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A theoretical model for the electronic structure of porous Si is presented. Three geometries of
porous Si (wire with square cross section, pore with square cross section, and pore with circular cross
section) along both the [001] and [110] directions are considered. It is found that the confinement
geometry afFects decisively the ordering of conduction-band states. Due to the quantum confinement
effect, there is a mixing between the bulk X and I' states, resulting in finite optical transition matrix
elements, but smaller than the usual direct transition matrix elements by a factor of 10 . We
found that the strengths of optical transitions are sensitive to the geometry of the structure. For
(001) porous Si the structure with circular pores has much stronger optical transitions compared
to the other two structures and it may play an important role in the observed luminescence. For
this structure the energy difference between the direct and the indirect conduction-band minima is
very small. Thus it is possible to observe photoluminescence from the indirect minimum at room
temperature. For (110) porous Si of similar size of cross section the energy gap is smaller than that
of (001) porous Si. The optical transitions for all three structures of (110)porous Si tend to be much
stronger along the axis than perpendicular to the axis.

I. INTRODUCTION

Recent observation of visible luminescence in porous
Si at room temperature has stimulated a great deal of
interest in studying the origin of photoluminescence in
porous Si. Bulk Si has an indirect band gap, which under
normal circumstances prevents efBcient interband radia-
tive recombination. If the optical properties of Si become
as useful as the electronic properties, the popular semi-
conductor would play as large a role in the emerging tech-
nology of optoelectronics as it has in the microelectronics
revolution. Thus the understanding of the optical prop-
erties of porous Si is important from both the scientific
and technological points of view. Many experimental and
theoretical investigations have been devoted to this goal,
and several conjectures of the origin of this visible-light
emission have been proposed.

(I) The quantum-size confinement eB'ect, s for which
there is yet a lack of direct and decisive evidence. A corre-
lation of Raman and photoluminescence spectra showed
that the origin of the luminescence is due to the quan-
tum confinement of a microstructure having a character-
istic dimension of 20—30 A. Sanders and Chang studied
theoretically the electronic and optical properties of free-
standing Si quantum wires with a square cross section.
They found that for narrow quantum wires with widths
around 8 A. , the average exciton oscillator strength is
comparable to that of bulk GaAs. However, the average
exciton oscillator strength decreases dramatically (faster
than I/L ) as the quantum-wire width I increases. First-
principle calculations on similar structures lead to essen-
tially the same conclusion.

(2) Transition between band-tail states of hydro-

genated amorphous Si due to the intrinsic disorder. A
light emission at about 1.4 eV with an emission width of
about 0.3 eV has been reported. " The x-ray photoelec-
tron spectroscopy measurements of Si 2p and valence-
band states in porous Si and crystalline Si (Ref. 8)
demonstrated that the near-surface region of high poros-
ity films exhibits visible luminescence consisting of amor-
phous Si.

(3) Phonon-assisted indirect transitions. The anoma-
lous temperature dependences of the emission energy
and emission intensity are attributed to the phonon
participation.

(4) Siloxene derivate present in porous Si. Brandt
et al. compared luminescence and vibrational prop-
erties of porous Si and chemically synthesized siloxene
(SisOsHs) and its derivate. Based on the quantitative
agreement of these two types of materials they attributed
the strong room-temperature luminescence in porous Si
to a siloxene derivate present in porous Si.

In this paper we present a theoretical model for study-
ing the electronic structure of porous Si with wire as well
as pore structures. We believe that in porous Si, both
types of structures exist. The theoretical model combines
the empirical pseudopotential method with the de-
generate perturbation method. ' With this model we
studied the quantum confinement effect of the porous Si
in three different geometries, including a wire structure
with a square cross section (square wire), a pore struc-
ture with a square cross section (square pore), and a pore
structure with a circular cross section (circular pore). We
found that the pore structure with a circular cross sec-
tion has the strongest optical transition matrix element
and it should play an important role in the luminescence
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observed in porous Si. In Sec. II we introduce briefly
the theoretical method, and in Sec. III we discuss the
electronic states and optical transition matrix elements
in porous Si with various cross sections and crystalline
orientations.

[001]

a

(b)

[001]

II. THEORETICAL METHOD FOR POROU S SI

t1 ———[(I —1)/2], . . . , 0, . . . , [I/2],

27r

2

l2 ———[(m, —1)/2], . . . , 0, . . . , [m/2],
(2)

The cross sections of three different geometries of
porous (001) Si are shown in Fig. 1, in which (a), (b), and
(c) correspond to structures with square free-standing
wires, square pores, and circular pores, respectively. In
our super-cell model, the system has translational sym-
metries in the [001], [110],and [110]directions with peri-

ods a, 2 a, and 2 a, where l and m are integers which
determine the size of the super cell. Because of the pe-
riodic structure of the model system, the wave function
of the porous Si can be written in terms of Si bulk states
with wave vectors k + g( —— & k, & —), where g are
reciprocal-lattice vectors of the model system enclosed
within the first Brillouin zone of bulk Si. Here for bulk
Si, we use the double unit cell as shown in Fig. 2(a) in-
stead of the usual unit cell used for the diamond structure
in order to satisfy the periodicity of porous Si. The cor-
responding Brillouin zone is shown in Fig. 2(b), which
can be viewed as a folding of the usual Brillouin zone
for the diamond structure. The states at the I' point
[k=(0,0,0)] now comprise states at the I' [k=(0,0,0)] and

[k=(0,0,—)] points in the usual Brillouin zone. The
components of g along the [110] and [110] directions are
given by

r
110 ~ P»]

FIG. 2. Schemetic plots of (a) a unit cell and (b) the Bril-
louin zone used in the paper.

where we have used the symbol [x] to denote an integer
closest to and no larger than x. Using these bulk states
as basis functions for the expansion of the wave functions
for porous Si, we have

where Q k+g denotes the bulk Bloch states associated
with the nth band and wave vector k + g.

For porous Si, the perturbation potential is caused by
the open area in Fig. 1. We write

Vo in the open areaAvjrj =
0 in the filled area,

where Vo is large relative to the energy range consid-
ered. It is positive for the conduction-band states and
negative for the valence-band states. Namely, the vac-
uum regions are replaced by bulk Si with the conduction
bands rigidly shifted upward by a constant and the va-
lence bands shifted downward by another constant. The
problem now resembles that of a homojunction. The mix-
ing of conduction-band states and valence-band states
is neglected by solving the problem separately for con-
duction and valence bands. This is a valid procedure
when the energy shifts due to the quantum confinement
is small compared to the corresponding energy difference
between the conduction- and valence-band states. We
found this is satisfied for the size of the super cells con-
sidered. The magnitude of Vo is adjusted by comparing

(b) (c)

[1oo] [1oo] [100]

FIG. 1. Schemetic plots of the cross sections of porous (001) Si: (a) square standing wires, (b) connected structure with
square pores, (c) connected structure with circular pores.
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our results with the tight-binding results for the free-
standing wires. We found that the appropriate values
for Vo are 5.3 and 2.4 eV for the conduction- and valence-
band states, respectively.

Using degenerate perturbation theory, we obtain a sec-
ular equation for porous Si,

1,„, 7rB2 2Ji(gR)
(6)

where Ji(x) is the Bessel function of first order, q is the
magnitude of the vector q = g —g' + G —G' (C, G'
are bulk reciprocal-lattice vectors), A is the radius of the
circle, and I is the area of the unit cell in the A Y plane.
Note that the matrix element vanishes unless q lies in
the XY plane. When Lg approaches zero, it approaches
Voiren iL .

The form factors of the empirical pseudopotential for
Si, V(3), V(8), V(11) are not enough for the double unit-
cell case, so we refer to the fitting formula of the form
factor for Si, but cut off at q = ~11(—). The number
of plane waves used in the calculation is 123.

III. RESULTS

We calculated the electronic states and optical transi-
tion matrix elements

(7)

for the three geometries shown in Fig. 1. First we discuss
the case of (001) porous Si. We choose the size of the unit
cell to be l = m, = 10 [see Eqs. (1) and (2)]. The length
of each edge is L = 10 2

a= 38.4 A. . In the first case, the
length of each edge for the free-standing wire is taken as
6~a= 23 A; in the second case, the length of each edge

for the square pore is taken as 8 2
a= 30.7 A; and in

the third case, the radius of the circular pore is taken as
3.3a= 17.9 A.

I@-~+I~- ~gg + (nk+ gl&Vln'k+ g') —&I = 0 (5)

where E g is the energy eigenvalues of bulk Si. Because
@ i, are composed of plane waves, the matrix elements
of perturbation potential can be calculated easily; for
example, in the circular pore structure [Fig. 1(c)],

The eigenenergies of the lowest four conduction-band
states and the highest four valence-band states at I' point
[k=(0,0,0)] for the three structures of (001) porous Si
are shown in Table I. The lower-lying conduction-band
states can be classified into two kinds: one consists of
four nearly degenerate states, the other consists of two
degenerate states. For the wire structure with a square
cross section (case 1) the fourfold states are lowest, which
is in agreement with the results of Sanders and Chang
[Fig. 4(c) of Ref. 5]. However, for the pore structure with
the square cross section the twofold states are lowest.

Figure 3 shows the band structure of the square-wire
structure for the wave vector along the z direction. Com-
paring this figure with Fig. 3(c) of Ref. 5, we find that
the band structure obtained here is quite similar to
the tight-binding results in Ref. 5. In particular, the
lowest-lying conduction bands are nearly fourfold degen-
erate with the twofold degenerate bands lying at ap-
proximately 0.2 eV above at the zone center. From the
wave functions of these states it is found that the nearly
fourfold degenerate bands are composed of bulk states
with k near four conduction-band minima in the XY
plane, (+0.85,0,0)—,(0,+0.85,0)—,and the twofold de-
generate band is composed of bulk states with k near
(0,0,j0.85)—in the z direction. Because the unit cell is
doubled in porous Si along the z axis [see Fig. 2(a)], the
bulk state at the A point (k, =—) is folded to the I' point
and the bulk conduction-band minimum at k, = 0.85(—)
is folded to k, = 0.15(—). The energies of fourfold states
near the zone center increase with k„while the energy
of the lower branch of the twofold states decreases with
k, . They cross at about k, =0.11(—). For the square-
wire structure there is almost no energy dispersion for k
in the plane perpendicular to the wire, because the wires
are isolated from one another.

Figure 4 shows the energy bands of the square-pore
structure for k along the z axis. In this case, the lowest-
lying conduction bands are twofold degenerate at I' and
they split as k increases, while the nearly fourfold de-
generate bands lie at about 0.3—0.4-eV higher. Since
the twofold degenerate bands are derived from X valleys
along the z axis, they have diferent symmetry properties
from those derived from the X valleys in the XY plane.
Thus, we expect quite difFerent luminescence behavior for
this structure as compared to the square-wire structure.

TABLE I. Energies of conduction-band states at the I' point for the three structures shown in
Fig. 1 in the (001) and (110) porous Si. Cn and Vn denote the nth conduction and valence states,
respectively. All energies are in units of eV, relative to the top of valence band of bulk Si.

Band
V1
V2
V3
V4
C1
C2
C3
C4

Case 1
-0.3625
-0.3625
-0.3767
-0.4090
1.3693
1.3805
1.3819
1.4027

(001) Porous Si
Case 2
-0.2492
-0.2492
-0.6700
-0.8132
1.4872
1.4881
1.8003
1.8246

Case 3
-0.2524
-0.2524
-0.3810
-0.4818
1.4537
1.4604
1.4615
1.4829

Case 1
-0.2178
-0.2835
-0.3946
-0.4174
1.2201
1.3285
1.4124
1.5415

(110) Porous Si
Case 2
-0.2170
-0.4228
-0.4511
-0.4585
1.2419
1.2621
1.3958
1.4425

Case 3
-0.3090
-0.4816
-0.5536
-0.6055
1.3443
1.5236
1.6624
1.8697
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room temperature, we expect the indirect mimimum to
contribute via the phonon-assisted recombination.

Figure 7 shows the energy bands of the circular pore
structure for k along the [100] direction (from I' to
A), and along the [110] direction (from I' to K [k =
(I/2l, I/2l, 0) —]) in the superlattice Brillouin zone [see
Fig. 2(b)]. For the conduction bands the energy disper-
sion for k in the XY plane is much smaller than that in
the [001] direction. Thus, the electron motion is nearly
one dimensional. The valence band, however, has appre-
ciable dispersion along the [100] direction and it splits
into two bands along the [110] direction. Thus, the hole
motion is at least two dimensional.

Table II lists the optical transition matrix elements for
(x, y) polarization [&(Q, + Q",)] and z polarization
(Q', ) [Eq. (7)] from the four lowest conduction states
to the four highest valence states at I' for the three struc-
tures of (001) porous Si. We see that due to the quan-
tum confinement effect there is a mixing between bulk X
states and I states, resulting in finite optical transition
matrix elements, but still much smaller than the matrix
elements for direct transition between bulk I' states. For
bulk I'2-I'25 and I g5-I'2~ transitions, we have

FIG. 7. Energy band along k~yppj and k~rrpi for the (001)
circular-pore structure.

between the previous two cases. The lowest-lying conduc-
tion bands are nearly fourfold degenerate, but the twofold
degenerate bands lie closely above at the zone center.
The energy difference between the I' minimum and the
A minimum in the preset structure is only about 0.02
eV. The valence-band maximum remains at the I' point.
At low temperatures the luminescence of this structure
is determined mainly by states near the I' point, while at

l(slI *l~') I' = »» e»
mp

l(*fp, l

')I'=»45 &,
mp

where Is) is a conduction I'2 state, lx) is a conduction
I'rs state, and lx') and Iz') are valence I 25 states. For
porous Si the transitions from the twofold conduction
states involve mainly the bulk states located near the
two X minima along the z axis, and those from the four-
fold states involve the bulk states located near the four
X minima in the XY plane. In the three cases of porous

TABLE II. Optical transition matrix elements squared —(Q, + Q", ) and Q', (in units of
eV) at the I' point for the three structures of (001) porous Si. C'n and Vn denote the nth conduction
and valence states, respectively. The last digit after the minus sign indicates the exponent, e.g. ,

—4
means 10

Cl-Vl
C2-Vl
C3-Vl
C4-V 1
Cl-V2
C2-V2
C3-V2
C4-V2
Cl-V3
C2-V3
C3-V3
C4-V3
Cl-V4
C2- V4
C3-V4
C4-V4

Case 1
0.454-4
0.139-4
0.151-3
0.305-4
0.105-4
0.201-4
0.384-3
0.528-4
0.301-4
0.547-5
0.243-3
0.438-6
0.237-5
0.483-5
0.251-2
0.882-6

(x, y) polarization
Case 2

0.181-3
0.441-3
0.209-3
0.246-1
0.479-3
0.862-3
0.236-3
0.243-1
0.153-3
0.322-3
0.521-3
0.225-3
0.178-2
0.199-3
0.240-4
0.180-2

Case 3
0.352-3
0.116-3
0.154-2
0.150-3
0.160-5
0.389-4
0.532-3
0.489-4
0.203-3
0.410-5
0.131-3
0.187-3
0.194-4
0.196-4
0.457-2
0.291-3

Case 1

0.472-4
0.176-3
0.549-5
0.304-2
0.935-3
0.945-3
0.523-4
0.685-2
0.230-3
0.419-3
0.645-4
0.170-2
0.253-3
0.135-3
0.107-4
0.120-2

z polarization
Case 2

0.235-5
0.253-4
0.303-3
0.582-7
0.441-4
0.293-4
0.165-5
0.462-5
0.486-2
0.341-2
0.174-2
0.280-1
0.249-2
0.846-3
0.392-3
0.804-3

Case 3
0.216-2
0.164-5
0.578-4
0.335-2
0.124-1
0.470-3
0.399-3
0.168-2
0.423-2
0.310-3
0.197-4
0.162-1
0.324-2
0.171-4
0.252-3
0.955-3
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Si considered here, the structure with circular pores has
the larger optical transition matrix elements for low-lying
states compared to two other structures. For example, in
case 3 both the C3-V1 and C3-V4 transitions are strong
for (x, y) polarization and both the Cl-V2 and C4-V3
transitions are very strong for z polarization. Thus, this
structure may play an important role in determining the
luminescence observed in porous Si for photon energies
near 1.6 eV. Of course, the excitonic effect also needs
to be considered. Here because of the Gnite dispersion
for valence bands along directions in the XY plane, we
expect the excitonic enhancement effect is weaker com-
pared to that for free-standing wires (see Ref. 5). Tak-
ing into account both excitonic effects and optical ma-
trix elements, we estimate the contributions from both
structures to be comparable. For case 2 (the square pore
structure), only the lowest two conduction bands and the
highest two valence bands are near the band edges (see
Table I); thus, although some optical transitions involv-
ing these higher bands are strong [e.g. , C4-Vl, C4-V2
(x, y), or C4-V3 (z)], they do not contribute to the lu-
minsc ence.

In addition to (001) porous Si discussed above, we
also considered (110) porous Si, i.e., with wires or pores
aligned perpendicular to the (110) plane. In this case
the wave functions for the porous Si are expanded by the
Bloch waves with the following wave vectors k+g:

LD

~ Q7

QQ
U)

C
UJ

LA

Q
I

0.0 0.2 04
k[sio]

0.6

FIG. 8. Energy bands along k~rzo~ for the (110)
rectangular-wire structure. k[yyp] is in units of —.

2~
g2

—— l2,
n —2a

2

l2 ——[(I —1)/2], . . . , 0, . . . , [I/2],

2K
g, =

ma

(10)

and the (110) porous Si. In the (110) porous Si there
are only nearly twofold or singlet states (excluding spin
degeneracy). The singlet states are composed mainly of
bulk states located near the [001] or [001]I points folded
to the I' point. The bulk states located near the other
four X valleys in the XY plane have no contribution to

ls ———[(m —1)/2], . . . , 0, . . . , [m/2],

(k& &

%e choose a superlattice unit cell with l = 10 and m = 8,
i.e. , the lengths of the two edges are 10~&a= 38.4 A. and
8a= 43.4 A in the [110]and [001] directions, respectively.
The sizes of three structures with the same geometries as
shown in Fig. 1 are taken to be similar to those in (001)
porous Si. In the first case, the lengths of the two edges
for the rectangular wire are taken as 6~2a= 23 A and
4a=21.7 A. , respectively; in the second case, the lengths
of the two edges for the rectangular pore are taken as
8 2 a= 30.7 A and 6a=32.6 A. , respectively; and in the
third case, the radius of the circular pore is taken as
4~~a= 15.4 A. .

The eigenenergies of the lowest four conduction states
and highest four valence states at the I' point [k=(0,0,0)]
for the three structures of (110) porous Si are shown in
Table I. Similarly to the (001) porous Si the energy of
the ground state at the I' point is the lowest. There are
some noticeable differences between the (001) porous Si

O

QO
U)

C
UJ

LD

Q
I

0.0 0.2 04 0.6

FIG. 9. Energy bands along k~rroj for the (110)
rectangular-pore structure. ktqqpj is in units of —.
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FIG. 10. Energy bands along k[y]p] for the (110) circular-
pore structure. A:[]]o] is in units of —.

8—10. From these figures we see that there are two en-
ergy local minima: one is at the I' point, the other with
nearly double degeneracy and higher energy is at k~zzoj ——

0.6(—), which is derived from bulk A minima states with
wave vectors in the XY plane. The energy bands of the
(110) porous structure with pores have a similar shape,
with the conduction-band minimum also located at the
I. point. The dispersion of low-lying bands along the
[001] and [110]directions are found to be rather weak for
all three geometries (not shown), indicating a quasi-one-
dimensional behavior.

Table III lists the optical transition matrix elements
for (x, y) polarization [2 (Q, +Q",)] and z polarization
(Q'„„,) [Eq. (7)] from the four lowest conduction states
to the four highest valence states at I' for the three struc-
tures of (110) porous Si. In general, the optical matrix
elements for z polarization are much stronger than those
for (x, y) polarization. This is expected as the lowest
conduction-band states are mainly derived from bulk Si
states with wave vectors near the [001] 4 valley. In case
2 the optical matrix element for the lowest-energy tran-
sition is strong ( 0.011 eV), and in the other two cases
we find no optical matrix elements stronger than 10
eV for transitions involving the lowest two conduction
bands. Thus, we expect that the luminscence in (110)
porous Si is dominated by the pore structure with the
square cross section.

the conduction-band states at the I' point, since the pro-
jection of these valleys on the [110]axis always has a finite
value of k~&&0~. The energies of the lowest-lying bands are
considerably lower than those of the counterparts of (001)
porous Si (although w'ith a similar cross-sectional area).
This is attributed to the heavy effective mass along one
direction of quantization (i.e., [001]).

The energy bands of the three structures for (110)
porous Si along the kI&joI direction are shown in Figs.

IV. SUMMARY

In summary, we presented a theoretical model for the
electronic structure of porous Si. This model is appli-
cable in principle to semiconductor quantum wires and
porous structures with an arbitrary cross section or crys-
talline orientation. Due to the quantum co~finement
effect, there is a mixing between the bulk L and bulk
I' states, resulting in Rnite optical transition matrix ele-

TABLE III. Optical transition matrix elements squared —(Q, + Q", ) and Q', (in units of
eV) at the I' point for the three structures of (110) porous Si. Cn and Vn represent conduction
and valence states, respectively. The last digit after the minus sign indicates the exponent, e.g. , —4
means 10

Cl-Vl
C2-Vl
C3-Vl
C4-Vl
Cl- V2
C2-V2
C3-V2
C4-V2
C1-V3
C2-V3
C3-V3
C4-V3
Cl-V4
C2-V4
C3-V4
C4-V4

Case 1
0.258-6
0.297-11
0.197-4
0.120-5
0.703-5
0.424-11
0.401-4
0.169-5
0.484-6
0.192-12
0.218-4
0.543-6
0.243-4
0.760-11
0.156-3
0.187-5

(x, y) polarization
Case 2

0.406-6
0.195-7
0.704-6
0.375-4
0.111-5
0.140-6
0.561-6
0.731-4
0.453-5
0.582-5
0.385-5
0.225-2
0.814-5
0.131-4
0.587-5
0.380-2

Case 3
0.488-5
0.291-12
0.564-5
0.514-4
0.550-4
0.617-11
0.190-4
0.429-3
0.197-4
0.313-11
0.849-4
0.197-3
0.112-3
0.683-11
0.109-4
0.615-3

Case 1
0.968-4
0.869-3
0.327-12
0.206-2
0.896-3
0.583-4
0.509-10
0.474-3
0.169-2
0.310-2
0.524-10
0.126-1
0.481-3
0.460-3
0.273-10
0.364-3

z polarization
Case 2

0.110-1
0.281-2
0.427-2
0.496-4
0.177-2
0.676-3
0.273-3
0.280-3
0.237-3
0.250-2
0.509-3
0.137-1
0 ~ 196-2
0.880-3
0.597-2
0.158-1

Case 3
0.157-3
0.139-3
0.856-10
0.899-4
0.857-3
0.280-2
0.117-10
0.451-3
0.165-3
0.818-2
0.826-11
0.364-3
0.963-3
0.107-1
0.121-9
0.135-2
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ments, but it is smaller than the usual direct transition
matrix elements by three orders of magnitude. Three
geometries of porous Si along two different orientations
[(001) and (110)j have been considered; it is found that
the confinement geometry affects decisively the energies
and ordering of conduction-band states. For the (001)
porous Si the structure with circular pores has larger op-
tical transition matrix elements compared to two other
structures and it should be considered in understand-
ing the observed luminescence. The energy difference
between the direct and indirect conduction minima in
this structure is very small. When the phonon-assisted
recombination is considered these indirect minima may
also play an important role in the luminescence. In fact,
phonon-assisted recombination may be important even
for the direct transitions, since the electron-phonon cou-
pling can mix the I'- and X-derived states and lead to en-
hanced optical matrix elements. The relative strength for

the phonon-assisted transition as compared to the dipole-
allowed transition induced by quantum confinment ef-
fects would be an important issue to study. For the (110)
porous Si we found that the optical transition matrix ele-
ments are of the same order of magnitude as in the (001)
case, but they are more anisotropic with the z polar-
ization dominating the x, y polarization. For a similar
size of cross section, the (110) porous Si tends to have a
smaller band gap compared to (001) porous Si.
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