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Shallow-acceptor spectral-line fine structure in germanium
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A controlled-accuracy, high-resolution energy spectrum of the 4X4 Kohn-Luttinger Hamiltonian
with a screened Coulomb impurity potential has been obtained. The calculated and measured spectra
were adjusted using selected line positions. An identification of the boron spectrum reveals a complex
structure for most of the lines. The identification yields the splittings in the multiplets and chemical
shifts of the odd-parity excited states. An estimated splitting in the C triplet of 53 peV is in fair agree-
ment with the reported separation for Ge(B), Ge(Al), and Ge(In). New data on the spectroscopic values
of the ground-state binding energies for nine experimentally studied acceptors are presented.

I. INTRODUCTION

The study of bulk-semiconductor shallow acceptor
(SA) spectra has been an active area of exploration for
more than three decades. By now, detailed experimental
acceptor spectra in ultrapure germanium (net acceptor
concentrations of 10 —10' cm ) are available, provid-
ing a basis for systematic theoretical research. Although
the main features of the acceptor problem are well ex-
plained in the framework of the effective-mass theory
(EMT) (Refs. 1 and 2) and the spherical model ' which
have led to an improved understanding of many proper-
ties of SA's, problems of interpretation of far-infrared ab-
sorption spectroscopy (FIRAS) (Ref. 5) and photothermal
ionization spectroscopy (PTIS) (Refs. 6—9) data necessi-
tated corrections in the model. The refined spherical
model was developed to describe more accurately the I 8+

valence-band warping by adding to the envelope-function
expansion terms with larger values of orbital momentum
L. It also includes q-dependent screening, ' a short-range
potential, "and coupling to the split-off I 7+ valence band.
It should be kept in mind that in the SA-state calculation
there is no estimation of the truncation errors of the
envelope-function expansion in a series of angular func-
tions, " ' and further, there is no estimation of inaccu-
racies induced by a variational solution of the radial
differential equations for the r-dependent coe%cients of
this series. ' '

The methods of singular boundary problem numerica1
analysis for ordinary differential equations (ODEs) (Refs.
14—16) have turned out to be a useful technique in investi-
gation of the acceptor problem. ' These studies
showed that the high-order envelope-function angular
basis expansion (HOABE) (Ref. 17) and numerical segre-
gation of bounded solutions (NSOBS) for ODE sets deal-
ing with local transfer of boundary conditions from
singular points' ' and variants of the orthogonal
differential marching method, ' allow us to obtain 60 SA
energy levels (EL's) in Ge for low orders of the ODE ma-
trices with an accuracy of the eigenvalue calculation of
-0.5 peV. The accuracy was evaluated from analytical
solutions for I 6, I 7+ states with 2X2 ODE matrices.

In this paper, we will extend these computations to the

comprehensive calculation of SA states in Ge. The impli-
cations of this method in a spectral identification are il-
lustrated with an example: B in Ge. The results of the
computations also indicate that HOABE and NSOBS
methods give rise to significant lowering of EL's of SA's
in Ge as compared to the earlier EMT calculations in the
spherical model for the 4X4 Kohn-Luttinger Hamiltoni-
an with a screened Coulomb impurity potential, both
without introducing q-dependent dielectric screening and
taking into account the decoupled I 7+ split-off valence
band. Comparison of our calculations and previous EMT
calculations of the lowest 25 EL's for the same problem
shows that the differences lie between 3.65%%uo (1I 7 ) and
19.3%%uo (1I 6 ) (the spherical model with cubic con-
tributions, Ref. 4), —41.8% ( 1I 7+ ) and 11.0%
(7I s+ ) (the same model, Ref. 9), and —5. 18%%uo (3I 7 ) and
9.24% (7I's+) (the spherical model with cubic contribu-
tions and ODE set solved by the finite-element method,
Ref. 21; the estimations were obtained by linear extrapo-
lation to p=0. 7638 and 5=0.1084 for Ge).

II. EMT-EQUATION-SOLVING ALGORITHM

The underlying idea of this approach is an implementa-
tion in a standard SA-state calculation of (i) the arbitrary
order cubic basis algorithm and (ii) the singular boundary
problem numerical analysis for radial ODE sets. No
correction for the potential in the central cell was made
and the split-off I 7+ valence band was not taken into ac-
count. As for the first approximation, the inhuence the
central cell and its nearest neighbors have on energy
states is considered a generation of the EL chemical
shifts. The second approximation is justified at the first
stage of the computation because of the large value of
spin-orbit valence-band splitting 50=290 meV in Ge, as
compared to the scale of SA excited-state energy
differences —1 meV. The L-S-type coupling scheme of
the orbital momentum L to the pseudospin S=—', was
used. The nonvariational NSOBS method in these cal-
culations replaced the variational solution of the sets of
ODE's in previous calculations. ' '

If we combine the Clebsch-Gordan coefficient tech-
nique relevant to L-S coupling and the finite-rotation ma-
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trices for elements of the group 0', we obtain the closed
expressions for cubic harmonics of indices I,j,m of the
representations a =I,*, i =6, 7, 8 in the form of the
decomposition in series of four spinors of the angular
momentum eigenfunctions 4'&.

J(a) (a,j)
pljm P Am'm +Ijm'

(I is the unit N XN matrix), the solutions of Eq. (2a),
which satisfy the boundary condition limz(r) =0, form

r~p
an N-dimensional linear subspace M' '(r) in the (z,z+ )

space. This subspace for sufficiently small r can be
specified in the form

z
z (r)=a(r)z+(r), z= +, r ri «1,

z

where NXN matrix a(r)=gg, atrJ is the solution of
the singular Cauchy problem

m =+~+—,'+4t~, s, t =0,+1,+2, . . . ,

m =+~+ '+4—t~, s, t=0, +1,+2, . . . ,
(1)

(r,,j) (j) '7T

A~~ =
—, 5~~ —~ 2d~~ —6~. ~ +4,

1 1 1 2 ' 1

mi=+(+ ,'+4t~—, s, t=0, +1,+2, . . . ,

V(r, E)= A (r, E) Ao=—

r

Viz

V2i V2z

2

V,„=g V,II'r J, i, k = 1,2,
j=1

lim a(r) =0,
r~p

ru'= Ap cx cxAp + V]~6K cxV22 cxV2]A+ V]2

0&r~r, , (4a)

(4b)

(4c)

R (0) is bounded,

lim R (r)=0,r~ QO

(2b)

(2c)

m2 =+(+ ,'+4t), s, t =—0,+1,+2, . . . ,

where the functions d'J' (P) are given in Ref. 23.
Group-theoretical methods yield ljm sets for the irre-
ducible representations.

The envelope-wave function (WF) is a matrix product
of a 4XiV matrix of angular part y&

' and the X column
of radial part R =[R„'&J' ] of the WF; the order of the
matrices of a radial ODE set is equal to N.

The boundary problem for a radial ODE set is written

atr R "+a2rR'+(a3+a~r+Easr )R =0, 0&r & ao,
(2a)

P'+P +—BP+ (C+Dr+EFr )=0 .1 1

r r 2
(6)

We find the recurrence relations for P by substituting an
expansion of P into Eq. (6}.

With the benefit of the results (i) and (ii), the boundary
problem (2) is reduced to an equivalent problem without
singularities over the finite interval [ro, r ]:

rz' A(r, E)z =0,—ro & r & r„,

where V g' can be expressed in terms of matrices 8, C, D,
and F Asub. stitution of the series for a(r) into Eq. (4a)
yields a. in form of the recurrence relations.

(ii) The transfer of boundary condition (2c) to point
r &&1 by using the equivalence' '

R'=P(r„)R .

The equation for the matrix p=g =Jpo(lJlrj), r~~
(asymptotic series) is derived:

where a, q =1, . . . , 5, are constant N XX matrices.
Their elements depend on the expansion coefficients (1) in
a complicated way.

There are three steps involved in solving Eqs. (2).
(i} The transfer of the boundary condition (2b) from the

singular point r =0 to the neighboring point rp. ' ' In
the form of the first-order equation for 2X vector z,

4'(ro)z(ro )=0, 0'(ro ) =

4(r„)z(r )=0, %(r„)=

(7b)

(7c)

0 I
C I—B A

0 0
A —EI'"

B=a( a2

0

C=a, a3,—1

Rrz'= A (r, E)z, z =

A (r, E)= Ao+ Air+ A2r

0 0
—D 0 (3)

D=ai 'a4, I =a] 'a5 .

(iii) The evaluation of the E eigenvalues of problem (7)
using a version of the stable differential marching method
(Refs. 14 and 17). We solve problem (7) by "shooting"
for parameter E: for a fixed value of E &0, we transfer
the boundary conditions (7b) and (7c) from points ro and
r „ to point r H [ro, r ]. The eigenvalues of E are sought
from the condition of nontrivial compatibility of linear
algebraic equations at point r.

The boundary condition (7b) [analogously, (7c)] segre-
gates in 2N-dimensional space of the solutions of Eq. (7a)
N-dimensional linear subspace M ( r ), which can be
represented for all r H[ro, r„) in the form 4(r)z(r)=0.
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The 2N XN matrix 4 then defines the MP(r) and is a
solution of the equation

r%'+ A 4—4('P%) '%3 +=0, ro (r (r
An application of a two-sided marching method of Ref.
14 gives the solution of the 2N column z (r).

III. RESULTS AND DISCUSSION

The I 8+ valence-band parameters used were y, = 13.38,
y2=4. 24, and y3=5. 69, and the static dielectric con-
stant was c„=15.29. The value of c was obtained at
4.2 K in the wavelength region 0.25 —2.5 mm. The unit
of energy was

moe 4

Ry*= =4.355 meV .2' y(c.

An absolute accuracy of EL calculation for every order
N was 10 —10 . The EL's depend on the parameters
yz/yl=0. 3169 and y3/y&=0. 4253, which may be ob-
tained from experimental data, again with an absolute ac-
curacy of 10

The dependence of EL's on the number of terms N in
the truncated series of the envelope function was studied.
The upper bound for errors was estimated as the
differences between the energy eigenvalues, E, calculated
at two neighboring values of N corresponding to L
and Lm„—2, where L» is the maximum value of L in
the envelope-function series. Lm,„=8was used for even
states and L,„=7 for odd states. The corresponding
couples of N are 9 and 15 for I 6+ and I 7+, 19 and 30 for
I 8+, 7 and 12 for I 6 and I 7, and 14 and 24 for I 8 .

Table I shows, as an example, the dependence of the
binding energies Ez = —E for states I 8+ and I 7 on order
N of the ODE matrices for the ten lowest EL's. The fol-
lowing conclusions may be drawn. (i) All compared EL's
calculated for larger values of N have a greater E~ than
EL's calculated for smaller values of N. (ii) Proceeding
from lower to higher N, new EL's appear in the energy
spectrum. (iii) The newly appearing EL's for N;+, &N,
have a lower Ez than the new EL's for N, (i =1, 2, 3 for

even states and i = 1, 2 for odd states). (iv) A conver-
gence of EL values is observed with increasing N.

In Table II, we have summarized the Ez values of EL's
for the six types of symmetry calculated in the highest
and next-to-highest approximations in the energy region
corresponding to the final states of the reported transi-
tions: 6, E, D, C, a, B, b, A 4—A 1, I10—I1, and included
the results of the variational EL calculation in the spheri-
cal model. We used the results of Ref. 9 instead of Refs.
3 and 4 because calculations in Ref. 9 are more thorough
and were performed with the same valence-band parame-
ters and static dielectric constant as were used here.

As can be seen from Tables I and II, the numbers of
EL's up to 10I 6+, 7I 7+, 18I 8+, 5I 6, 6I, and 17I 8 are
coincident at least for highest- and next-to-highest-order
1V. These EL's are the controlled-accuracy calculated
levels. The upper bounds of their inaccuracies are es-
timated to be the differences in highest and next-to-
highest orders N:E~(N~) E~(N3—) for even states and
Ez(N3 ) Ez(N2—) for odd states. The calculation inaccu-
racies of the EL's which do not belong to this group are
considered to be equal to the Ez differences of compared
EL's, such as 12I 6+, or in the case of the absence of the
EL in the previous approximation, equal to the
differences for low-lying EL's calculated in both approxi-
mations, for example, 7I 7 . The upper bounds of EL cal-
culation inaccuracies are equal: 1.9 peV (131 6+ )—
13.2 peV (lI 6 ), 6. 1 peV (1017 ) —29.6 peV (5I 7+),
2.7 peV (4I s+) —14.4 peV (3I s+), 2. 1 peV
(3I 6 ) —20.2 peV (5I 6 ), 11.2 peV (1817 ) —26.2 peV
(11 7 ), and 7.5 peV (10I 8 ) —36.0 peV (9I 8 ) (Table II).
It can be seen that there is a significant lowering of all the
r„1r,-, 2I7, and 4I7, and a raising of the 3I7, and
sr7-, and most of the I 6, and I 7+ EL's calculated here as
compared to the spherical model. This difference is due
to an accurate consideration of the I 8+ valence-band
warping in our approach. The differences are of the or-
der of hundreds of peV and are much larger than basis-
set truncation errors -2—36 peV. The EL's, for in-
stance, of I 8 states have been calculated to 46I 8 . The
resolution of the 351 s (E~ =0.2637 meV) and
36I s (Ez =0.2631 meV) calculated with N=24 is
-0.6 peV. The resolution is a little higher than the best

TABLE I. Convergence of n I, and n I &
EL's, n = 1 —10. Binding energies are in units of Ry*. The

EL's are computed with radial ODE set orders N =4, 10, 19, and 30 for I 8+,' and 3, 7, and 12 for I 7 .

30 19 10 12 7

1

2
3
4
5
6
7
8
9

10

2.3744
0.7209
0.4951
0.3756
0.2911
0.2792
0.2323
0.1884
0.1776
0.1701

2.3736
0.7201
0.4918
0.3750
0.2878
0.2762
0.2317
0.1861
0.1752
0.1680

2.3531
0.7083
0.4839
0.3672
0.2818
0.2695
0.2254
0.1817
0.1684
0.1526

2.3018
0.6849

0.3517
0.2617

0.2147

0.1472
0.1452

0.4924
0.2651
0.2350
0.1722
0.1520
0.1220
0.1158
0.1069
0.0915
0.0864

0.4864
0.2601
0.2290
0.1679
0.1469
0.1180

0.1027
0.0877

0.4754
0.2468

0.1578
0.1213
0.1100

0.0817
0.0773
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achieved PTIS line position measurement accuracy in
zero external fields [1 peV for the D line of Al in Ge (Ref.
6)].

In the effective-mass approximation, electric dipole
transitions to the odd-parity excited states (ES's) predom-
inantly contribute to PTIS lines, because an absorption of
phonon(s) at the second stage of the process diminishes
the total transition probability to the valence band. In
the case of FIRAS lines at the one-photon absorption
process, the transitions to the even-parity states are possi-
ble due to the inhuence of the s-character envelope WF
central-cell correction to EMT. We do not consider
that I 6 and I 7+ play an essential role in the transitions,
since they have even parity and no s component in their
envelope WF decompositions.

An adjustment of the calculated energy spectrum to

experimental data was made with help of the 8 lines for
all experimentally studied acceptors (Refs. 5, 6, and 7) ex-
cept X in Ref. 7 and the C line for X in this reference.
The 8 lines were used instead of D lines ' due to the ex-
pectation that the 4I 8 and 3I 8 states as the final states
of the B and C lines, respectively, are less influenced by a
chemical shift than the lower-lying 2I 8, the final state of
the D line.

Let EL(B) [EL(C)] be the B (C) line energies, EEL
the measurement errors. Then the chemical shift (CS) of
the 1I's+ state and the energy of the ground state (GS) are
given by Ecs(1I 8 )=EL (B)+Ez(41 s ) Ez(—1I &+) and
EGs =Ez(1I s+ )+Ecs( ll s+ ), respectively. A positive
and negative basis-set truncation and adjustment spectra
errors of the CS of II ~+ and GS energy are defined as

TABLE II. Binding energies E& of shallow acceptor in Ge of symmetry I;, i =6, 7, and 8, obtained in this work and as calculated
in the spherical model (Ref. 9). The units of energy are meV. a represents the eigenvalues from ODE sets of highest order (first row
of coupled E~ values for each EL) and next to highest order (second rows of the couples); an absence of values in the second row
means that these EL s were not calculated in the next-to-highest-order X approximation; b represents E~ calculated in the spherical
model without and with taking into account the coupling of nP3&2(I 8 ), nP5&2(I 8 ) states (first and second rows of E& couples for I 8

states).

10

12

13

15

16

17

0.8321
0.8190
0.7018
0.6896
0.5768
0.5660
0.5147
0.5037
0.4912
0.4808
0.4258
0.4167
0.3813
0.3715
0.3628
0.3556
0.3284
0.3205
0.2964
0.2878
0.2878

0.2805
0.2755
0.2703
0.2684
0.2614
0.2544
0.2588

0.2283
0.2256
0.2223
0.2182
0.2132
0.2071

1.10

0.685

0.655

1.1212
1.1033
1.0044
0.9976
0.7134
0.6979
0.6590
0.6521
0.5191
0.4896
0.5007
0.4880
0.4689
0.4609
0.3865

0.3729
0.3617
0.3653
0.3592
0.3527
0.3422
0.3379

0.2977
0.2790
0.2895
0.2774
0.2825

0.2759
0.2630
0.2599

0.2553

1.59

1.28

0.91

0.79

0.58

10.3407
10.3369
3.1395
3.1362
2.1563
2.1419
1.6358
1.6330
1.2677
1.2536
1.2159
1.2029
1.0118
1.0089
0.8205
0.8103
0.7733
0.7629
0.7410
0.7318
0.6923
0.6895
0.6679
0.6601
0.5781
0.5698
0.5441
0.5353
0.5230
0.5156
0.5145
0.5005
0.5026
0.4922
0.4817
0.4695

9.76

2.90

2.01

1.49

1.20

1.15

0.90

0.74

0.735

0.67

0.575

0.7659
0.7529
0.7411
0.7244
0.6142
0.6121
0.5269
0.5160
0.5184
0.4981
0.4928

0.3940
0.3847
0.3856
0.3655
0.3724

0.3620

0.3052
0.2974
0.2984
0.2812
0.2846
0.2720
0.2784

0.2726

0.2427
0.2357
0.2380
0.2300
0.2253
0.2224

0.99

0.73

0.64

0.62

2.1443
2.1181
1.1546
1.1325
1.0232
0.9972
0.7499
0.7310
0.6622
0.6399
0.5314
0.5140
0.5045

0.4657
0.4474
0.3984
0.3820
0.3765

0.3525
0.3313
0.3466

0.3358

0.3104
0.2954
0.2907

0.2701
0.2560
0.2667

0.2552
0.2440

2.05

1.08

1.06

0.70

0.675

4.5503
4.5312
2.8673
2.8335
2.0912
2.0765
1.4786
1.4530
1.2126
1.2009
1.1080
1.0942
0.9304
0.9111
0.7981
0.7867
0.7705
0.7345
0.7302
0.7226
0.7005
0.6879
0.6428
0.6277
0.5667
0.5563
0.5396
0.5076
0.5144
0.5025
0.4830
0.4738
0.4700
0.4580
0.4645

4.22
4.35
2.75
2.69
1.91
1.97
1.40
1.35
1.09
1.12
1.03

0.86
0.83
0.72

0.69
0.71
0.665

0.57
0.55
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bE+ (ll"+) =[[bE (4I ) b—E (ll +)] +[bE (B)] ]'i

bE;,(lr,+)= —~bE, (B)~,
bE+ =[[bE+ (ll +)] +[bE (ll +)] I'

bEGg = —
I
bEI (B) I

TABLE III. Identification of FIRAS and PTIS data for boron in germanium appropriate to transi-
tions from the ground state. The units of energy are meV.

No.
of

transition

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Final
state of

transition

lr,
2rs+
2I s
3rs+
1I 7

3I s

4r,+
41 s
5I s+

6r,+
rs

2I 7

6r,
3I 7

7rs+
7r.

'-

srs+
sr,
9rs+
91 s

1I
4r,
2I 6

10I +

10I s

11I
11r+
12I +

sr,
12I s

3I 6

13I s+

13I s
14I s+

14r,
6r,
4r,
15r+
5r,
16I +

15I s
7r,

'

Transition
energy

6.248
7.659
7.931
8.642
8.654
8.707
9.163
9.320
9.531
9.583
9.586
9.644
9.690
9.775
9.787
9.868
9.978

10.000
10.025
10.028
10.033
10.049
10.058
10.058
10.068
10.098
10.106
10.131
10.136
10.156
10.184
10.220
10.232
10.254
10.259
10.267
10.272
10.276
10.280
10.284
10.284
10.294

Transition
energy
error

+0.027
+0.022
+0.038
+0.025
+0.032
+0.025
+0.022
+0.031
+0.025
+0.024
+0.024
+0.029
+0.025
+0.032
+0.022
+0.027
+0.023
+0.024
+0.023
+0.039
+0.024
+0.027
+0.026
+0.023
+0.023
+0.024
+0.022
+0.023
+0.029
+0.025
+0.022
+0.023
+0.023
+0.023
+0.036
+0.026
+0.024
+0.023
+0.028
+0.025
+0.024
+0.026

Line
label

Ga
Ea
Dd

C

aa
gC
gf
A4

A3

A1
I10

I9

IS'

I7

I6

Is'

Line
component

label

a

a

A4)'
A4,

'

A3
A 3 a

A2, '
A2

I101

I9 d

I9 d

I9
I9 d

I9 d

I9
I97'
Isi
Isg
I7
I7 d

I6l'
I6
I63'
I5,
I52
I53
I54
I55
I56
I57
I5s
I59
I5io

Line
position

6.125b

7 57'
7.936
8.686b

9.06'
9.320

9.568

9.655

9.785

9.863
9 989

10.048b

10.139

10.198

Line
position

error

+0.010
+0.01
+0.005
+0.005

+0.04
+0.005

+0.010

+0.010

+0.010

+0.010
+0.010

+0.010

+0.010

+0.010

'The transition does not satisfy the identification conditions and the final state is considered to be chem-
ically shifted.
Reference 6.

'Reference 5.
The transition satisfies the identification conditions.

'This line is used for adjustment of the calculated spectrum to the experimental one.
There are no experimental data.
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AE (n„r„*)=—~bE (8)~ .
(10)

The identification conditions, for example, of the X line
by the transition 1I 8+ —+nk I k are the following:

E (n„r„*)+b,E (n„r+) ~E (K)+bE+(K),
(11)

ET(nkrk )+bEz+(nkl k ) &El (K)+bEI (K) .

If a transition energy ET(n I ) is un—suitable for
any close P line position in Eqs. (11), a shift of state
n&I p

is defined with its errors as Ecs(n I +—
)

=ET(n I z ) EI(P), —b,Ecs(n&rz )=bET (n I z ),

for all SA's except X (Ref. 7), with 8 replaced by C, and
4I s by 3I s for X in this reference. b.EIi( ll s+),
bE~(nkI k ) are the differences (in these calculations al-
ways positive) between binding energies calculated with
highest and next-to-highest orders N of ODE matrices.
The difFerent definitions in (9) are due to the condition
b.E (4I ) —bE (ll +) »~b.E (B)~.

The errors of the CS corrected transition en-
ergies ET(nkl k )=E~(lI s+) —E~(nkI k )+Ecs(11 s+)-
from the GS to nk I k states usillg b Ecs( 1r,+ )

& ~bE&(1I s+) —b, E~(n krk )~ read

bET+(nI, I k ) = {[bE~(1I +) bE~—(nkI k )]

+[bE (1I +)j I'

and bEcs(n I —)= —~bEI (P)~ (we used
that b,Ecs(1I s+) & ~b,Eii(1I s+) —bE~(n„r„+—) and
b.Er+(n„r+) & lb,EL(P) I).

Table III gives the identification of FIRAS and PTIS
data for B in Ge (Refs. 5 and 6). Siinilar identifications
may be obtained for five other acceptors: Al, Cxa, In
(Refs. 5, 6, and 7), Be (Ref. 6); and Tl (Ref. 5). In Table
IV, we have included the GS CS's and, from the
identifications, induced spectroscopic values of the CxS

binding energies for the nine studied acceptors.
The observed lines corresponding to the transitions

from the ground state: 6, E, D, C, a, B, A4, A3, A2,
A 1, I10, I9, I8, I7, I6, and I5 were interpreted and a b
line is predicted. A number of conclusions may be drawn
from the identification. (i) Previously suggested
identification of the low-energy lines 6, E, D, a, B, C&,
Cz, Cs, and A 1 (Refs. 28 and 8—13) are confirmed here.
There are additions and corrections to the interpretation
of other low-energy lines: A4, A3, A2, I10, and I9 in
Refs. 28, 10, and 13. It applies to the 6I 8+, 7I 8+, and
8I 8+ contributions to the A4, A2, and I10 lines, respec-
tively, the absence of the 1I 6 as the final state of the A 3
line, and the distribution of the 8I 8, 2I 6, and 9I 8

among the final states of the I10 and I9 lines in this work
(cf. Ref. 13). (ii) From 17 analyzed lines, ten lines have
multiplet structure (not taking into account degeneracy
in the cubic symmetry): A4, A3, A2, I10, I8, and I7

TABLE IV. Ground-state chemical shifts Ecs, CS calculation errors AEcs, spectroscopic ground-
state binding energies E&s, and GS calculation errors AEcs of the experimentally studied acceptors.
The units of energy are meV.

Ecs
Ecs
Ecs

Ecs
Ecs

aEcs
E
AEos
AEcs
Eos
AE~s

Eos

B

0.458'
+0.022
—0.005

10.799
+0.023
—0.005

Al

0.792'
+0.022
—0.002

0.802'
+0.022
—0.002
11.133

+0.022
—0.002
11.143

+0.022
—0.002

0.952'
+0.022
—0.005

0.962'
+0.022
—0.002
11.293

+0.023
—0.005
11.303

+0.022
—0.002

11.985
+0.024
—0.010

10.985
+0.024
—0.010

12.249
+0.024
—0.01

Acceptor
In X'

Present calculations
1.644' 0 644' 1 908'

+0.024 +0.024 +0.024
—0.010 —0.010 —0.01

Be

14.468'
+0.030
—0.02

24.809
+0.030
—0.02

xb

1.285
+0.011
—0.002

11.626
+0.012
—0.002

3.058'
+0.024
—0.01

13.399
+0.024
—0.01

Ees
AE~s+

Ecs

10.57g

+0.01
10.47"

10.90g

+0.01
10.80"

11.07g

+0.01
10.97"

Reported data
11.74 10.74
+0.01 +0.01
11.61"

12.01g
+0.01

24.54g

+0.03
13.10"

'Acceptor from Ref. 6.
"Acceptor from Ref. 7.
'Spectra adjustment with help of B line 'rom Ref. 6.
"Spectra adjustment with help of . line from Ref. 7.
'Spectra adjustment with help of B line from Ref. 5.
'Spectra adjustment with help of B line from Ref. 7.
Reference 6.

"Reference 5.
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doublet; C-, I6 triplet, I9 septet, and I5 decuplet. (iii)
Many of the acceptor line components, essentially of high
energy, overlap one another. Therefore the precise char-
acterization of the impurity presence in the material will
demand a calculation of many of the line positions and
their oscillator strengths to account for the complicated
picture of the different acceptor line overlapping. (iv) In-
spection of Table III indicates that a number of lines (in-
cluding singlets) were not identified when tested by condi-

tions (11). Their final states are supposed to be chemical-
ly shifted. The CS's of the even-parity ES's, e.g., 2I 8+

(the final state of the E line) are well known. On the oth-
er hand, these eQ'ects have been observed in SA spectra
associated with transitions between both even- and odd-
parity ES's. For instance, the observations of 61 (Ref. 8)
and 82 (Ref. 9) PTIS lines for Ge(B). The 44th and 45th
lines in Ref. 8 were interpreted as transitions 1I 8 ~1I 7
and 1I 8

—+3I 8 . The positions of these lines show the

TABLE V. Excited-state chemical shifts Ecs and CS calculation errors b,Ecs deduced from the spectroscopic data on the experi-
mentally studied acceptors. The units of energy are meV.

B

Ecs 0 033
AE cs +0.027

Ecs —O O1O

3r8+

0.089 —0.044'
+0.022 +0.025
—0.01 —0.005

3I 8

0.021'
+0.025
—0.005

4r,+

O. 1O3b

+0.022
—0.04

6r,+

0.014'
+0.024
—0.010

5I 8

0.018'
+0.024
—0.010

0.036'
+0.025
—0.010

8r,
0.011'

+0.024
—0.010

1or,

0.020'
+0.023
—0.010

2r8+ 3r8+ 3I,
A1

6r; 7I 8 8r, 21 6 1or,+ 1or;
E

Ecs
~Ecs
Ecs
~Ecs

Ecs

0.017'
+0.027
—0.005

0.012'
+0.027
—0.002

0.059'
+0.022
—0.002

—0.049'
+0.024
—0.002
—0.044'
+0.024
—0.002

—0.037'
+0.031
—0.002

0.016'
+0.025
—0.002

0.021'
+0.025
—0.002

0.030'
+0.024
—0.002

0.034'
+0.024
—0.002

0.004'
+0.027
—0.002

0.004'
+0.027
—0.002

0.014'
+0.023
—0.01

0.004'
+0.023
—0.002

0.010'
+0.026
—0.002

0.007'
+0.026
—0.002

0.010'
+0.023
—0.002

0.007'
+0.023
—0.002

0.020'
+0.022
—0.002

0.018'
+0.022
—0.002

Ecs
~Ebs

Ecs
Ecs

Ecs
Ecs

0.022'
+0.027
—0.005

2r+

0.133
+0.022
—0.02

—0.049'
+0.025
—0.005
—0.045'
+0.024
—0.002

3I 8

0.016'
+0.025
—0.005
—0.020'
+0.025
—0.002

6I 8

0.032'
+0.025
—0.010

2r;
0.016'

+0.026
—0.010

1or8+

0.016'
+0.023
—0.010

1or,

0.026'
+0.023
—0.010

Ecs
Ecs

~Ecs

o.o44b

+0.028
—0.01

2I

0.425
+0.024
—0.01

3r8+

—0.036'
+0.026
—0.005

3I8

0.029'
+0.026
—0.005

4r,+

0 149"
+0.024
—0.03

6r,+

0.023'
+0.026
—0.015

5r,
0.026'

+0.025
—0.015

6r,
0.048'

+0.026
—0.010

7I 8+

0.018'
+0.024
—0.010

7I,
0.021'

+0.029
—0.010

Ecs
aEcs

Ecs

x'
3I 8+

—0.042'
+0.026
—0.010

318

0.023'
+0.026
—0.010

—0.038'
+0.026
—0.01

3r+

0.027'
+0.026
—0.01

3I 8

0.020'
+0.026
—0.01

6r,

2r; 3I +
Be

318 2I 7 2r8+ 3I + 41 8+

Ecs
~Ecs

Ecs

0.031'
+0.042
—0.02

—0.208'
+0.032
—0.02

—0.096' —0.143' —0.076' 0.429
+0.037 +0.032 +0.035 +0.024
—0.02 —0.02 —0.02 —0.04

—0.078" —0.066
+0.026 +0.033
—0.02 —0.02

0.113
+0.024
—0.02

0 030"
+0.026
—0.03

'Line position from Ref. 6.
Line position from Ref. 5.

'Line position from Ref. 7.
Acceptor from Ref. 6.
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dependence on the chemical nature of the impurity which
have led the authors of Ref. 9 to conclude that there is
the 1I 8 state CS. Here the ES CS's are deduced from
identification of GS-ES s transitions. Table V summa-
rizes the CS's derived in that way for the first 25 ES's.
Although the values of some of these shifts are less than
the linewidths or instrumental resolution and the nega-
tive CS's appear to be (the measured line peak in some
cases are inadequate to the calculated transition ener-
gies), a trend of the excited-state chemical shifts may be
perceived.

An observation of the spectral line fine structure and
the measurement of the energy splitting of the multiplets
is crucial to confirming the identification. As may be
seen from Tables II and III, the splittings of 3I 8+ —1I 7
and 1I 7 —3I 8 inside the C triplet are estimated as 12
and 53 peV, respectively. The first value is within the re-
ported instrumental resolution of 30 peV (Ref. 6). The
second is in agreement with the PTIS measurement of the
C' —C* splittings of —50 peV both for Ge(B) and
Ge(AI) and is close to the -40-peV splitting for Ge(In)
(Ref. 8). The value is consistent with the estimation of
this -40-peV splitting deduced from the FIRAS data on
Ge(zn ). It should be emphasized that the energy
splittings in multiplets do not depend on the chemical na-
ture of the acceptor. One should note that random elec-
tric fields caused by charged impurities as well as random
strains may influence linewidth and conceal the split-
tings.

A comparison of the data in Tables II and IV shows
that the calculated valence-band warping lowering of the
ll s+ EL and the GS CS, for example, for Ge(B), are
—580 and -460 peV, respectively. In the spherical
model the sum of these values was used for adjustment of
the calculated E~(1I s+) to the experimentally observed
GS binding energy by means involving q dependent
screening and short-range potential instead of using the
value of 460 peV of the CS which is actually responsible
for these contributions. This implies an overestimation

of the short-range potential as well as the q-dependent
screening considered in previous work. '

IV. CONCLUSION

%'e have shown that a method of singular boundary
problem numerical analysis of radial ODE sets may be
used for a controlled-accuracy solution of the EMT equa-
tion. The method presented here also can be used to per-
form computations and evaluate the high ES-dependent
properties of shallow impurities in bulk material and het-
erostructures. For instance, this technique is an ideal
tool to study the excitons in bulk and quantum wells.
The calculations are intended to be definitive, and a sys-
tematic attempt has been made to interpret PTES and
FIRAS data on SA's in Ge. The calculated transition en-
ergies are in good agreement with corresponding experi-
mental data. To comment briefly on some of the comput-
ed results, we should note that in the spectral region
studied more than 100 EL's exist which give rise to a few
hundred transitions for different SA's. The stable trend
of the odd-parity ES CS's raises the question about the
origin of the shifts. It also indicates limitations of the
central cell corrections requiring more work in chemical
effects from first principles. We should not close without
emphasizing the highly satisfactory situation of applica-
tion of the singular boundary problem numerical analysis
to a study of centers in ultrapure materials. The reason is
that the method is based on the analytically proved ex-
istence, uniqueness, representation, and stability of the
numerical solution of ODE. In that way we obtain a
controlled-accuracy, we11-convergent solution of the
EMT equation for the acceptor problem.
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