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Magnetopolaron efFect on shallow donor states in GaAs
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We report a theoretical investigation of the resonant donor magnetopolaron in GaAs. The energy
levels of the ground state (ls-like) and eight excited states (2s-, 2p+-, 2p, —,3d+ —,4f -like) of the
donor have been obtained as a function of the magnetic-field strength (B). The calculation is based
on a variational approach in which we use a trial wave function with two variational parameters
for all states but three for the 2s state. This approach gives (1) the exact energy values in the
limits of B = 0, and (2) the energy levels that are very close to known more exact calculations at
high magnetic fields. The magnetopolaron effect on these energies is studied within second-order
perturbation theory. In order to explain the available experimental results it is suKcient to take
into account the seven lowest donor states (1s, 2s, 2p+, 2p, 3d, 4f ) and to include band
nonparabolicity. Our results are in very good agreement with the available experimental data.

I. INTRODUCTION

A considerable amount of experimental and theoret-
ical work has been carried out on GaAs. This is not
only a scientifically interesting material, but also a tech-
nologically useful one. A GaAs sample doped with Si
is an n-type semiconductor. These Si donors are called
8hallom donors as the ionization energy of an electron
bound to them (Eb 5.60 meV) is much less than the
energy gap of GaAs (Eg = 1520 meV). Moreover, the
energy spectrum of the donor resembles closely those of
a hydrogen atom. ' However, a donor in GaAs has a
much smaller ionization energy, and a much larger cy-
clotron resonance splitting than a free hydrogen atom
because of the smaller effective mass of the electron and
the larger relative dielectric constant of GaAs. Therefore,
the shallow donor in GaAs provides a perfect laboratory
for theories and experiments describing the hydrogen en-
ergy levels in intermediate and strong magnetic fields. In
addition to solid state systems the problem of hydrogen-
like systems finds application in astrophysics and plasma
physics. '

Much efFort has been put into an accurate numerical
calculation of the bound hydrogen states and the energy
levels of the hydrogen electron in a magnetic field. The
adiabatic method was the first to be employed in the
high Beld region, ' where the magnetic force on the
electron is much larger than the Coulomb force, so the
electron is tightly bound in the plane perpendicular to the
magnetic field and comparatively weakly bound in the
direction parallel to the magnetic field. The bound states
are then just lying below the corresponding Landau levels

of a free electron. Calculations based on this method have

usually been restricted to the ground state and the first
few excited states.

Perturbation theory was used by several groups who
discussed the problem either in very low fields or in
the very high Beld limit, and sometimes this approach
was combined with the variational method. With Brst-

order andior second-order perturbation theory using the
field-free spherical hydrogenic eigenfunctions these cal-
culations have produced accurate values for the ground
state energy but less satisfactory results for the excited
states.

Many authors have favored the variational
method. In the Brst of these papers the varia-
tional trial wave functions (YKA) were relatively simple,
of Gaussian shape, which gave reasonable results both for
large magnetic Belds and for high excited states. More re-
cent works have used increasingly more complicated wave
functions. The most comprehensive results obtained so
far by the variational method were reported in Refs. 19
and 21 where a linear combination of several basis func-
tions of identical form was used to simulate the ground
state and the excited states up to the principal quan-
tum number n = 4. The most accurate calculation was
performed by Praddaude, which can be regarded as
exact up to n = 3.

Magneto-optical studies of a variety of elemental and
III-V semiconductors have revealed a multiplicity of spec-
tral lines, which can be assigned to transitions of elec-
trons between different states of shallow donors. The
shallow donor spectrum of n-GaAs has been studied in
detail both theoretically and experimentally where the
measured transition energies have been explained very
well with the theoretical results, but most of these ex-
periments are done in low magnetic fields (B ( 6 T)
where the resonant electron-phonon interaction does not
occur. The far-infrared studies of shallow donors in CdTe
(Ref. 29) have found the polaron Zeeman effects in higher
fields, which were in good agreement with a theoretical
calculation.

GaAs is a polar semiconductor, so the electrostatic
field of the electron will deform the crystal lattice around
it. The dominant lattice modes are the longitudinal-
optical (I 0) phonon modes. In the center of the Bril-
louin zone their energy is approximately independent of
the phonon wave vector. The electron with its associated
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lattice deformation is called a polaron. The energy of the
free polaron has been investigated extensively in the ab-
sence and in the presence of the magnetic Beld. An
electron bound to a donor is called a bound polaron. In
Ref. 14 this polaron efFect was studied for the ground
state of the donor, which showed that this efFect was
negligible in InSb, but in Refs. 28 and 29 polaron correc-
tion to the energy levels of the shallow donor in GaAs
and CdTe was shown to be important. More recently
the resonant splitting of the energy levels of the donor in
GaAs has been observed experimentally in high mag-
netic fields up to B = 23.5 T. Resonant absorption result-
ing from six branches of the 1s + 2@+ transition energies
was observed. At present we are unaware of any calcu-
lation of the donor states which includes the electron-
phonon interaction for states n & 3 in the resonant Beld
region.

In this paper, we present a calculation of the transi-
tion energies 1s —i 2s, 2@+, 2p„3d 2, 4f for a shallow
donor in GaAs in an arbitrary magnetic field. Because
our ultimate aim is to compare our theoretical results
with the experimental data of Refs. 28 and 39 we will fol-
low an approach such that the efI'ects of electron-phonon
interaction and band nonparabolicity on the donor states
are included as well as possible. To obtain the wave func-
tions and energy levels of a donor electron in the absence
of electron-phonon interaction, a variational form is used
in which the trial wave function contains two variational
parameters for all states but three for the 2s state. This
function has an exponential form at low magnetic fields
and becomes Gaussian at high magnetic Belds. The efFect
of band nonparabolicity is included and we critically ex-
amine three difFerent expressions of it which are present
in the literature. The polaron efFect on these energy
levels is calculated within second-order perturbation the-
ory. We obtain the maximum polaron shifts to the tran-
sition energies in the nonresonant magnetic Geld region
by formally including all donor states. For the polaron
resonant 1s + 2p+ transition we propose an approach
which is able to give the correct B —+ 0 polaron shift to
the energy of the 2p+ state although only the following
seven lowest donor states, 1s, 2s, 2@+, 2p, , 3d, and4f, are taken into account. We find that the effects
of polaron and band nonparabolicity have to be included
in order to correctly describe the experimental transition
energies.

This paper is organized as follows. In Sec. II a varia-
tional calculation of the donor states is presented in the
absence of electron-phonon interaction. A detailed com-
parison is given with previous calculations. The polaron
correction to the energy levels of the donor is calculated
in Sec. III. A comparison with the experimental tran-
sition energies is made in Sec. IV. Our discussions and
conclusions are presented in Sec. U.

acting with LO phonons in a uniform magnetic Geld B is
described by

0 = 8, +HI„o+IIr,
where H, is the electronic part

p+ —A
EpP

(2)

which describes a hydrogenic atom in an external mag-
netic field, where A = 28 x r is the vector potential of
the Beld, |- is the velocity of light in vacuum, —e and mp
are the electronic charge and efFective mass, and ~p is the
static dielectric constant, for GaAs mb/m = 0.067 (Ref.
47) (m, , the electronic mass in vacuum) and eo ——12.75
at liquid helium temperature. ' Choosing the symmet-
ric gauge and applying the cylindrical polar coordinate
system (p, P, z) with the magnetic field oriented along
the z axis, we find

Hi, o = ) Ru~(a a~+ -'), (4)

where a (a~) is the creation (annihilation) operator of
a LO phonon with wave vector q and frequency wq. For
GaAs we take Luq ——Lul, o ——36.75 meV, the value of
the I 0 phonon energy at 4.2 K, which is the experimental
region of Refs. 28 and 39.

The electron-phonon interaction in Eq. (1) is given by

HI = ) (Vqaqe' '+ V*ate * '),
q

where Vq is the Fourier coefFicient of the electron-phonon
interaction given by

4vrn (Rui, o) a~2

n q'

with 0 the crystal volume, and

2 2 122H = —V ——+pI, +-p pr 4

where we have introduced the efI'ective Bohr radius ap =
5 eo/mbe = 100.7 A. as the unit of length, the ef-
fective Rydberg B* = e /2eoao —5.60 meV as the
unit of energy, and p = ehB/2mbcR* = 0.154B (T)
as the dimensionless unit of the magnetic-Geld strength,
L, = i,(0/0$) is th—e z component of the angular mo-
mentum operator in units of h. The donor center is lo-
cated at the origin of the coordinate system, and the
position of the electron is denoted by r. r = (p2 + z2) i~2

is the distance between the electron and the donor center
with p = (x2+ y2)i~2 being the distance in the x-y plane.

In Eq. (1) HLQ is the LO phonon Hamiltonian which
is given by

II. VARIATIONAL CALCULATION
leo —1

Lur~ (e )
Within the framework of an effective-mass approxima-

tion and neglecting electronic spin, a single conduction-
band electron bound to a Coulombic impurity and inter-

the standard Frohlich coupling constant, and e the high
frequency dielectric constant of the material. In our cal-
culation we take o. = 0.068 for GaAs.
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The Schrodinger equation with the Hamiltonian H,
cannot be solved exactly and therefore we relied on a
variational approach for the donor states with trial wave
functions

unperturbed energy

(nmp~ H, ~nmp)

(nmp~nmp)

~nmp) = p~ ~z"e' ~e ~ "'(1—Ap, gp +Oz.~), (6)

which depend on the principal quantum number n, the
magnetic quantum number m (~m~ ( n), and the con-
served z-parity quantum number p = 0,1. In Eq. (6)
Aq, is nonzero only for the 2s state and is chosen such
that this state is orthogonal to the ground state. The
variational parameters (, g, and o an additional one for
the 2s state, are determined such that they minimize the

In the present work we included the following donor
states: 1s(1,0, 0), 2s(2, 0, 0), 2p+(2, +1,0), 2p, (2, 0, 1),
3d+ (3, +2, 0), and 4f+ (4, +3, 0) because they are the
relevant ones for the experimental results of Refs. 28 and
39. With the above variational wave functions Eq. (6)
and the Hamiltonian H, Eq. (2) we obtained the follow-
ing expressions for the diagonal matrix elements: (1) for
all the states except 2s which can be reduced to a onefold
numerical integral

(nmp~nmp) = Q(~m~, p, 0),

(nmp~H, ~nmp) = [pm + 4((~m~ + 1) —g ]Q(~m~, p, 0) +
~

——4(
~

Q(~m~ + 1,p, 0)

+2pQ(lml, p —1, 0) —4(&Q(lml + 1,p, o) —~Q(lml + 1,p, —3)

+2[v(l ml+ p+1) —1]Q(lml » —1) —p(p+1)Q(lml p —2)

where we have defined the function

(. .
@)

(—1)*~(2j)t&',(~, „) 8 ' I'[k+ 2, 2z(q+ 2(z)],(„(,)
2'+»+" g(' 8(q+ 2(z)» (q+ 2(z) "+' (10)

with I'(A:, z) the incomplete gamma function; and (2) for the 2s state which involves the calculation of twofold
numerical integrals

(2s]2s) = 4vr dp pe ~ dze ""(1—Aq, gp + 0. z )
0 0

(2s~H, ~2s) ~= 4n dppe ~ dze "'(1—Aq, gp~+ ozz~)
0 0

Ag, (o —2g) 2Aq, p (1 —2()
X

Qp2 + o 2z2

+(1 —A~. V p'+~'z') 4( —q'—2(1 ~+2g«') +I ——4( fpr k4
(12)

In the present work we only need the states with m & 0
since one can easily prove the exact relation

(13)

In Table I we compare the results for the energies (in
units of R*) of the 1s, 2s, 2p„2p+, 3d+~, and 4f+
states with those given by different approaches for the
magnetic fields p = O.l, 1.0, 2.0, and 3.0. First let
us compare the present results with those of YEA,
who used a trial wave function of the Gaussian form
p~ ~z"exp(imP —(p~ —

@zan) to study the ground state

of a hydrogenic atom. Wallis and Bowlden extended
this calculation to a few lowest excited states but includ-
ing only one variational parameter ((—:1). Here we have
performed the calculation for the excited states listed in
Table I with two (three for 2s) variational parameters.
It is clear that (1) our eigenvalues are generally lower
except for the 2s and 4f+ states in magnetic 6elds of
p & 1, and (2) the difference between these two methods
decreases with increasing magnetic field and for higher
excited states. The reason is that (i) the wave function
should be exponential in low fields where the Coulomb
potential is dominant, and Gaussian in high fields where
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TABLE I. Comparison of energy spectrum (in units of R") of six donor states in GaAs with the
results of YKA (Ref. 13), Aldrich and Greene (Ref. 19), and Praddaude (Ref. 17) for magnetic
fields p = 0.1, 1.0, 2.0, and 3.0.

0.1

State
18
2s
2p
2p+
3d+'
4y+3

Present
—0.99505
—0.19609
—0.22464
—0.10139

0.22516
0.47735

YKA
—0.84443
—0.18171
—0.20210
—0.07999

0.25170
0.47896

Aldrich and Greene
—0.9950
—0.1960
—0.2246
—0.1014

0.2246
0.4768

Praddaude
—0.99505
—0.19617
—0.22482
—0.10169

0.22433

1.0

18
2s
2p
2p'
3d+2
4y+3

—0.65912
0.68900
0.48368
2.09477
4.30195
6.40732

—0.52386
0.68514
0.50807
2.10809
4.37453
6.40441

—0.6620
0.6795
0.4802
2.0874
4.2945
6.4013

—0.66233
0.67897
0.47999
2.08682
4.29389

2.0

18
28
2p
2p+
3d+'
4y+3

—0.03525
1.66738
1.41015
4.81529
9.07107

13.20526

0.09190
1.65742
1.43955
4.82510
9.17544

13.19957

—0.0439
1.6527
1.4050
4.8022
9.0586

13.1949

—0.04442
1.65194
1.40461
4.80083
9.05757

3.0

18
28
2p-
2p+
3d
4y+3

0.68595
2.65321
2.36658
7.61282

13.90349
20.05823

0.80911
2.64011
2.40040
7.62024

14.03309
20.05044

0.67095
2.63463
2.35996
7.59297

13.88551

the magnetic field is dominant; (ii) the effect of the mag-
netic field on the higher excited states is stronger than
an the lower ones so that the wave functions of these
higher states change more quickly from exponential to
Gaussian. A comparison with the results of Aldrich and
Greene leads to similar conclusions; they used a lin-
ear combination of 120 basis functions of the Gaussian
form to simulate the donor states up to n = 4. Using an
expansion of the wave function in Laguerre polynomials,
Praddaude obtained the highly accurate energies which
are better than ours, but the errors for the binding en-
ergies of the donor states are less than 1.6% except for
the 2s state for which it is less than 5.2% when p = 3.0.
The binding energy of the 28 state is given in Fig. 1 as a
function of the magnetic field. We compare the present
results (solid curve) with those of Makado and McGill2i
(dashed curve), Cubib, Fabri, and Fiori (solid squares)
and YKA (dotted curve). It is apparent that our re-
sults are very good at low magnetic fields (p ( 0.4),
and become less good at high magnetic fields. It is clear
from this figure that the binding energy of this state does
not monotonously increase with increasing magnetic field
strength. This is difFerent from the other states whose
binding energies increase with increasing field strength.
The difFerent behavior originates from the fact that the
average distance between the 28 electron and the donor
center is not a monotonously decreasing function of the
magnetic field which is shown in the inset of Fig. 1.

We compare in Table II our calculated results [indi-
cated by (a)] for the 1s -+ 2p+ transition energy with
those of YKA (b) and Praddaude (c) for the magnetic
fields p = 0.1, 1.0, 2.0, 3.0, 5.0, and 10.0. Notice that
(1) the difference between the present and Praddaude's
results are under 0.2% which is good enough as input
for our further calculation; (2) the largest difFerence oc-
curs for p 1 which is the intermediate magnetic field
region where the wave function transforms from exponen-
tial to Gaussian; (3) the difFerence with the YKA results
is larger and in low magnetic fields it is over 15%. Thus a
Gaussian wave function always underestimates the tran-
sition energy. We tried to improve our theoretical results
by introducing an additional variational parameter v in
Eq. (6) as Larsen did in Ref. 14 w'here exp( —qgp2 + z )
was replaced by exp( —71+p2 + r z ). We found that the
value of the third variational parameter K is always near
1, especially for p ~ 0 and p & 1. Only in the inter-
mediate magnetic field region an improvement less than
0.13'Fp was obtained to the 1s —& 2p+ transition energy.

Figure 2 shows the contour maps of the electron prob-
ability density in the x-z plane for two magnetic fields:
p =' 0.0 (left figures) and p = 3.0 (right figures) for the
donor states: (a) ls, (b) 2s, (c) 2p+, (d) 2p„(e) 3d+,
and (f) 4f +s We notice that . (1) the magnetic field com-
presses the wave function considerably in the x direction,
that is in the x-y plane. But at the same time the wave
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function is also compressed in the z direction. The reason
is that the magnetic field confines the electron motion in
the plane perpendicular to the magnetic field, thus on the
average the electron is closer to the donor center and con-
sequently the Coulomb binding energy increases, which
in turn leads to a reduction of the extent of the wave
function in the direction of the magnetic field; (2) the
states with nonzero magnetic quantum number are more
sensitive to an increase of the magnetic field than the
others, and the state with odd z parity (2p, ) is the least
sensitive; and (3) the dotted curves in (b) for the 2s state
indicate the zero value of the wave function.

The numerical results for the widths (in units of ao)
of the diR'erent wave functions are given in Fig. 3 in

FIG. 1. The binding energy (in units of the efFective Ryd-
berg R' = 5.60 meV) of the 2s state (solid curve) vs magnetic
field p = 0.154B (T) compared to the corresponding result
from YKA (Ref. 13) (dotted curve), Makado and McGill
(Ref. 21) (dashed curve), and Cubib, Fabri, and Fiori (Ref.
16) (solid squares). The inserted figure shows the average
distance (in units of the effective Bohr radius ao = 100.7 A)
between the 28 electron and the donor center as a function of
the magnetic 6eld for the present and YKA's cases.

the z direction [(z ) ~, Fig. 3(a)] and in the x-y plane
[(x +y ) ~ /~2, Fig. 3(b)] as a function of the magnetic
field for the donor states: 1s (solid curves), 2s (thin-
dashed curves), 2p+ (dashed curves), 2p, (dash-dotted
curves), 3d+ (dotted curves) and 4f+ (

—. —curves).
Notice the following: (1) the results for the states with
the quantum numbers (n, +m, p) and (n, —m, p) share
one curve, because the wave functions for both states are
the same up to a phase factor; (2) all the different states
become more localized with increasing magnetic field ex-
cept for the 28 state in the z direction at low Inagnetic
fields; (3) the states which are spread out more at p = 0
are more sensitive to the magnetic field; (4) the ls state
is the most localized in all directions, and the 28 state is
the most spread out in the z direction when p ) 0.2; and

(5) the rapid increase of the width of the 2s state in the
z direction is a consequence of the fact that the limiting
shape of the nodal surface of this state for B —+ oo is a
pair of planes orthogonal to the z axis, rather than
a cylinder as assumed in Ref. 7, which is also apparent
from Fig. 2(b).

In Figs. 4(a) and 4(b) we present the donor energy
levels of the 18, 2s, 2p+, 2p„3d, and 4f states as a
function of the magnetic field. As a reference we have also
plotted the lowest two Landau levels for free electrons,
i.e. ,

—~ and &Le, which are indicated by the dotted
lines in Fig. 4(b). The binding energy of the donor state
is given by E, =(N + z. )Ru —E, (X is the Landau-
level quantum number) with X = 1 for i = 2p+ and
X = 0 for the others, where a, = eB/mi, c is the cyclotron
resonance frequency for a noninteracting electron. Notice
that in the region (p ( 0.6) there are several energy-level
crossings, which are given in more detail in Fig. 4(a); for
example, the crossing of the 2p and 3d energy levels is

a consequence of the fact that the large magnetic moment
of the Sd state gives a large negative contribution to
the energy which is absent in the 2p, state.

III. ELECTRON-PHONON INTERACTION

Because GaAs is a weak polar material, we can use
second-order perturbation theory to calculate the po-
laron correction to the energy of the ith state

TABLE II. Comparison of the 18 m 2p+ transition energy (in units of B*) for difFerent magnetic
fields. We compare the present results with those of YKA (Ref. 13) and the very accurate results of
Praddaude (Ref. 17). The last two columns give the percentage difference with the present results.

'Y

0.1
1.0
2.0
3.0
5.0

10.0

Present

(a)
0.89366
2.75389
4.85054
6.92687

11.04443
21.24375

YKA
(b)
0.76444
2.63195
4.73320
6.81113

10.92910
21.12543

Praddaude

(c)
0.89336
2.74915
4.84525
6.92202

2(n —b) +a+b
15.58651
4.52817
2.44873
1.68496
1.04972
0.55852

2(a —c) ya+c
0.03358
0.17227
0.10912
0.07004
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IV; ~IH. I' 0) I'
+ Eo —Eo —4, '

q + (i4)

where L, = 0 for all states in the polaron nonresonant re-
gion which corresponds to Rayleigh-Schrodinger pertur-
bation theory (RSPT), and A2„+ = AE2„+ —AEi, for
the 2p+ state which corresponds to the improved Wigner-

Brillouin-perturbation theory (IWBPT).s2 4s si Ij;q) de-
scribes a state composed of a donor electron with un-
perturbed energy E- and a LO phonon with momen-
tum hg = h(rill, q, ) and energy /io/~. In our calcula-
tion we have assumed that the energy of the I 0 phonon
hcuz ——~z,o is independent of its wave vector, and con-
sequently the matrix elements of the electron-phonon in-
teraction, HI' ——p l(j;glHlli;0)l, are given by

3271 cr(kdl, ci)
OO OO ]

d&ll &ll
&n;m, p;In;m;p;) &nzmi p~ ln~™ipj) o e qll + q

x
I G(2 + Im'I + Imi I Im, ™,-

I, p; + p, , (, + (, , r/; + r/, ; qll, q, )

+ A', [G(4, 0, 0, 2+„2r/2. qll q. ) o'G(2, 0, 2, 2(„,2r/2 qll q )I

(~2 /I', 2 + ~2 ~&,")P(i + 1m*i + lm~ I lm* ™'I p* + p' (' + (~ r/' + rb qll q. ) I'

y=a
1s

500

—500

I I I I I I I I I I I I I I I I I I I

—500 0 500

s (A)

I I I I I I I ~ I I I ~ I I I I I I I

—500 0 500
FIG. 2. Electron probability

distribution in the x-z plane for
magnetic fields p = 0.0 (left fig-

ures) and 3.0 (right figures) for

(a) the is state, (b) the 2s state,
(c) the 2p+ states, (d) the 2p
state, (e) the 3d+ states, and

(f) the 4f states.

500

I;
i ((QQe& /

',
I

—500

I I I I ~ I I I I I ~ I

(b)
I I ~ I I I I I I I I I i I I I I I i

—500 0 500 —500 0 500
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where we have de6ned the functions

~
~ cI~ Kg(pgq2+ q2)

G(u, , &, ( n; qII q. ) = n dP P"J (qII P)'
0 v'+ n'

(16)

and

p(p, , v, A, (, rt;qII, q ) = —' dpp"J (qIIp)e ~~ «z"Qp'+o'z'e *'*' "v'+'
0 —OO

with (,, q, , and o' the previously obtained variational pa-
rameters, A2, the orthogonal parameter for the 28 state,
m;, p; the magnetic and z-parity quantum numbers re-
spectively, J„(z) the real and Kq(z) the imaginary argu-
ment Bessel functions.

Since H&' represents the transition probability be-
tween the

~ j; cl) and ~i;0) states, the value of it is a

measure of how strong the electron-phonon interaction
couples these states with each other. In Fig. 5 the nu-
merical results for the 24 matrix elements of H&', which
are relevant to the present work, [in units of (R*) j are
presented as a function of the magnetic Beld. Notice that
(1) most of the values of H&'~ increase with increasing
magnetic field, which can be understood as follows: in-

y=a

500

/

/
/

/

I

—500

(c)
I I I I I I I I I I I I I I I I I I I

—500 500

z (A)

-500 0 500

F&G. 2. ( Continued).
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creasing the magnetic Geld will bind the electron nearer
to the donor center and. increases the overlap of the wave
functions; (2) but the values of H&" for j g 2a and
j g 2p, (dotted curves) decrease with increasing mag-
netic Beld in the magnetic-field region 0.2 & p ( 0.8
because of the rapid increasing of the 2s state width in
the z direction; (3) the diagonal H&" matrix elements are
larger than the nondiagonal ones, and the less localized
states have smaller values; (4) the value of the matrix
element H&' is smaller when the ith and jth states have
a large difference in magnetic momentum and/or energy;
and (5) there are some crossings of curves, which are a
consequence of difFerent dependences of the width of the

difFerent states on the magnetic field (see Fig. 3).
In order to obtain the polaron correction to the donor

energy of the ith state one has to include all donor states
in the sum P . , which is a formidable task. In Ref. 43 we

calculated Eq. (14) for a donor in a GaAs/Al Gaq As
superlattice including a Gnite number of states. Recently,
we found that in the small magnetic Beld region this ap-
proach is unsatisfactory and underestimates the polaron
correction. Nevertheless, it is possible to evaluate Eq.
(14) approximately in such a way that one needs to know
only a few relevant states to calculate the polaron shift to
the donor energy levels. ' Following the method used
in Ref. 52 we iterate the identity

1 1

Rdz, Q + E —E —D~ AGJLo + g

twice in Eq. (14) and after some analytic calculation we obtain
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l(j; qlHili;o)l (E, —E, —q' —A, )'AE; = —nkvd —) )
q

which consists of two terms: the first —o.~LQ is the po-
laron shift of a free electron in the absence of a magnetic
field, and the second contains the correction due to t e
magnetic Geld and depends on the specific donor state.
The calculation of the polaron correction to the energy
of the donor state is reduced to evaluate the second term
on the right-hand side of Eq. (18).

A. Nonresonant region

2 ( oS= — E + )3 I,
" " (nmplnmp) ) (20)

&-~ = &(lml p —1)

for all the considered states with the exception of

(21)

where E„„is the unpertubed energy of the (n, m, p)
state obtained by the variational calculation, and the
function C z is given by

In this region no single term in the sum ~~2h sum ~~. dominates,
and consequen y ad tl large number of states contribute to
the sum ~. in q. ~E ~18&~. In general, limiting this sum
to a finite number will underestimate the polaron correc-
tion. or e gt' . F the ground state Platzman found an upper
b d t AE where he was able to formally inc u e
all the intermediate states

l j) in the calculation. o n,
Larsen and Lax have extended this approach to the ex-)

cited states, but only three lowest states (ls, 2p ) were

cited states. Using the three quantum numbers (n, m, p)
of the ith state we found

AE„„=—n(Rui, ci + S) (19)

C&

CV

A
C4

bl

2

~ ~
'~

1$

2$

with S = —(nmplH + —lnmp) which is found to be equal
to

t",.= 4~
CX3 —2 2

dp pc dze
r

2
1 —A2~ p2 + g 2z2

(22)

0.5

Equation (19) turns out to be a good approximation to
Eq. (18) for all the considered states, with the exception
of 2p+, and that for arbitrary magnetic fields. Equation
(19) is obtained by noticing that for the ith state with
the energy E, below the lowest (i.e. , N = 0) Landau level
we have the following: (1) lE —E, l

« Rui, ci in low mag-
netic fields, and (2) lE, —E,

l
« RuLo or E, —E, )0 in.

@0 Eohi h magnetic Gelds, which implies that Lug Q+ E~ E,.lg magn )

in the numerator of Eq. (18) can be replaced yb
(A, = 0 for i P 2p+). This approximation allows us to
perform the sum P and consequently to formally in-
clude all donor states in the calculation. Notice that (1)
for lnmp) = ls Eq. (19) is a rigorous upper bound to
the olaron correction of the ground state; (2) this equa-
tion is also an accurate approximation to the polaron
correction of the excited states, and it is able to give t e

I I I I I I s ~ s s I
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FIG. 3. The widths of the donor wave functions in the z
direction (upper figure) and in the z-y plane (lower figure)
in units of ao and as a function of the magnetic field for
the 1s (solid curves), 2s (thin-dashed curves), 2p+ (dashed
curves) 2p, (dash-dotted curves), 3d+ (dotted curves), and)

4f (— . . —) states
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FIG. 4. The energy levels of a donor in GaAs in units R
In b theas a function of the magnetic field (solid curves .

dotted curves indicate the two lowest anandau levels, and in

(a) the small magnetic field region of (b) is enlarged.
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B. Polaroon resonant region
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curves) and without (dotted curves) electron-phonon in-
teraction, and compare them with the experimental data
of Klarenbosch (open circles) and Cheng et aL (solid
dots). In, the calculation of the polaron correction we
have used Eq. (23) for the 2p+ state and Eq. (19) for all
the other states. It is apparent from this figure that (1)
the polaron effect slightly increases the transition ener-
gies. This is due to the fact that the polaron correction to
the ground state is larger than that to the excited states
(see Fig. 7); (2) the polaron corrections to the 1s ~ 2s,
2p, 3d transition energies are almost constant with
increasing magnetic Beld, which is due to the fact that
the polaron corrections to these states have almost the
same dependence on magnetic fields; but the polaron cor-
rection to the 18 ~ 2p, transition energy increases with
increasing magnetic Beld because the dependence of the
polaron effect of the 2p state on the magnetic field is
weaker than that of the ls state; and (3) two "forbid-
den" transitions, 18 ~ 28 and 18 —+ 3d were observed
in Ref. 28 [L; —Ly = +1 or L, = Lf g 0, I, (Ly) is the
angular momentum quantum number of the initial (final)
state]. The reason why they could be seen in the exper-
iment was explained in Refs. 53 and 54: noncentrosym-
metric electric Belds at the neutral donor position, which
are due to ionized impurities, cause a mixing of donor
states with different magnetic quantum numbers m and
z-parity quantum numbers p. This mixing causes these
initially forbidden transitions to become weakly possible.

In higher magnetic fields resonant polaron interaction
can take place, which changes the energy levels of the
donor states appreciably near resonance. We compare in
Fig. 9 our theoretical results for the 18 ~ 2p+, 2p tran-
sition energies with the experimental data (solid dots) of
Cheng et a/. In this figure the units Rp: R and pp
have been used as the free-electron physical parameters
at B = 0 T. Notice that near resonance six branches of
the 18 ~ 2p+ transition are observed which are a conse-
quence of the liftings of the E2 + and E, + Ruz, o (i = ls,
2p, 3d, 4f, 2p, ) degeneracies. The results (dashed
curves) without polaron correction cannot explain these
higher branches of the 1s ~ 2p+ transition. The present
calculation (dotted curves) with polaron correction con-
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FIG. 9. The 18 ~ 2p+, 2p transition energies as a func-
tion of the magnetic field for a donor in GaAs. We compare
our theoretical results for the following cases: (a) without
the effects of polaron and band nonparabolicity (thin-dashed
curves); (b) with polaron correction (dotted curves); (c) in-
cluding the effects of polaron and band nonparabolicity (solid
curves), to the experimental data (solid dots) from Cheng et
al. (Ref. 39).

A. Case 1

We have

firms the liftings of these energy-level degeneracies. The
agreement between theory and experiment is quite good
for the lower transition energies (below 20 meV), but it
becomes unsatisfactory for the 18 ~ 2p+ transition in
high magnetic fields p ) 2. The reason is that for such
large energy differences band nonparabolicity becomes
important.

We have considered three different expressions for the
band nonparabolicity which are available in the litera-
tures.

Eg (Eg&' mb t'm.'+
I

'I +
2 (2) m Imb )

1/2

+ (1+C*)E„,
me

(24)

where E „and Ez are the donor energies with and
without the effect of band nonparabolicity, respectively,
E* = Eg + Ao/3 = 1631 meV is the spin-orbit-averaged
energy gap of Gahs with Ap the spin-orbit splitting en-
ergy, and C* is an adjustable parameter. This expression
was obtained by Ruf and Cardona from a simple for-
mula for the bulk I'6 dispersion, and C* was experimen-
tally determined to be —2.3. If one takes the parameter
C* = —1 and neglects the spin-orbit interaction, Eq. (24)

will be reduced to

E„„=E, f 4E„&

which is the well-known Kane's result and has been
proven to be a good approximation for the energy of the
electron less than 100 meV, which is the region we are
interested in. In Ref. 42 this simple expression (25) was
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used to successfully describe the band nonparabolicity for
free electron cyclotron resonance in GaAs heterostruc-
tures.

B. Case 2

where m*(E) is an energy-dependent effective mass of
the electron, and E the single electron energy in units of
eV. The value of the effective mass at the I' point is taken
to be m*(0) = 0.0665m, . This expression was obtained
by Kolbas, who fitted the following relation, which was
first given by Kane using the k p perturbation tech-
nique,

1 1

m*(E)
=

m*(0)
5k~T ( 2 1+-

3m*(0) (Eg Es + Ap p

xi1-( m*(0) ) ' E.y,

to a third-order polynomial in E with k~ Boltzmann's
constant, T the absolute temperature, and I"'zy2 and
Psg2 the standard Fermi intergrals. Although Eq. (26)
was deduced at T = 77 K, it is generally assumed that
this result is also applicable at lower temperatures as
the variation of the effective mass with temperature in
this range is very small, and furthermore it was claimed
that this result is valid in the region E & 300 meV.
This energy-dependent effective mass was discussed in
detail in our previous paper for donor energy levels in
GaAs/Al Gai As superlattices.

C. Case 3

We have

(27)

where b is an adjustable parameter. This expression is
easily obtained from an expansion of (1+4E„/E~) ~ in
Equation (25) to second-order in (4E„/Eg) and then in-
troducing a parameter b whose value is determined from
a comparison with experiment. Equation (27) was used
before, e.g. , by Singleton et al. , who obtained a good
fit to their experimental results with b = 1.4.

The corrections due to the effect of band nonparabolic-
ity should be done on three levels: (i) on the unperturbed
energies EP of the donor, (ii) on the efFective Rydberg
B* which depends on the effective mass of the electron,
and (iii) on the dimensionless unit of the magnetic field

p which decreases with increasing effective mass of the
electron. Explicitly this implies that (1) first we defined

We have

m*(E)/m, = 0.0665+ 0.0436E+ 0.236E —0.147E

{26)

the dynamical efFective mass, where E„=h k /2mb was
used in the expressions of E „as an approximation; (2)
we took E,-, which was obtained from the parabolic band,
as E„ into Eqs. (24)—(28) to calculate the energy E „
and the effective mass m „of the electron with band
nonparabolicity. This method is able to give the transi-
tion energies as accurate as those from a self-consistent
calculation described in Ref. 43 which is very computer-
time-consuming; and (3) we took half of the cyclotron
resonant energy of a noninteracting electron to calculate
the effect of band nonparabolicity on p since it is defined
as p =

2 ~ in units of R*.
The numerical results for the 18 ~ 2p, 2p transition

energies corrected by the polaron effect and including the
effect of band nonparabolicity are given in Fig. 9 by the
solid curves. We used case 1 for the expression of band
nonparabolicity because it is the latest experimentally
verified expression; case 2 is valid for higher temperature
and case 3 is a simplified form of case 1. It is apparent
that (1) in very low fields the effect of band nonparabolic-
ity increases slightly the transition energies; for example,
at p = 0 it (case 1) shifts the 1s —+ 2p transition en-
ergy by 0.02 meV to higher energies which is mainly a
consequence of the increase of B* due to the increase in
electron mass; (2) at higher inagnetic fields band non-
parabolicity decreases the transition energy which is a
consequence of the larger energy difference between the
initial and final states. Band nonparabolicity diminishes
the energies of the higher excited states more than the
energy of the ground state; (3) the expression (24) (i.e. ,

case 1) gives the best results, while Eq. (26) (i.e. , case
2) underestimates slightly band nonparabolicity, and Eq.
(27) (i.e. , case 3) significantly overestimates this effect if
we use 8 = 1.4 as was done in Ref. 44. At B = 18 T the
theoretical results for the lowest branch of the 18 ~ 2p+
transition are as follows: 33.03 meV for case 1, 33.94 meV
for case 2, and 32.19 meV for case 3, which compares to
the experimental result 33.23 meV. We have found that
the reduced expression of Eq. (24) used by Wu, Peeters,
and Devreese is an excellent approximation in the en-
ergy region discussed here, which gives 33.032 meV for
the lowest branch of the 18 ~ 2p+ transition energy at
R = 18 T, which compares to 33.034 meV for Eq. (24).
The value b = 1.4 in case 3 is clearly too large, which is
a consequence of the fact that the polaron effect was not
correctly included in Ref. 44 and as a result a larger b

value was needed to explain the experimental data. For
completeness we used Eq. (27) and fitted 8 to the ex-
perimental data of Fig. 9 and found that b = 0.85 gave
reasonable results which is consistent with the conclu-
sion of Ref. 42 where b = 0.9 was found. For the lowest
branch of the 18 ~ 2p+ transition energy we found at
B = 18 T the following values: 33.92 meV for b = 0.4,
33.18 meV for b = 0.85 and 32.19 meV for b = 1.4.

V. DISCUSSION AND CONCLUSION

mnp

1 dE„p(k)
62k dk

(28)

We have investigated the transition energies of the
18 —+ 28, 2p+, 2p, and 3d states for a shallow donor
in GaAs in the presence of a magnetic field. The polaron
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TABLE III. Comparison of the 1s ~ 2p transition energy (in units of meV) at p = 0 for different
dielectric constants given in Ref. 1, with Mqo = 36.75 meV and mq/m = 0.067, to the measured
value (Expt. ) (Ref. 39). Ep is the result without any correction, E„ includes the polaron efFect
only, and EpB with polaron and. band nonparabolicity corrections.

12.75 5.60

&O &oo

1.183
1.166
1.178

0.071
0.065
0.069

4.20

gp
4.58
4.20
4,45

@PB
4.60
4.22
4.47

Expt.

Present 1.174 0.068 4.20 4.39 4.41 4.40

13.18 5.24
1.183
1.166
1.178

0.069
0.063
0.067

3.93
4.17
3.81
4.05

4.19
3.83
4.07

correction to these energies is included in our calculation
within second-order perturbation theory. We found that
(1) the electron-LO phonon interaction always shifts the
transition energies to higher values for 18 —+ 28, 2p, 2p,
and 3d 2; and (2) it increases the values of the ls —+ 2p+
transition energy in low fields and results in resonant
splitting of the energies in high magnetic fields. In order
to correctly explain the experimental data, band non-
parabolicity has to be included. Our calculation, which
does not contain any fitting parameters, is in very good
agreement with the experimental data given in Refs. 28
and 39.

The experimental measurement for the static dielec-
tric constant of GaAs at low temperature has an uncer-
tainty region, and also for the high frequency dielectric
constant, which is determined from the Lyddane-Sachs-
Teller relation ep/e = (wr, o/wTo) (Ref. 58) with tuTo
the frequency of the transverse-optical phonon. These
values will strongly inhuence the final calculated results
because they are able to change appreciably the values
of the efFective Rydberg B* = e ms/2h ep and the cou-

pling constant o. = e gmg /2Ru r&(1 /e —I/ep)/h of the
electron-phonon interaction. In Table III a detailed com-
parison is presented for the calculated transition energy
18 ~ 2p at zero magnetic field for the di8'erent dielectric
constants given in Table X of Ref. 1 with the experimen-
tal result (Expt. ) (Ref. 39). ep ——13.18 is the value for
T = 300 K. Notice that (1) our choice of ep ——12.75
and o. = 0.068 in the present work results in an excellent
agreement between theory and experiment when polaron
effects are included (EI ); (2) if using the value of ep at
room temperature (i.e. , ep ——13.18) the calculated results
will underestimate the transition energy by about 10% as
compared to the experimental results due to the fact that
R* is about 10% less than that at low temperature; (3)
because of the uncertainty in the ratio of ep/e there is
an uncertainty in o. which ranges from 0.064 to 0.072,
which results in a variation of about 10% difference in
EpB which includes the polaron and band nonparabol-
icity corrections (i.e. , Epn varies between 4.22 meV and
4.60 meV for eo ——12.75, 3.83 meV and 4.19 meV for
ep = 13.18 respectively); and (4) the effect of band non-
parabolicity is not very important due to the small tran-
sition energy at B' = 0 T.

The value of the electron-phonon coupling constant o.

0~8 s s I

0.75

CL

Qh

0.7

IJJ

~ I I ~
I

I I ~ I
I

I I I I

non parabolic

parabolic

YKA, parabolic
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y=3.0

0..6 I I I I I I I I ~ I I ~ ~ I I I l I l
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FIG. 10. The splitting of the cyclotron ls —+ 2p+ transi-
tion energy at p = 3 as function of the electron-phonon cou-
pling constant. We compare the results for (1) parabolic band
(dashed curve); (2) including band nonparabolicity (solid
curve); and (3) parabolic band within the YEA approxima-
tion (dotted curve).

inHuences the splitting of the energy levels at resonance,
which (E,z~;«,„s) is defined as the difFerence between the
two lowest branches of the 18 ~ 2@+ transition energy.
In principle the observation of the magnitude of this split-
ting can be used to determine experimentally the value
of o.. Therefore in Fig. 10 we show this splitting for p = 3
as a function of the electron-phonon coupling constant,
where we have fixed mg, Ep, and ~go in the expression
of a. In order to investigate the inBuence of different ap-
proximations we have given the results (1) for a parabolic
band (dashed curve), (2) including band nonparabolicity
(solid curve; case 1), and (3) using the YKA approxi-
mation for a parabolic band (dotted curve) Notice. that
(i) the splitting, and consequently the efFective electron-
phonon interaction, increases with increasing value of o.
as expected; (ii) band nonparabolicity gives a smaller
splitting as compared to the parabolic band case; (iii)
the splitting when including band nonparabolicity has a
stronger dependence on the coupling constant than that
for a parabolic band; and (iv) the YKA approximation
underestimates the resonant splitting.
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