General tunneling channels described by quasiparticle current
amplitudes Imlq(co) are considered just as the Ohmic approximation which leads to some known results.
The rates of cotunneling show in the high-impedance case the effect of a "quantum" Coulomb blockade.
By regularizing the logarithmic singularities in the quantum rates using linewidth effects, the master-
equation description (Markov property) is complete in the sense of the tunneling theory up to fourth or-
der.

I. INTRODUCTION

The understanding of tunneling of single electrons in
ultrasmall normal conducting double junctions is of
essential importance for the control of more complicated
single-electron tunneling (SET) devices. The reason not
to consider simpler single junctions is that for a voltage-
driven single junction without any external environmen-
tal impedance there is no Coulomb blockade which is re-
sponsible for the interesting SET effects. ' But in the
case of a double junction one tunnel junction influences
the other and vice versa producing in this way the
Coulomb blockade. We take into account the presence of
an electromagnetic environment modeled by an addition-
al impedance Z (co) in the circuit (cf. Fig. 1)„ this environ-
ment generates an additional effect and one junction is
inAuenced by the other one and the external environ-
ment. Hence, the values of Coulomb blockade voltages
are modified and consequently the physical effects, too.
The model is characterized in Sec. III.

One can expect that the SET effects are relevant for
low temperatures satisfying the relation

Typical SET junctions are characterized by capacities C
of about 10 '. . . 10 ' F. To realize charge effects ex-
perimentally the quantum Auctuations should be
significantly smaller than the typical energy E&. This can
be realized if the tunnel resistances of the junctions R &i2

satisfy the relation

h
Rii2 »Rg= =25. 8 kQ .

Typical tunnel resistances are at least of the order of 100
kA.

The inAuence of the environment on SET effects has
frequently been discussed. ' It is assumed that the
charge distribution after a tunneling event relaxes in the
electromagnetic environment in the circuit. For small
Z(co), i.e., in the low-impedance case

ReZ(co) «R&,

the relaxation is very fast. The contrary case is that of
high impedance characterized by

eEc= »kgT .
2C

FIG. 1. Scheme of the considered circuit.

ReZ(co) ))R& .

The stationary mean tunneling current in a double
junction has been calculated in first-order perturbation
theory with and without environment, using as well the
"golden rule" arguments as the more fundamental
master-equation model. ' ' This last method is based
on the general theory of the density matrix (cf. Sec. II).
The master-equation approach of this process, denoted as
ordinary tunneling, is sketched in Sec. IV.

Beyond this ordinary tunneling there is a tunneling
effect of higher order denoted as macroscopic quantum
tunneling of charge (q-MQT), or cotunneling. It has been
investigated in the low-impedance case. '" ' Here, one
considers the tunneling process via the double junction as
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one act. This process is also possible for voltages below
the Coulomb blockade because the energy difference for
the whole process is negative even though the energy
differences for the tunneling events at both junctions are
positive. In other words, tunneling from the left to the
right electrode or vice versa happens via virtual electron
states on the central electrode. This process can be
viewed as quantum tunneling through a barrier built by
the two junctions and the central electrode which is mac-
roscopic. Therefore, this process is called macroscopic
quantum tunneling of charge (q-MQT). From another
point of view this process looks like a simultaneous tun-
neling of two electrons through the two junctions which
suggests the term cotunneling. Simultaneous means that
the time difference obeys the Heisenberg uncertainty
principle with the energy differences mentioned above.

Because there is no "classical" Coulomb blockade in
this case, the second-order contributions to the tunneling
current, even though they are much smaller than first-
order contributions (by the factor R&/R, &2), could dis-
turb experiments based on the blockade effect which has
really been observed. '

In a former paper' it has been shown that in the pres-
ence of a high-impedance environment, there is only a
partial breakdown of the Coulomb blockade by cotunnel-
ing. A new "quantum" Coulomb blockade is generated
which is approximately half the "classical" Coulomb
blockade. The aim of this paper is to present the more
fundamental master-equation approach of cotunneling in
the zero-temperature limit. The master equation is de-
rived in Sec. V.

How special tunnel channels are made available is de-
scribed by general quasiparticle current amplitudes
ImI (co). By using the Ohmic approximation, one gets
the known results. The rates of the master equation of
cotunneling show in the high-impedance case the effect of
the "quantum" Coulomb blockade. These and other
properties are specified in Sec. VI.

Averin and Nazarov' ' have shown that the q-MQT
current consists of two parts. The first one which dom-
inates depends on the product of the squared absolute
values of the tunneling amplitudes T" and is, therefore,
called incoherent. The second part is smaller than the
first part by a factor 6/E& where 6 ' is the electron
density of states in the central electrode. This part de-
pends on a mixture of the tunneling amplitudes of both
junctions. In this way it describes the interference prop-
erties of q-MQT and is called coherent. This term de-
pends on the internal structure of the central electrode
and vanishes if 6 ' becomes large.

Since the condition (30) (cf. Sec. V) was used this
master-equation approach yields only the incoherent part
of the mean cotunneling current.

The calculated cotunneling current has a logarithmic
singularity at the "classical" Coulomb blockade. ""'
This singularity is an artifact of the perturbation theory
and has to be regularized. This can be done by using usu-
al linewidth arguments of quantum theory (cf. Sec. VII).
Simultaneously, this regularization guarantees the Mar-
kov property of the tunneling process which makes a
master-equation description possible.

II. DENSITY OPERATOR THEORY

The dynamics of a system characterized by the Hamil-
tonian Ho coupled to a reservoir labeled H~ will be de-
scribed by the statistical operator p satisfying the von
Neurnann equation

The sum in brackets on the right-hand side corresponds
to the total Hamiltonian. HT denotes the interaction
part which is given here by tunneling. It is assumed that
the interaction is switched on adiabatically for t ~—~
(see Sec. IV). The operator p can be expressed using a
quasiseparation in the following way:

The density operator of the reservoir fz is given by the
canonical expression(/3 = 1 jk~ T )

—PH R

(3)

Trz means the trace with respect to the reservoir states.
Note that there are the equations

Using Eq. (1), the density operator cr of the dynamical
system obeys the equation

(4)

The unknown interaction term Ap in this equation can be
determined by successive approximation

gp(t)( ) —gp(t)( )

+ I dt'U(t, t')

X I(1 ft( Tr~ )[HT, bp(t')—(" "]I
X U '(t t')

where

X [HT, cr, (t')f„]U '(t, t')

U(t, t') =exp (H, +H~ )(t t')—1

Using Eq. (5) up to third order and the splitting of the
unitary transformation

U(t, t')=R (t, t')S(t, t')

with

R (t, t')=exp . H~(t t')—1

iA
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S(t, t') =exp H, (t t—')1

Eq. (4) can be written as

o (t) =FT '[o (t)]+FT '[t;o(t)]
+FT"[t;o(t).)+FT'4'f t;o(t)-)+. . . .

The terms on the right-hand side are given by

(6)

FT"= [Ho, o(t)],
iA

F~"= J dt'Tr~[[HT, S(t, t')[HT(t' t), o—(t')f~]S (t, t')]j,
( iA')

FT'= dt' J dt" Tr~ [[HT,S(t, t')[HT(t' t),S(t—', t")[HT(t" t), o—(t")fz]S (t', t")]S (t, t')]],(i') (9)

X ((1 fz Trz )—[Hz (t"—t), S (t",t'")[HT(t"' —t), o (t"')f~ ]

XS (t",t"')]S (t', t")]S (t, t')]] . (10)

Fz. '=
4

dt' dt" dt"' Tr~ HT, S t, t' HT t' —t,S t', t"
(iieet)

FT"'[t;cr(t)] ~ 1

(iA')"

It makes no sense to add in Eq. (6) terms of still higher
than fourth order in I (/i ii)rThe rea. son is that the last
term already corresponds to the usual perturbation-
theory treatment with respect to one single junction.
Higher-order terms would destroy consistency with the
model of the tunneling Hamiltonian which is as an ap-
proximation limited to small transmittancy. Because
there is no explicit time dependence of HT the time argu-
ment in HT(i. ) corresponds to the unitary transformation

HT(r)=R (r)HTR(i. ) .

the fiux operators 4, i and [ P, 4 J, respectively, with

~ =+,++z, +=~a@,—~,@z

which obey the commutation relations

[4&;,QJ]=i%5;, , [%,q]=i', [C&, Q]=i% . (14)

H~ —H~+Hp+HM+HE (15)

with

The reservoir Hamiltonian consists of the terms corre-
sponding to the left (A), right (P), and central (M) elec-
trodes as well as the environment (E) and reads as

III. MODEL
H =Ye,a,a, , (16)

This theory will be applied to tunneling in a double
junction with the electromagnetic environment of Fig. 1.
The dynamical part of the total Hamiltonian is given by
an operator expression of the Coulomb energy. The
operators are not labeled in a special way to distinguish
them from ordinary c numbers. Using the notations
Cz = C& +Cz, K, =C /Cz, ij = 1,2, and i Wj, one writes

(Qi —Qi)'
HO = V(K]Qi +K/Qi )

2C~

Q, &=en, ~ corresponds to the charges which have al-
ready tunneled through the respective junction . It is con-
venient to introduce operators of the difference charge q
and of the total charge Q as follows:

Ht =pe btb
P

HM=+e„d„d„.

a &, b, and d„stand for quasi-electron annihilation
operators satisfying the anticommutation relations
whereas e denotes the energies of the quasiparticles in the
electrodes with respective wave vectors. The spin is
neglected. Here, e.g. , metallic systems with a high densi-
ty of electron states are presumed. This provides the
justification of the ansatz (11) with classical capacities.
The environment is modeled by a chain of LC circuits la-
beled by the index q. It corresponds to a sum of harmon-
ic oscillators described by the Bose operators c (Refs. 1,
5, 6, and 21) in the following way:

e=Qi —
Qz Q=KiQi+KZQZ .

Now, Ho can be written as

(12)

HE —g Aco& c& e&
q

(19)

H = —VQ.
2C~

(13)

Corresponding to the principles of quantum theory, one
defines as canonical conjugates of the charge operators

In what follows it is necessary to take the continuum lim-
it with respect to the index q.

Corresponding to Eq. (15) the reservoir density opera-
tor fz can be split into a product of density operators be-
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longing to the electrodes (e) and the environment (E),

(20)

These alternatives characterize the low- and high-
impedance cases, respectively.

The interaction part of the Hamiltonian describes the
tunneling of an electron through the respective junction
which is connected to an excitation in the electromagnet-
ic environment. Following Grabert and co-workers'
one has

(21)

with
—i (e/A)w

Hi~ =QT&„d„aie ', H, =H, +,
A, ~p

—i (e/A)42
2+

(22)

p~p

and tunneling matrix elements T'" and T' '. The terms
labeled "+"in Eq. (21) mean tunneling from the left to
the right (cf. Fig. 1), in contrast to the Hermitian conju-
gates which describe the reverse process. The basic alge-
bra underlying this approach is the following rela-
tion 22& 23

V. MASTER EQUATION OF COTUNNELING

Going beyond this approximation, ' where cotunnel-
ing via both junctions has to be taken into account, the
next relevant term in Eq. (6) is FT ' because Fz' ' vanishes.
The calculation of cotunneling effects is only interesting
in the region of the classical Coulomb blockade where
contributions from FT ' do not play any role. On the oth-
er hand, beyond the classical blockade threshold cotun-
neling effects are irrelevant because they are strongly
suppressed compared with ordinary tunneling. The fol-
lowing considerations are limited to zero temperature
without exception.

For the evaluation of matrix elements of FT '[t;cr(t)],
we will give some hints as to the technical procedure.

(i) It is necessary to calculate the correlation functions
of the Aux operators. ' '

They arise from the evaluation of

(H~(t i )H;~ (t2) )g

H;~F(QJ. ) =F(Q + e6;, )H;~, (24)
Note that ( ) =Tr~ [f~ ]. In this manner one gets

where F is an arbitrary function of the junction charge
operators Q, , i =1,2.

IV. MASTER EQUATION OF ORDINARY TUNNELING

The evaluation of the density matrix according to Eq.
(6) up to second order in I/(ih') is determined only by the
term Fz~ '[t; cr(t) [. This corresponds to the Averin-
Likharev theory of single-electron tunneling without
cotunneling. Then, Eq. (6) leads for R& ((R; to a classi-
cal master equation for the diagonal elements o. in the n

representation (n =n, n2). A—s has already been men-
tioned, this condition guarantees that quantum Auctua-
tions can be neglected. The resulting master equation
reads as

o (n, t) = [ri(n —1)+l2(n —1)]o(n —l, t)

exp + —N (r) exp +—@J. =exp[a. .J(r)], (28)

where J is given in the zero-temperature case by

Re [Z, (co ) ]J(r) = J [coster —1 —i sincor]dc@ .—oo COB g

Z, denotes the total impedance of the circuit

Z, '(co)=icoC+Z '(co)

(29)

ie l l8
exp + —4(r) =exp Hzr exp + ——4&

with 1/C = 1/C, + 1/C2. The averaging procedure
( )z in Eq. (28) means tracing with respect to the states
of the environment. The time dependence of the phase
factors correspond to the unitary transformation

+[li(n +1)+r2(n +1)]o(n + l, t)

—[r, (n)+l, (n)+r2(n)+l2(n)]o(n, t) . (25)

lX exp ——H&~

V(") =min e e

2C) 2C2
for ReZ(co) ((R&, (26)

y(C&)— for ReZ(co) )&R& . (27)

The rate coefficients r, 2 (to the right) and li 2 (to the left)
are given by the energy differences connected with tun-
neling of single electrons at the respective junction de-
pending only on the netto charge q =ne. Details can be
found in Refs. 1, 2, 9, and 24—27.

The calculation of the mean current shows in the zero-
temperature limit that there is an exact classical
Coulomb blockade V„'&". One finds

It is assumed that tunneling events at different junctions
are not correlated (iW j),

((H,.+(ti )H. +(t2) )g =0 . (30)

Effects of correlated cotunneling have been investigated
by Averin and Nazarov' ' using another approach. De-
pending on a factor 6/E& where 6 is the energy splitting
of the electron states of the central electrode and
Ec =e /(2Cz), they are suppressed against incoherent
cotunneling. This is justified for metallic systems with
high densities of states. In this way all correlations of
higher order with respect to one junction are, in princi-
ple, neglected.

(ii) The traces can be carried out following the scheme
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Trii [H +(.t)H +(.t')( I —Trii ) [H„+(t")H, +(t'")f~ ] ]

=Tr, [H (t.)H, (t')H„+(t")H, +(t'")f, X [5,„5,, (1—5„)+5„5,„(1—5,, )]

H—+(t).H +(t'. )f~ Trodi IH„+(t")H,+(t'")fIi ]5„,6,,5„,] .

(iii) Furthermore, the correlations (H +(r)H. ;+ )z can be expressed using the Fourier representation including the

imaginary part of the so called "quasiparticle current amplitudes" ImI (co)

g2 0 tt. J(v)
(H +(r)H. ~ )z = — f e' 'ImI (co)dcoe '

27Te l
(31)

{iv) The density operator cr(t) is represented by the diagonal elements

(n„nz))cr(t))nz, n) ) =o(nf t)—

nf is an abbreviation for [n„nz]. Now, the functional FT '[t;cr(t)] can be expressed as the sum of a loss (L) and a gain
(G) term and from Eq. (4) one gets the equation of motion

o (nf, t) =FT '[t;o (nf, t)](L)+FT) '[t; cr(nf i, t)]—(o) .

pt can be sho~n that, ~ith respect to the nondiagonal elements, there are further autonomous equations of the same

ype. put it is sufFicient to concentrate on the diagonal elements because, according to the hypotheses of the adiabatic
switch on of the interaction, the nondiagonal elements vanish due to proper chosen initial conditions. For instance, the
loss term can be expressed by

Fz'. ) [t;o(nf, t)](.L)

2

27Te f dc@f dgImI (co) ImI (g)B( —co)e( —g)
I j=1,2

X f dr f dil f d(2Re exp — [bE(nf+5f—[ nf)(t V)+AE{nf+5fi+5fj nf)(r —i))]

X exp ——[t) E(nf +5ff, nf )(i)—g) fico(t —i) ) —fig'—(r —g) ]

l+exp — [bE(nf+5«, nf )—(rt g) fico(t g) —Ag(t——i))]— —

l
+exp ——[bE(nf+5fi,'nf )(t r)+DE(nf+5f—),'nf+5f) )(r—i))]

X exp — [bE(nf, nf+5fi )(i—)—g) Ace(t —i)) ——A'g(g —r)]

+exp — [bE(nf +5fi, nf )(—i) —g) Aco( t g) fig(—i) r)]—— —

X cr(nf, g)(1 —5). ) . (32)
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The last bracket guarantees cotunneling explicitly because individual tunnel events at single junctions (l =j) are forbid-
den. In the following, only the special cases of low-impedance environment [ReZ(co) (&R& ] and high-impedance envi-
ronment [ReZ(co) ))R& ] are considered which can be treated analytically.

Using the notations

H0(nf ) =E (nf ) ~(nf ),
bE(nf,.nf )=E(nf ) E—(nf ),

the energy differences read for an uncharged central electrode (n (
n—

( =0) as

e
ReZ(co ) &(R&. b.E(n, + 1,n 2, n „n2 ) = ?c(—e V,

C~

e
b E(n „n2+ 1;n „n2 ) = —?c2e V;

X

2

ReZ(co)»R&. bE(n(+ l, n„n, n, ) = ?c(eV-,
C1

2

bE(n „n2+;n, , n2) = —?c2eV .
2

In what follows, both cases are treated together. One should mention that the process is Markovian if cr(nf, t) in the in-
tegrand of the integral (32) is only a slowly varying function of time. Then it is possible to write

FT [? (7(nf i) ](L ) r(L) cT(nf ?)

This property is ensured if the quantum rate which is developing from the integration (32) is
'2

y f" d~ f" dglmI (co) ImI& (g)6( co)6—( —g')(I —5? )
277e . —Oo —oo

I,j=1,2 J

1 1

co bE(nf +5f(,'nf —)/A+iae co+( bE(nf +5—f? +5ff 'nf )/fi+iay

X
1

bE(nf +5f,—, nf ) /%+i av
+ 1

co b,E(nf+5», nf )—/fi+iav

1 1

co —bE(nf+5f( nf)/?r?+iae co g b.E(nf+5f? nf—+5—f )/f?+Lap

1 1

bE(nf', nf+5f )—/A+iav co —b.E(nf+5f(, nf)lfi+iav

satisfies the condition
2

??lr(gI (&
2C~

The variables e, y, and v take the adiabatic switch on of the interaction into account where the sequence

e&y &v, @~0

is valid. During the calculation one repeatedly meets two types of integrals

(33)

I(=f dco f dgImI (co) ImI (g)6( co)6( —g)—
oo OO z?co —a +ie z(co+z2 —i? +iy z2 —c +iv

OO OO 1 1 1I = dco dg ImI (co) ImI (g')6( —co)6( —g)
OO QO J y? co —a +i e y ) os+y 2 g &+i y y 2c—o —c +i v

(34)

where z, 2=+1, y, 2=+1 and a, b, and c are real numbers. One is only interested in the imaginary parts of these in-
tegrals since the real parts do not contribute to the quantum rates. The integrations which can be done analytically
yield
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ImI) =— 7T 'ImI (b —a) ImI (a)z, 6(z,z2)6( z—2b)ln
b —a

a+c —b

+6( —z, z2) ln~max[z2(b —a), —
z2a ]~

—6( —z, a) In~b —a~

b —c
+ImIq (c) ImIq (b —c)z, 6(z&zz)6( z2—b) ln

J qt 1 1 2 2 c
—6( —z, z2 ) ln

~
max[zzc, —zz(b —c) ] ~

—6( —z2c)z&z2 ln~b —c~

and

+ImI (c) ImI (a)[6(—zoic)z2 in)a(+6( —z&a)z, lnjc(]
J

ImI =—
2

a'ImIq (b —a) ImIq (a)y, y2 6(y,y2)6( y, b) —ln
a —c b —a

+6( —y, y2) in~max[y, a,yz(b —a)]~+6( —y&a)y, yz ln~b —
a~

c—ImI (c) ImI (b c)y&yz —6(y&y2)6( y&b)in—
J b —c

+6( —y&y2) in~max[y&c, yz(b —c)]~

+6( —y, c)y, y2 ln~b —c~

Note that the logarithms of type in~d~ are singular objects in the sense of lim 1n~d/x~. But further analysis shows
that due to the presence of the unit-step function 6(x) these terms vanish for V& V~~&". Finally, the quantum rate is
given by the expression

rIgI = ln 2 ImI (a) ImI (b —a) — [ImI' (a) ImI (b —a) —ImI (a) ImI' (b —a)] .6( —b)e ~b —a~ e
e4 a AC2~'

+1n Ib —cl e
~c~

' q rC,
.2 ImI (b —c) ImI (c)— [ImI (b —c) ImI' (c)—ImI' (b —c) ImI (c)] .

q&

e b 1 1+ ImI (a) ImI (b —a) +ImI (b —c) ImI (c)
A'C~ a b —a c b —c

(35)

The prime means differentiation with respect to the argu-
ment. In the case n, n2 =0 —(cotunneling), the
coefficients are given by

gaia =bE(n, + l, n2, n, n2)

Ah=BE(n&+I, nz+I;n, n2)

C) C2= —eV+P +
C2 C] 2C~

(38)

e C2 e'
=2C ' '+~C, 2C, '

A', =EE(n „n @I+; n, n z )

(36) The variable p means

0 for ReZ(co) «R~
1 for ReZ(co) &)R~

e' Ci e'
(37)

The gain term FT '[t;o(nf, t)]~G~ can be calculated in the
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same manner. Finally, the master equation reads as

o (nf, t) = —
r(P~ a (nf, t)+ r(g~ cr(nf —1,t) .

VI. PROPERTIES OF COTUNNELING

(39)

1 g e(V) eV
(2~)3 R, R2 fi

X 1+ 2

eV El+E2+eV

The formulas (35)—(37) show that the cotunneling tran-
sition n, n2 —+nl+ l, n2+1 can be split into two sub-
processes,

(1) n„n~~n, + I,n2~n, + l, n2+1

(2) n„n2~n„n2+ l~ni+ 1,n2+1,
where the first subprocess is described by those terms in

r(g~ containing the frequency a. This corresponds to the
virtual generation of an electron on the central electrode.
In the opposite case the other subprocess which is con-
nected with the virtual generation of a hole corresponds
to the frequency term c. Furthermore, the equivalence of
the transitions

2

Xgln 1+
i=1

(42)

2

r
Rg C1C2

V
R1R2 m-'eA

(43)

In the high-impedance case (P = 1, V = V —Vb(f )« Vbi" —VP('), the analogous approximtion reads as

Rg C1C2 C1C2e( V) V
48vr'eR C' (44)

Equation (42) can be approximated for small voltages. In
the low-impedance case (P =0, V= V « Vbi" ), one

11 12

(n, —i, nz —1)~(n„n2),
(ni n2)~(nl+1 n2+1)

In the special case of symmetric junction capacities
(/=1, C, =C2) the quantum blockade is just the half of
the classical blockade

is expressed by the equality

r (P) —r (g) —r ( Q)

The current amplitudes ImI describe how tunnel
J

channels are available for the tunneling process. The
quantum rate r(~' depends of the product of the current
amplitudes of both junctions. This corresponds to an in-
coherent tunneling process which is alone under con-
sideration. One notes that

V'"'= ' V(
bl C & bl 2(1 1

In the other special case of extreme asymmetric junction
capacities (P = 1,C, « C2 ), both blockade voltages are
equal

V(cl) e V( Q)
VbI =

2C Vbl =
2C

In general, one can state that Vb(f' & Vb,
" but both are of

the same order of magnitude.

r(~'=0 for V&y '+
2 1 2 X

VII. REGULARIZATION OF
LOGARITHMIC SINGULARITY

(g) e 1 2
Vl +

2C~ C2 Cl
(40)

Using the Ohmic approximation

ImI
'Ado

eR1 2
(41)

and the abbreviations

X 2 1

El =Ra, E2 =Ac,

one gets

independently of the specific structure of the current am-
plitudes. Consequently, for (t =1 there is the "quantum
Coulomb blockade"

Equation (42) shows the remarkable property of a loga-
rithmic singularity at min(E, ,E2)=0 which corresponds
to the value of the classical Coulomb blockade (26) and
(27). Of course, the cotunneling current will be finite at
the threshold where the current of first order starts. This
singularity is an artifact of perturbation theory and
means that Eq. (35) is wrong in the vicinity of Vbi . But
beyond this blockade the tunneling current will be dom-
inated in any case by the first-order current. Note that
the second-order contribution is smaller than the first-
order one by a factor of R&/R, &2. Nevertheless, it is in-
teresting to estimate a finite value of the cotunneling
current for a consistency check. A complicated regulari-
zation procedure has been suggested, but another
way is to use a simple linewidth method of quantum
theory.

This approach can be demonstrated by starting from
the golden rule formulation' ' which is equivalent to
our master-equation procedure. For the sake of simplici-
ty, the quantum rate in the low-impedance case (/=0) in
the zero-temperature limit is considered. It reads in the
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Ohmic case (41) as

r'~'= f de, de de de 6( —e, )6(e )6( —e )6(e )
2me R )R2

1

E) +E2 6')

1

E2 —&3+&4
5(eV+e, e—z+e, e—4) .

The generalization to the high-impedance case is straightforward and leads only to an energy shift. It is obvious that
the singular denominators are the reason for the occurrence of the logarithm singularities. The term AEj E'k+Gp for
instance, corresponds to the energy difference connected with tunneling from the left electrode to the island. Following,
e.g. , the arguments of Messiah, the finite lifetime of the island states has to be taken into account by adding to the is-
land energy an energy-dependent complex term 6 —it which itself can be determined by perturbation theory. Con-
sistency is already guaranteed if this term is taken in first-order perturbation theory at a representative energy scale.
Here, only the imaginary part is considered which is essential for regularization. Because of a higher degree of generali-
ty, two different linewidth terms are introduced. Hence, with the substitutions (j= 1,2)

E —+E —iI . ,

the integrations yield the result

p(Q)— (E +eV) +.I l4
2m.e R,R~ J. =) E; +I'i/4g —,

' ln
2(EJ+eV)

ImF. + arctan —arctan2E I ReF
J

(46)

where the complex functions FJ (j,k = 1,2, k Aj) are given by

(I +i2E )[I ~+i2(.E +eV)][I,+I z
—i2(E, +Ez+eV)]

2I 1 [I k
—I' —i2(E, +E~+eV)]

Note that In&& =ImF2. Now the singularity at V&&" has disappeared. The calculation of I . in the relevant order of
perturbation theory shows that they correspond up to a factor A to the golden rule expressions of the tunneling rates at
the respective single junctions in first order. Therefore, the terms I can be approximated by the ordinary tunneling
rates

1 e

e R. 2C~

Taking into account that the logarithm is not very sensitive concerning the exact value of large arguments, a rough ap-
proximation gives the following value of the quantum rate at the classical Coulomb blockade:

RQ e Vb)
2

p(Q) for V Vg)
R)2

(2')3 R)Rq RQ
(47)

The notation R, 2 means that one has to take R, if C, )C2 and vice versa. The dependence of r'Q' on the logarithm
in[2m (R, ~/R& )] at the classical Coulomb blockade [cf. Eq. (47)] shows that only the logarithms in Eq. (46) have to be
taken into account. Only there is the linewidth mechanism effective.

Concerning symmetric conditions R
&
=R2=RT C& =C2 the renormalized and unrenormalized mean currrents

(r ) =er'~' read in the low-impedance case [z =eV/(Ec ), a =R&/(2rrRT )] as

E, (-,'+ '+a')1
2me R )R2 ( —,

' —z) +a
2az—arctan

—' —z +a2 2
4

' —' —Z2+a2
4

(r) =
ne R )R2

Ec, ( —,'+z )ln 1+,
2

(49)
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tion of the value of the quantum rate r'~'. Using Eq. (35)
and taking into account that at the critical point the
singular denominators are substituted by the finite
linewidth the quantum rate at Vb&" can be approximated
by

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
V(cl)

bl
1

2&

e V(cl)
ImI

r(&)= ~ Imr,
R

(2m ) e RD I y(ci)
b1

V(c&)
b&

(52)

FIG. 2. Plot of the regularized and not regularized currents
(I ) =er'~' in the low-impedance case in units of A/(2me'R, R2)
vs the dimensionless voltage z = V/[e/(2C)] up to the classical
Coulomb blockade. The parameter a is chosen to be a=0.05.

These currents have been plotted in Fig. 2. In the high-
impedance case, the starting point of the curves is, in-
stead of the origin, the "quantum" Coulomb blockade.

VIII. CONCLUSIONS

One should prove the Markov property (33) at the clas-
sical blockade voltage. Concerning the quantum rate in
the unrenormalized version (42), the question whether the
Markov property is guaranteed leads in the low-
impedance limit to the condition

V(cl) R)R2ln, „«(2~)'
Vb',"—V Rg

(50)

It is obvious that this condition is violated in the immedi-
ate vicinity of the Coulomb blockade. In the renormal-
ized version (46) this condition leads to the inequality

Vb) Rg R) 2
(c1) 2

ln 2m
(2~) RR2 Rg 2Cz

(51)

which is satisfied due to Rg «R
~ 2 ~ This statement also

remains true in the high-impedance case. So far, these re-
sults are correct for Ohmic current amplitudes. There-
fore, the regularization guarantees not only finite current
values but also the validity of the Markov property.

In general, the question whether the Markov property
is guaranteed cannot be answered in a simple way. But
the observation that only the logarithm terms are dom-
inating at the critical point Vb&

' allows a rough estima-

where a differential tunnel resistance has been introduced
by

V(c1)
ImI'

(53)
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For Ohmic amplitudes and R& «R& z, this expression
reduces to Eq. (47). Equation (52) shows that the ex-
istence of the Markov property depends essentially on the
behavior of ImIq Due t.o formula (52), one can state that
the consistency condition (33) can be fulfilled if the
differential resistance (53) is not too small.

It has been shown that SET cotunneling in ultrasmall
double junctions, which is a macroscopic quantum effect,
can be formulated by means of a quantum master equa-
tion (39) including quantum rates proportional to A'. This
approach allows the conclusion that the q-MQT current
is connected with a quantum shot noise which could be
treated analogously to the standard approach.

The investigation of coherent q-MQT tunneling' ' us-
ing the master-equation approach is, in principle, possible
by dropping Eq. (30) but is very inconvenient.

Here, only the special cases of low and high environ-
ment impedances have been investigated. The general
case characterized by ReZ (co )=R & cannot be treated
analytically and requests further considerations.
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