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A model for the LO-phonon-related structure observed in the luminescence above the gap of
InP is presented. The corresponding exciton-phonon quasiparticle spectrum is calculated for zinc-
blende-type semiconductors using a Green’s-function formalism. It is shown that resonances may
appear due to the interaction of the exciton continuum with excitations involving a 1s-exciton state
plus a LO phonon. The corresponding electron-hole nonequilibrium distribution function is derived
by solving the master equation, which depends on the rate of scattering by acoustic and optical
phonons. These results enable the evaluation of the dependence of the luminescence intensity on
light frequency and temperature. Explicit calculations are presented for InP, CdTe, and GaAs. In
the case of InP they reproduce rather well the experimental luminescence profile observed above the
gap and its dependence on temperature. The calculations explain why a similar structure has not
been observed in the luminescence spectra of GaAs and CdTe.

I. INTRODUCTION

The observation at low temperatures of a peculiar weak
structure in the laser-excited photoemission of InP ap-
proximately one LO-phonon frequency above the gap
was reported in Ref. 1. The typical hot luminescence
tail observed in InP above the lowest gap Ey, which de-
creases monotonically towards higher energies, is modi-
fied by weak structure near the emitted photon energy
hw; = E9 — R + hwro, hwpo being the LO-phonon en-
ergy and R the binding energy of the free exciton. The
observed structure reveals the following features.

(i) Its energy is well below that of the Eq + Ag crit-
ical point at I and practically does not change with
the frequency of the excited laser w provided hw >
E¢g — R+ hwio.

(ii) Its amplitude is about five orders of magnitude
smaller than that in the excitonic region (Aw; ~ Ey — R)
independent of the laser frequency if iw > Fo— R+hwro.-

(iii) The structure disappears rapidly with increasing
temperature and does not appear for laser energy be-
low E9 — R + hwro. Moreover, a process induced by
phonon absorption would conduce to an enhancement
of the emission lines with temperature. Similar inves-
tigations on GaAs so far gave no evidence of such a LO
frequency-related structure above the Ey gap.

In Ref. 1 this new structure was assigned to radiative
annihilation of a resonant quasiparticle involving the in-
teraction of electron-hole pairs in the continuum with
discrete 1s-exciton states plus a LO phonon. The idea
of resonant coupling between excitonic states was intro-
duced by Toyozawa and Hermanson? in order to interpret
an optical-absorption structure seen for iw > Eg — R in
several ionic crystals.®* Such absorption shows a peak at
an energy hw ~ E¢g — R+ hwro. It was pointed out that
an exciton and an optical phonon may form a bound state
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which moves through the crystal if the exciton binding
energy is close to that of the phonon. The corresponding
imaginary part of the dielectric constant e; was calcu-
lated in Ref. 2 for the case of the coupling of the 1s
exciton plus a LO phonon with the 2s exciton. Sak®
generalized this work to obtain the dielectric response of
a system in which the 1s exciton + LO phonon couple
with continuous states showing that e;(w) has a negative
slope for w = wr with wp given by hwr = E¢— R+ hwro,
reaching a maximum related to the exciton-phonon quasi-
particle. The negative slope leads to a minimum in e,
above wr. The resulting phonon-related sideband in the
absorption spectrum can thus be invoked to explain the
experimental observations of Refs. 3 and 4.

In this paper we evaluate the emission rate of a system
exhibiting the exciton LO—-optical-phonon resonances. In
Sec. II, the basic relations needed to calculate the lumi-
nescence intensity in terms of the emission probability
of a light quantum by electron-hole pairs and the corre-
sponding distribution function are presented. The self-
energy, the energy spectrum of exciton-phonon quasipar-
ticles, and the emission probability are also given in Sec.
II. The electron-hole distribution function is evaluated
versus temperature in Sec. III for the case in which the
carrier relaxation is produced by interaction with acous-
tic and optical phonons. In Sec. IV the corresponding
luminescence spectra are numerically evaluated for CdTe,
GaAs, and InP and the predictions of the theory are com-
pared with experimental data for InP. In Sec. V the main
conclusions are summarized.

II. FORMULATION OF THE PROBLEM AND
FUNDAMENTAL RELATIONS

We assume a cubic crystal with the conduction- (c)
and valence- (v) band extrema at the center of the Bril-
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louin zone and dipole-allowed direct transitions between
them. The electron-hole spectrum will be assumed to be
modified by a weak interaction with the longitudinal op-
tical phonons. The rate at which photon emission occurs
is given by®

Lm(hw) = Y P (ke,kn) Wey (ke knshawr), (1)
ke kn

where P (ke, ky) is the electron-hole pair (EHP) distribu-
tion function (in principle including correlation and the
phonon renormalization described below), linear in the
incident light intensity, W, (ke, kn; Aiw;) is the probabil-
ity of EHP annihilation with photon emission, k. (k)
the electron (hole) wave vector, and w; is the frequency
of the emitted photon. For parabolic isotropic bands the
correlated electron-hole pair energy E.x becomes

h’K?
Ex = Eo + 2

AE
-~ +AE, @

where K = k. + kj, is the electron-hole pair center of the
|

1/2
(hwy lHE[ke,k;J = Ok, +kn,0 e (2—7@) éE-pe £

mo \ win

where p % is the momentum matrix element between the
valence band v and the conduction band cat k = 0, n is
the refractive index, € is the polarization of the photon
field, e and mg are the electronic charge and bare elec-
tron mass, respectively, a is the exciton Bohr radius, Vj is
the normalization volume, and I'(z) is the gamma func-
tion. For direct transitions between the ¢ and v bands the
function G becomes the retarded single-particle Green’s
function with energy E(0) = h%k2/2u.® Using the con-
ventional notation, in the (ko,t) representation, G(ko,t)
is defined as

Glko,t) = i (Cieo ()CE, (0)) , (5)

Cy, (t) being the one-particle operator in the Heisen-
berg representation, and () denoting the average over the
ground state of the system. In the zero-density approxi-
mation the Fourier transform G(ko, F) coincides with the
causal Green’s function and can be expressed in terms of
the self-energy ¥ (Ref. 9),
h2k2 -

— X(E, ko) + i&o] , (6)

G(ko, E) = [E -

where 6o > 0 represents an adiabatic parameter. Equa-
tion (6) is the solution of the Dyson equation, shown in a
diagrammatic way in Fig. 1(a) for the continuous states
of the electron-hole pair.

Using Egs. (4) and (6) we obtain from Eq. (3)

Wor = = 22 (25 [ poyf? by ey o
T m2 \Vowin Pevl Ok ki koasinh (1/koa)
h2k2 -t
xIm [E— 5 0 —E(E,k0)+i60] . (7
"
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mass wave vector, AE = —R/n? represents the discrete
spectrum (n = 1,2,...) for E;x < Eg + %jg, and AFE =

h2k§/2u is the continuum for F., > Eg + Z;K: ,
Me + mp, p~1 = m7! + my ', me (my) is the electron
(hole) effective mass, and ko corresponds to the relative
wave vector of the EHP.

mr =

A. Emission probability

Using a perturbative approach the annihilation prob-
ability W,, can be expressed by!

2
Weo = 3 Tm|(huwy |HE | ke, kn)|*G (ke, ks huw) (3)

where H} is the crystal-photon interaction Hamiltonian
and G (ke, kn; hw;) is the electron-hole pair Green’s func-
tion. For allowed direct transitions K = k. +k; ~ 0 and
electron-hole states with energies above Ej, the matrix
element (hwl )H;El ke, kh> can be expressed as”

n/2koa

IT' (1 +2/koa)]| , (4)

[
The above equation is isomorphic to the Kubo formula
for the imaginary part of the dielectric function.'® A sim-
ilar expression to Eq. (7) was used by Sak® to study
the phonon sidebands in the exciton absorption. In the
case of the vanishing electron-phonon interaction the self-
energy X tends to zero and from Eq. (7) the well-known
absorption or emission probability for semiconductors is
recovered.®

Glko,E)  G°ko,E)  GOlko,E) G (ko,E)
VST = wmmyzmm + wxm: ”’”‘W// }m
(a)

6]
s
a Qa4 a2

(b)

FIG. 1. (a) Diagramatic equation for the causal Green’s
function G(ko, E) of the electron-hole pair continuum.
3 (E, ko) represents the retarded self-energy due to interac-
tion with LO phonons and G°(ko, E) = [E — E(0) + ido] ™ *.
(b) Diagrams that must be taken into account in the calcu-
lation of the self-energy ¥ to various orders in the Frohlich
coupling constant.

a3
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B. Self-energy

The exciton-phonon interaction Hamiltonian is given
byl

H; = Z Cq [e'a™ — €™ ] by + H.c., 8)
a

where bg represents the annihilation operator for phonons
with frequency wyo and wave vector q, r. (rz) are the
electron (hole) coordinates, and Cq is the Frohlich cou-
pling constant for long-wavelength longitudinal phonons
given by

Cq = “iCF/‘I\/VTJ (9a)

with
1/2
Cr = (l - l) (27rf’1,u.zLoez)1/2 , (9b)

€0 and €., being the static and the high-frequency dielec-
tric constants, respectively.

The self-energy X (FE, kq) can be obtained using stan-
dard diagrammatic techniques [Fig. 1(b)]. The resonant
part of the self-energy to first order in the Frohlich cou-
pling constant is given by the expression

ICal” e ()2
E(E,ko) = Z Z E_AEQ — hz_Kz —-tho +i(5a’

q,K' a 2mTr

(10)

where o' represents the continuum exciton under con-
sideration (relative wave vector ko, center-of-mass wave
vector K’ = 0) and é, represents the Lorentzian width of
the EHP in the intermediate state a (center-of-mass wave
vector K) which removes the nonphysical divergence at
E = AE, + hwro + %Kz. I,.o(q) is the exciton-
phonon matrix element equal to

|

t2 [

Y(E, ko)

[F(Q’ t) + F(—Q7 t)] dQ

I (9) = / U (re,Th) (eiq-r, _ eiq.rh) T (re,th)
xd3red3ry, (11)

where ¥, (re,rp) is the wave function of the a state of
the exciton. The solution of {G (ko,E)}™' = 0 deter-
mines the excitation spectrum of the EHP-phonon sys-
tem. We are interested in this spectrum for K/ = 0 and
E(0) = h®k3/2u. If the EHP energy E(0) is close to res-
onance, i.e., E(0) ~ hwro — R/n?, the resonant terms of
the sum over a in Eq. (10) will be those corresponding to
transitions between the continuum E., = Ey + A2 k2/2u
and the discrete spectrum E.y = Ey — R/n%. The re-
maining terms in the sum over a are nonresonant and
can be eliminated by slight renormalization at the gap
Ey in Eq. (6). They will be disregarded from now on. In
the calculation the matrix element I, x,(q) is evaluated
by replacing the EHP wave function in the continuum by
the free electron-hole wave function with total momen-

tum K = 0, k¢ = ke = —k; and relative coordinate p,
that is
etko-p
Ui, (P) = (12)

VVo

To simplify the calculation we take for n only the 1s state.
The wave function ¥y,(p) is then isotropic and we can
choose a coordinate system such that the vector Q — ko
is parallel to the z axis; in this case we obtain

3
Lo (@) = 84 T (14 1t = Qul?) 2
(i
—(1+ [t + Qc|*) %0k +q,0, (13)
where
me
t= akOa Qe(h) = Qﬁ, Q = aq. (14)

mr

Taking Eq. (13) into account, ¥(E, ko) in units of the
exciton Rydberg is found to be

R~ °x )y [E/R-hwro/R+1— (u/mr)Q?+ib1,/R]|’ (15)
with
F= 1 1 " 1 1 n _1_ 1 1
SO 14 (- Qu?]” Qe [14(-@?] TRTFEHQO 14— Qu)? [1+(t+ Q)]
2@ 1 1 2Qn Q. 1 ln((Qh—tH) (Qe—t+i)) (16)
tQ? (1412 4+ Q.Qn)? [1 +(t— Qh)z] tQ3 (1412 + Q.Qn)° (Qn+t+1)(Qe+t+1i))’
2
Ay = 717_3___71&});‘2(‘)16 (6;1 — Egl) . (17)

An analytical expression for X(F, ko) can be obtained.
Because of its bulkiness, however, we do not present it
here. The complete set of parameters needed to evaluate
the self-energy by means of Eq. (15) is summarized in

[
Table I. The dimensionless parameter Ay, introduced in
Eq. (15), determines the coupling strength between the
1s-exciton 4 LO-phonon and EHP states. According to
the parameters given in Table I the stronger coupling
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TABLE I. Parameters used for the evaluation of lumines-
cence profiles in InP, GaAs, and CdTe.
Values
Parameters InP GaAs CdTe
R 5.1 meV*® 4 meV< 10.5 meV*®
E, 1421 meV® 1506 meV*® 1606 meV*
hwro 43 meV*© 36.7 meVT 21 meV?
Me 0.079m," 0.067m," 0.09mo*
Mhn 0.45mo” 0.45m," 0.81mo®
M 0.12m," 0.082m," 0.12m,*
€0 12.61° 12.4° 10.05°
€oo 9.61° 10.7% 7.1°

4 Reference 15.
¢ Reference 16.
f Reference 17.

® Reference 13.
b Reference 12.
¢ Reference 14.

strength corresponds to InP (Ao = 8.6), while for GaAs
and CdTe smaller values are obtained, Ag = 4.4 and Ay
= 2.8, respectively.

In Fig. 2 the real and imaginary parts of X(E, ko)
are displayed for InP, GaAs, and CdTe as a function of
energy, including only the heavy-hole contribution. Sim-
ilar analysis performed for the light-hole valence band
showed that its contribution to ¥ is negligible. Figure 2
shows that for values of E 2 hAwro — R the self-energy
is a rapidly varying function of the electron-hole pair en-
ergy. This means that the exciton continuum couples
strongly to the 1s-exciton state through the LO-phonon
field. According to Fig. 2 and Eq. (15) the imaginary
part of ¥ is negative and presents a minimum for an en-
ergy near hwro — R, while the real part of £ =~ 0 in the
same energy range [the reason why this does not happen
at E = hwro — R but sligthly above lies in the K depen-
dence of Eq. (10)]. Consequently, an energy-independent
exciton lifetime broadening for the calculation of the an-
nihilation probability W, would be a bad approxima-
tion.

The calculation of ¥ has been performed to second or-
der in Cp. In the next higher order, two diagrams appear
[see Fig. 1(b)]. They lead to contributions to ¥ propor-
tional to |Cr|*, which can be neglected for sufficiently
small values of Cp.
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C. Spectrum of the EHP-phonon system

To determine the spectrum of the EHP-phonon quasi-
particle we calculate the poles of the causal Green’s func-
tion G(ko, E) by replacing the self-energy by the approx-
imate expression of X(FE, ko) given in Eq. (15). The
real part of energies E(ko) calculated for GaAs, InP, and
CdTe versus the dimensionless parameter akg are shown
in Fig. 3. The error bars correspond to the imaginary
part of E(ko). Note that in Fig. 3(b) of Ref. 1 only the
solution of Re{G~!} = 0 was plotted. For comparison,
the spectrum E(ko) calculated for InP without electron-
phonon interaction is also displayed (dashed line). In
these figures the solid lines represent the renormalized
spectra of the EHP-LO-phonon system. From Fig. 3 it
is clear that the resulting dispersion relations exhibit two
branches with energies below and above the unperturbed
ones. The calculated energies for GaAs and CdTe display
a similar feature which is weaker than that of InP, a fact
which reflects the smaller dimensionless coupling param-
eter Ag. The peculiar behavior observed in the case of
CdTe may be due to the fact that the approximation
of a free electron-hole continuum used in the calculation
[Eq. (12)] is not good for values of fiwro which are not
large compared to R. For the calculation a Lorentzian
broadening §;, = 1 meV was taken in all cases. With in-
creasing 61, the EHP-phonon self-energy becomes weaker
and soon disappears, thus the conventional unperturbed
EHP continuum energy is recovered.!

The structure found in the self-energy ¥ (E, ko) modi-
fies the spectral function

1
A(ko, hw;) = —=ImG (ko, hw; — Eq) , (18)
g
the density of EHP continuum states
1
9(E) = —_Im Y G(ko, E), (19)
ko
and, consequently, the photon-emission rate. Accord-

ing to Eqgs. (6) and (15), the density of states g(E)
of the EHP-phonon quasiparticle exhibits a dip at £ =
hwro — R with respect to that of the unperturbed EHP
continuum states go(E) = —7 'Im Y, G°(ko, E) (for
more details see Ref. 1). These are much weaker for GaAs

=)

InP GaAs CdTe

E ako =3 ako =3.5 ako =15
<> 0.5 - —h——wLo -1
~ hwo hwo ,sRe{X} R
wi R ! 2 R. \1 /\ L _Relz} FIG. 2. The resonant part of the self-
~w O % Re{ energy X(E, ko) for electron heavy-hole pairs
> \ in InP, GaAs, and CdTe with ako = 3, 3.5,
& -0 5_\ ~im{x} ~Im (z} _\ TIm (£} and 1.5, respectively, and an exciton width
g T 81 = 1 meV. Both £ and E are in units of
w the exciton Rydberg.
w
o -1of - -
»

S 1 1 1 1 1 1 1 1 1

6 8 10 12 7 9 n 13 1 2 3 4 5

E/R E/R E/R
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FIG. 3. The calculated spectrum of the real part of E(ko)
for the EHP-LO-phonon system as a function of the EHP
relative wave vector |ko| for GaAs, InP, and CdTe. The value
of 15 = 1 meV and the parameters for the heavy-hole valence
band of Table I were used in the calculation. The energy
E is given in units of the exciton Rydberg, |ko| in units of
inverse exciton Bohr radii a~!. The dashed lines represent
the unperturbed EHP continuum energy for InP. The vertical
flags represent the imaginary part of E(ko).

and CdTe than for InP, a fact which reflects the differ-
ences in Ag.

III. ELECTRON-HOLE DISTRIBUTION
FUNCTION

In order to obtain the photon-emission rate Iem,(hw;)
with Eq. (1), the EHP distribution function P(k.,kp)
must be calculated. The luminescence spectrum of InP
above the gap at T = 5 K reported in Ref. 1 shows an av-
erage thermal distribution with an effective temperature
T. ~ 90 K. This means that the EHP relaxes through
phonon emission in a large range of the continuum EHP
energy before its recombination. The relevant distribu-
tion function corresponds to a nonequilibrium situation
and depends on the scattering rate by optic and acoustic
phonons down to the bottom of the continuum band. To
simplify the calculation, we shall neglect in the following
correlations between electrons and holes. This approxi-
mation is supported by the fact that the internal energy
for EHP in the continuum is of the order of Awyo, i.e.,
AE ~ hwro > R. Consistent with this, we also neglect,
as a first-order approximation, the phonon-induced en-
ergy renormalization of the continuum energies described
above. This renormalization will, however, appear in Eq.
(1) through W, [see Eq. (2)]. Within this approxima-
tion the distribution P(k.,ky) can be written as

P(ke,kp) = P.(k)P,(kn), (20)

where P.(k.) [P,(kp)] represents the electron (hole) dis-
tribution function (EDF) in the conduction (valence)
band. We assume isotropic parabolic bands.

Assuming phonons in equilibrium at the temperature
T the distribution function satisfies a semiclassical mas-
ter equation of the form

oP(k,t) = Win(k,t) — Wou(k, t), (21)

ot
where W;, represents all contributions per unit time to
the state with wave vector k, and conversely for Wo;.
We may represent W;, as

Win = Pk, t)w(k’, k), (22)
"

w(k’,k) being the transition rate from the k' to the
k electron state. In Wi, we include radiative (1/7)
and nonradiative (1/7nr) processes represented by the
phonon-induced scattering rate w(k,k’) from k to k'.

We thus write
P(k,t)
p— / —7
Wout = kE, Pk, t)wk, k') + s

(23)

Using Egs. (22) and (23) and assuming an isotropic EDF
the master equation is transformed to

/w(s',&‘)P(&')ds' — /’IU(E,EI)P(E)dE _ f%(_f)

=0,

(24)
where now P(g)de is the electron density in the energy
interval (e,e + de) and w(e’,e) the electronic transition
rate from ¢’ to €. In Eq. (24) it is assumed that electrons
have reached a configuration stationary in energy.

The exact solution of Eq. (24) for arbitrary energy
and temperature is a very difficult task. Nevertheless,
for temperatures in the range kT < hAwro LO-phonon
absorption is negligible and LO-phonon emission is ener-
getically forbidden for electron energies € < Awy,o. In this
energy interval electron scattering by LA phonons dom-
inates the relaxation process. Let us first solve Eq. (24)
in the energy interval ¢ < Awpo. Using Fermi’s golden
rule and phonons described by a Debye model one can
show that [see Eq. (A8)]

Wae(e',€) = 7/ ge(s’_s)/kBTwac(s, e. (25)

Using this relation Eq. (24) can be written as

[t 1) - s1ae = L~ 2g)

where

ee/kBT
Ve

Noting that the electron energy is changed only by a

small amount (see the Appendix) after LA-phonon ab-

sorption or emission, the function f(¢’) can be expanded
in a Taylor series about ¢,

fle) = Poc(e)- (27)
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oo
/ (e" =) d"f(e)
N (28)
After the substitution of Eq. (28) into Eq. (26) we are
able to reduce the master equation to a differential equa-
tion for f(¢). A simpler appproximate equation is ob-
tained by retaining terms up to first order in n. The
resulting first-order differential equation is

g _f_y

de T (29)

ai (E)

with
ai(e) = /(s' —e)w(e,e)de. (30)

In the Appendix a calculation of a4 (¢) in the limit kT >
2mu? is performed for deformation-potential scattering.
Using the relation (A9) for a,(¢) and after substitution
in Eq. (29) we obtain the distribution function given by

Pac(e) = Novee */*8Te ¢ < hwro (31)
where T, is an effective temperature equal to

1 1 Tac(e, T')
kgT. kgT 4mu?T

(32)

and Ny a normalization factor.

Thus, for ¢ < hwpo the luminescence process is de-
scribed by the EDF given by Eq. (31) which is condi-
tioned by two lifetimes, the relaxation time 7,. and the
nonphonon relaxation 7. If 7,. > 7 a strong nonequilib-
rium EDF is obtained with an effective temperature T,
higher than the crystal temperature T'. If 7 > 7, a ther-
mal quasiequilibrium electron sets on, leading to thermal-
ized luminescence with T, ~ T and the EDF given by Eq.
(31) reduces to a Maxwell-Boltzmann one.

Let us analyze the case € 2 hwpo. In this case the
emission of LO phonons by the electrons is not forbid-
den and the transition rate w(e,&’) is affected by the

electron-LO-phonon Frohlich Hamiltonian. Then, for
kT < hwyo we have
w(e, &) = wae(e,€') + ——1—5(6 — &' — hwro). (33)
’rLo(E)
In Eq. (33) 'rL‘Ol is the LO-phonon emission rate at
zero temperature,!®
1 (tho)l/2
—— = 2awy0
TLo(&‘)
1/2 1/2
€ €
1 -1 34
<In (hww) +(th0 ) (34)
for € > hwro,
2 1/2
e 1 1 2meo
_ _ 35
e (2o () @

€0 and €4 being the static and high-frequency dielectric
constant, respectively.
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Substituting Egs. (33) and (34) into Eq. (24) we ob-
tain
P(&‘ + tho)
TLo(e + hwio)’
(36)

v(e)P(e) = /wac(s',e)P(e’)de' +

where v(¢) is the inverse lifetime of the electron given by
1 1 1

S ORE T CRES (37)

v(e) =

The solution of the integral equation (36) can be obtained
by an iteration procedure in such a way thatZ®

P(e) = lim {PY)(e)}, (38)
j—oo
where P (¢) satisfies the following recurrence relation:

y(e)PY () = /wac(s',e)P(j-l)(e)de'

P(j_l)(e + tho)
TLo(e + Awro)

i=1,2,....
(39)

As j = 0 function we take P(®)(e) = P,.(e) given by Eq.
(31), thus, to first order, it follows from Eq. (39) that

-1
P (e) = Noy/ee </*aT: (1 4 Tacle) | m(e))
TLO(€) T
Pac(e + tho)

- h . 40
Lo (€ + Awro)’ € > hwro (40)

From the structure of Eqgs. (39) and (40) it can be
seen that PU)(e) (j > 2) contains terms of the type

Tac

€ < 2hwro, iterations in P(g) with j > 2 need not be
considered since 1,0 K Tge. For the III-V and II-VI
semiconductors electron coupling with a LO phonon is
dominant since it is allowed by energy conservation. The
relaxation time due to phonon scattering can be esti-
mated as follows: 7., ~ 1072 s for LA phonons, while
TLo =~ 10713 s for LO phonons (see Refs. 21 and 22),
and indeed 7,. is much larger than 7,0. By comparing
Eqgs. (31) and (40) it is clear that the electron distribu-
tion in energy is drastically reduced for electron kinetic
energies € larger than Awyo. Moreover, the electron re-
combination time 7 is of the order of 1071° s, i.e., much
larger than the relaxation time due to phonons. The ra-
diative recombination is therefore a rather slow process
compared with the scattering process 7,.. In solving Eq.
(24) electron relaxation Ti—l due to electron-impurity in-
teraction has been neglected. An estimation of 7; for
the impurity concentration IV; can be obtained with the
Conwell-Weisskopf formula?3

N v2m5363/2.

T N ——
wetN;

J
(M) , thus, and because we deal with an energy range

(41)

The electron-impurity interaction can be neglected if
Ti > Tac. From Egs. (41) and (A10) (see the Appendix)
it follows that this is the case for
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5°C°m] “keT (42)

re2h’y p

Using typical parameters for InP, with ¢ ~ hwpo in
(42), we find N; < 5 x 101 cm™2 for T = 5 K and
N; < 2x 10 cm™3 for T = 30 K. In Ref. 1 the
experiments were performed for an InP sample with
N; = 3 x 10'® cm™3. The corresponding expression for
the hole distribution function (DF') can be easily obtained
from Eqs. (31) and (40), replacing the electron parame-
ters by the appropriate hole parameters.

For the hole valence bands it is possible to define ap-
propriate effective deformation potentials Ceg which in-
clude all of the complications of the valence bands.?* In
the acoustic mode case Ceg is given by?®

1
Clg=d’+ % (b2 + de) : (43)

where a, b, and d are the fundamental valence-band defor-
mation potentials and ¢; and ¢; the spherically averaged
elastic compliance constants. The velocity u is, in this
case, an average sound velocity given by u? = 1u? + 2u?,
where u; and w; are the longitudinal and transverse
sound-wave velocities, respectively.

IV. LUMINESCENCE INTENSITY

Taking into consideration Eqs. (1) and (7) it follows
that

e‘rr\/R/e " m U
Iem(hw;) = —AIm / - P, ——e) P, —c¢| [hwy — Ep —e — S(hw; — Eg,e) —ibo] " de p, (44)
sinh (,/R/e) Me Mh
r
where calculated intensities without electron—LO-phonon inter-
4R|é - pcv[z w 3/2 action (dashed lines) are presented for the same effective
A= m (E) . (45) temperatures. In this case the DF is described only by

Substituting the DF given by Eqgs. (31) and (40) for the
electrons and holes in Eq. (44) the luminescence inten-
sity Jem(hw;) above the gap has been calculated for InP
[see Fig. 4(a)] at different effective temperatures. Figure
4(a) shows how the optical emission tail decreases with
decreasing T.. Moreover, near the emitted photon energy
hw; ~ Eg — hwio a nonmonotonic structure modifies the
exponential tail. Here, the calculated emission spectra
reflects the changes of the electron-hole distribution en-
ergy, the spectrum of the EHP-LO-phonon quasiparti-
cle, and its resonant behavior for hw; ~ Fy — R + hwro
through the imaginary part of ¥. By comparison, the

Eq. (31) on the whole range of electron kinetic energy;
that is, the relaxation time is determined by acoustic
phonons. Thus no structure is observed modifiying the
standard optical emission tail.

Figure 4(b) shows calculations for GaAs and CdTe
with 7, = 90 K. Besides the parameters listed in Ta-
ble I, the ratio 74./7Lo = 50 and the 1s exciton with &;,
= 1 meV were used for these calculations. These figures
show only changes in the emission tail related to the effect
of the LO phonons on the DF for hw; 2 Eg — R+ hwio.
The fact that no features related to self-energy effects
appear is explained by the small values of the coupling
strength parameter Ao [see Eq. (17)] which produce a

InP (a)

LUMINESCENCE INTENSITY (arb. units)

LUMINESCENCE INTENSITY (arb. units)

FIG. 4. (a) Luminescence spectra of InP
(solid lines) calculated according to Eq. (44)
for two different effective temperatures T, =
30 and 90 K. The dashed lines correspond to
the same calculation neglecting the electron—
LO-phonon interaction. (b) Luminescence
spectrum calculated for GaAs and CdTe
semiconductors according to Eq. (44) with an

CdTe —
Te=90K effective temperature T. = 90 K. The curves
are shifted vertically for clarity.
1 A L 1
(o] 05 1 1.5
fuwl - Eg
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weak structure in the spectrum of the EHP-phonon sys-
tem (see Fig. 3) and a very weak dip in the density of
states g(¢). As mentioned in Sec. IIC the results for
CdTe are not expected to be very reliable because of the
inaccuracy involved in the uncorrelated continuum ap-
proximation. The structure calculated at hAw;, — E; ~
hwro for GaAs is considerably weaker than that found
for InP, this being due to the smaller value of Ag. The
ability to observe this structure is determined by noise in
the experimental data (one would have lower noise than
in Fig. 5 in order to make the structure observable for
GaAs) and also by the total width of the exciton ground
state determined by electron decay channels, not consid-
ered here, plus inhomogeneous broadening.

Figure 5 depicts the luminescence profile measured for
InP above the gap at T S 5 K (Ref. 1) together with the
I, (hw;) calculated with Eq. (44). An effective temper-
ature T, = 90 K was used in the calculation, which cor-
responds to an electron lifetime 7,. = 0.05 7 for a crystal
temperature T' = 5 K. The theoretical curve reproduces
well the main features of the luminescence profile. In
Fig. 6 we compare our calculation with the experimen-
tal results for InP at different crystal temperatures (T
= 5, 22, and 27 K). The variation with T follows from
the dependence of the effective temperature T, on T [Eq.
(32)]. In the whole temperature range considered here
we took T../TLo = 50 for hw; > E¢ — R + hwro and

InP
T=5K

LUMINESCENCE INTENSITY (arb. units)

llLllJllllllllllllllllll

1.450 1455 1460 1465 1470
ENERGY (eV)

FIG. 5. Luminescence spectrum of InP above the gap for
T < 5 K (Ref. 1). The solid line represents the calculated
profile performed, according to Eq. (44), for electron—heavy-
hole pairs.

815 = 0.8 meV.'® The dip we observe in Fig. 6 at hw
around 1.460 eV is due in our calculation to the reso-
nant reduction in the excitonic component of the mixed
exciton-phonon system, i.e., to the resonant behavior of
the self-energy at Aw; =% Eg — R + hwro. The maximum
at hw; near 1.463 eV corresponds to the bottleneck in
the optical emission, according to Eq. (40). For electron
or hole kinetic energies higher than fwy,o, the scattering
by LO phonons is switched on and the distribution of
electrons (holes) in energy is drastically reduced.

V. CONCLUSIONS

We have developed a theoretical model of phonon side
bands in optical emission which describes the lumines-
cence profile above the gap in zinc-blende-type semi-
conductors. We show that a resonant structure in the
electron-hole pair continuum results from the interaction
with the 1s exciton plus one LO-phonon complex. The
resonant exciton-phonon quasiparticle spectrum is gov-
erned by the dimensionless parameter Ao given by Eq.
(17) and the effective reduced mass. A higher value of
Ay produces a strong-coupling strength of the EHP-LO-
phonon system which modifies substantially the spectral
function and the density of EHP states around the en-
ergy E = hwro — R. The electron-hole nonequilibrium
distribution function so obtained depends on an effective

InP

A
~

Eo-R+hw g

LUMINESCENCE INTENSITY (arb.units)

B N T N O TNV T T T T N N [ T N I |

1455 1.460 1465 1470 1475
ENERGY (eV)

FIG. 6. Luminescence profile of InP taken at different
crystal temperatures and for emitted photon energies near
Eo — R + hwro (Ref. 1). The solid lines correspond to lu-
minescence profiles calculated using Eq. (44) and Eq. (32)
including the dependence on crystal temperature.
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temperature which involves the ratio of the acoustical re-
laxation time and the radiative recombination time. The
calculated luminescence profile agrees rather well with
experimental data for InP, giving support to the idea that
the observed structure of Ref. 1 arises from the recom-
bination of resonant exciton-phonon quasiparticles. The
failure to observe such a structure in GaAs and CdTe is
explained, in the framework of our theoretical model, by
the smaller electron-phonon coupling constant.
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APPENDIX A: SCATTERING PROBABILITY
w(e,e’)

We consider electron scattering by LA phonons with
the dispersion law wq = ugq, u being the sound velocity
J

W= D { [ () s [ [ ()] e},

with

D= _Cj__z |
4dmpouth 2

N(z) = [exp(z) — 1] %,
ex=(vex W)z.

and q the phonon wave vector. The probability w(e,¢’)
can be easily obtained using Fermi’s golden rule,

Waele) = 5 S F [Heg | )%5(es =), (A1)
f

where &; (ey) represents the initial (final) energy of the
system. The electron-LA-phonon Hamiltonian for the
deformation-potential model is

Hep =Y (cqe™®™bq + che97b7), (A2)

q

where bq (b}) is the annihilation (creation) operator of
the L A-acoustic phonon, and

A 1/2 ,
1/2
= C
Cq <2V0p0u) q 0,

po is the crystal density and Cy the electron or hole defor-
mation potential. Using Eqs. (A1)—(A3) the transition
probability becomes equal to

(A3)

(A4)

(A5)
(A6)
(A7)

Thus the scattering probability per unit time and energy is given by

D (ot _ 2N [e=e ,
woterey = L FE =2 (%)

e<e <ey

D (c—¢')?2 [N (;;;’) + 1] e <& <e.

(A8)

From (A8) Eq. (25) is easily derived. Under the approximation N(e/kpT) ~ %2T with kT > 2mu?2, the coefficient

a1(e) of Eq. (30) can be evaluated analytically to be

8mu?

a1(e) = Tac(e, T)’

where 7, is the electron lifetime equal to!®
1
— = 8DkgTmu?\/c.

ac

€

(A9)

(A10)
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