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Generalization of the pair approximation and its application to (Zn& „Mn„)3As2
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By taking into account the results of recent studies of (Zn, „Mn )3As2 (ZMA), which is an example of
a II-V diluted magnetic semiconductor (DMS) with a very complicated tetragonal crystal structure, we
have generalized the pair-approximation model, widely used to analyze the magnetic behavior of II-VI
DMS's, for an arbitrary structure. We have subsequently applied our model, which may be called the
generalized pair approximation, to reinterpreting the results of magnetic measurements obtained for
ZMA. Based on theoretical works that treat the Mn-Mn interaction in DMS's as a sum of superex-
change and the Bloembergen-Rowland (BR) mechanism, we have been able to obtain satisfactory agree-
ment between our approach and experiment by introducing only two adjustable parameters, in spite of
the complexity of the crystal structure of ZMA. These parameters are the first nearest-neighbor ex-
change constants for both mechanisms and they have been found to be equal to —53 and —11 K for su-

perexchange and the BR exchange, respectively.

I. INTRODUCTION

By alloying the II-V tetragonal semiconducting com-
pound Zn3As2 with manganese, the (Zn& „Mn„)3As2
(ZMA) system, belonging to the family of diluted magnet-
ic (semimagnetic) semiconductors (DMS's or SMSC's),
can be formed. Extensive studies of the magnetic proper-
ties of ZMA up to x =0.14 have been performed by Den-
issen et al. ' An analysis of the experimental data ob-
tained in this work has been done within the so-called ex-
tended nearest-neighbor pair approximation (ENNPA),
which is an extended version of the pair approximation as
originally introduced by Matho" for canonical spin
glasses: the difference between the approaches lies in the
fact that the ENNPA takes into account not only the
pairs of interacting paramagnetic ions, as does the pair
approximation, but also the coupled triples. Apart from
ZMA, the ENNPA has been first applied to
(Cd, Mn )3As2 (Ref. 2) (CMA) as well as to reinterpret-
ing various experimental data obtained for Mn-alloyed
II-V DMS's. Subsequently, the pair approximation has
been also used to analyze the magnetic properties of II-VI
DMS's alloyed with Fe (Refs. 5 and 6) and, very recently,
with Co.7'8

The analysis of the magnetic behavior of ZMA within
the ENNPA (Ref. 1) was based on an idealized quasicu-
bic (qc) crystal structure (see, e.g. , Ref. 9) of the system,
i.e., the Mn ions were assumed to be randomly located on
an ideal simple-cubic (sc) cation sublattice, which implies
only one NN Mn-Mn distance with a corresponding ex-
change constant J„a unique next-nearest-neighbor
(NNN) distance with Jz, etc. In order to get a fair agree-
ment between theory and experiment. Denissen et aI. '

have been forced to introduce four fitting parameters, i.e.,
three consecutive exchange constants (J, /k~ = —100 K,
J2/k~ = —20 K, J3/ktt = —6 K, with k~ the Boltzmann
constant) and an additional parameter Jo/k~= —40 K
describing the long-range interaction of the type

J(r) =Jor (where r is a distance in units of the NN sep-
aration), with n =4.5 as found from an analysis of the
spin-glass freezing temperature as a function of Mn con-
centration.

Quite recently, de Vries et al. ' " carried out a de-
tailed structural study of the ZMA and found that the
cation sublattice of this system is severely distorted,
which results in 12 different values for the NN Mn-Mn
distances instead of one, as assumed in Ref. 1; similarly,
the number of NNN distances increases considerably (see
Fig. 1).

Motivated by the above-mentioned works and also be-
ing involved in studies of Mn-allowed II-V DMS's, ' '
we have undertaken an effort to generalize the pair ap-
proximation for an arbitrary crystal structure. The re-
sulting model has been subsequently applied by us to
reinterpreting the experimental data obtained so far for
ZMA. "' During the fitting procedure, we have made
use of simple formulas describing the distance depen-
dence of superexchange and Bloembergen-Rowland (BR)
interactions, which are believed to be the most important
exchange mechanisms in DMS's. ' '
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FIR. 1. Cation-cation distances in the real crystal structure
of ZMA with x =0.08 (open symbols; Refs. 10 and 11) and in
the quasicubic structure (solid symbols; Ref. 1). The transition
from the former to the latter structure reduces 12 various dis-
tances (open circles) to one NN distance (solid circle) and 28
further distances (only a part of which is shown in the figure as
open rhombs), also to one NNN distance (solid rhomb).
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II. THEORY

where g is the Lande factor, p~ is the Bohr magneton,
and J, =J(R; ) is an exchange constant between spins S;
and SNMN, separated by a distance R, . Thus, the total

l

interaction is given by

H=gH
Ii I

(2)

with the summation running over all pairs [i,NMN, ].
The magnetic properties of the system can be derived

from the total free energy I', which, for the Hamiltonian
expressed by Eqs. (1) and (2), reads

kgT N

g ln Tr exp( 13Hp)—,
2 ' ]

(3)

where P=(ks T) ', Tr denotes the trace over all spin de-
grees of freedom, and N is the total number of spins.

The above formula may be applied, in principle, to
DMS's with paramagnetic ions of moderate concentra-
tion (x ~0. 1) randomly distributed over a cation sublat-
tice in which each cation site has the same arrangement
of other cations, which results in a unique NN distance
between the ions; this includes most of the known II-VI
DMS's crystallizing in the zinc-blende structure. For a
more complicated structure, there may be a few ine-
quivalent cation sites yielding a number of NN distances.
For example, in the wurtzite structure there are two
different NN distances (clearly evidenced in recent mag-
netization experiments performed on Cd, Mn, S (Ref.
18), while in the case of ZMA there are 12 such dis-
tances. " Assuming now that, for an arbitrary crystal
structure, the paramagnetic ions with spin S may occupy
t kinds of inequivalent sites and treating the sites of the
host lattice as being arranged in spheres around the refer-
ence site, we can generalize Eq. (3) to obtain

oo

F=—g g P (x)F
2t .j=1v.

J

with g P (x)=1, where
J J

F„=—k&T lnTr exp[P[gps(S +S) B+2J S .S]]
J J J J

(4)

The basic assumption of the pair approximation is
that the partition function of a macroscopic system with
a fixed random distribution of spins (connected in the
case of DMS's with the presence of paramagnetic ions in
a host semiconducting lattice) may be factorized into con-
tributions of pairs of spins. Thus, each spin is considered
to belong to one pair formed with its nearest magnetic
neighbor (NMN), which may be located on any lattice
site, and spins belonging to different pairs are treated as
noninteracting.

The Hamiltonian for a pair of spins in the presence of
an external magnetic field 8 can be expressed in the
Heisenberg form as

Hp gP'B( i +SNMN ) B i i SNMN.

is the free energy of a pair of interacting spins, and
P =N /Nj is the probability of finding such a pair,

J J
given by

Pal m

P (x)=(1—x) ' —(1—x) (6)
J

where m, =g, M, with M being the number of sites
J J J J

in ~ th sphere.
For structures with only one kind of cation sites, i.e.,

for t =1, Eqs. (4)—(6) reduce to those found previous-
ly therefore, our approach may be called the general-
ized pair approximation (GPA).

Based on Eqs. (4)—(6), one can derive the other thermo-
dynamic quantities, such as the magnetic specific heat
(C = —T[B~F/BT ]s ), magnetization (M = —[dF/
M]r), and susceptibility (y= —[8 F/BB ]r), and com-
pare them with experimental data, as will be shown in
Sec. IV.

III. CRYSTAL STRUCTURE OF (Zn, „Mn„)3Asz

As follows from the works of de Vries et al. ,
' '" the

crystal structure of ZMA, at least for 0 ~ x ~ 0. 135 and at
T~300 K, is isomorphic with the a phase of Zn3As2
(space group 14,cd). The tetragonal unit cell of o.-

Zn3As2, containing 160 atoms (96 Zn and 64 As), can be
divided into 16 fluorite cubes provided that c, -=2a„

0 0
where a, =11.78 A and e, =23.64 A are the tetragonal
lattice constants. Each fluorite cube contains four As
atoms on an fcc lattice (the lattice constant a =-a, /2) and
six Zn atoms inside the cube on a distorted sc lattice (the
lattice constant =a/2), with two vacancies connected by
a body diagonal. Thus, in the real structure of a-Zn3As2,
there are six types of inequivalent cation sites which, in
the case of ZMA, may be occupied at random by Mn
ions, and volume per one cation site is equal to a /6.

Such a complex crystal structure has been
oversimplified by Denissen et al. in two steps. First, the
distortion of the cation sublattice has been neglected,
which reduces the number of inequivalent cation sites
from 6 to 3 and gives the unique NN distance equal to
a/2. Second, due to the particular arrangement of va-
cancies in the lattice, each of those three inequivalent cat-
ion sites may have 3, 4, or 5 NN's and 9, 9, or 10 NNN's;
this has been arithmetically averaged to get only one kind
of' cation site, i.e., the quasicubic structure, with 4 NN s
and 9.33 NNN's. '

Comparison between cation-cation distances in the qc
structure and in the real structure of ZMA is shown in
Fig. 1. It can be seen that, for the real structure, there is
a quasicontinuous spectrum of possible Mn-Mn distances
with even some overlap of NN and NNN spheres, "while
for the qc structure, those spheres are very well separat-
ed. It is also worthwhile to mention that the first NN
separation (R, =3 A) is, to our knowledge, the smallest
one among the known DMS's.

IV. APPX ICATION OF THE GENERALIZED
PAIR APPROXIMATION TO (Zn, Mn„),As2

As follows from Eq. (4), the total free energy F within
the GPA is a sum of free energies of pairs of interacting
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spins multiplied by appropriate probabilities, which can
be easily calculated for a given x provided the crystal
structure of the system in question is known. Thus, in or-
der to calculate I', one needs to specify an exchange con-
stant for every type of pair. From the very beginning of
our work, we have realized that we cannot follow the
fitting procedure of Ref. 1 simply by increasing the num-
ber of the exchange constants as adjustable parameters
(12 for NN's, 28 for NNN's, etc. ), since then the pro-
cedure itself would become meaningless; instead, we must
search for a distance dependence of the interaction
strengths. Therefore, we have made use of theoretical
studies of DMS's by Larson et al. ' who have stated that
antiferromagnetic superexchange, i.e., an indirect Mn-
Mn exchange mediated by the anion, plays the dominant
role with a minor contribution of the other indirect pro-
cess, the Bloembergen-Rowland exchange, induced by the
virtual interband transitions. As follows from Ref. 16,
the superexchange constant J (R ) can be written as

J (R)=I R exp( —aiiRR ), (9)

where I is a constant and a~B=(2 m, Es)' /fi, with

m, and E~ the electron effective mass and the energy gap,
respectively.

Rearranging Eqs. (7)—(9) in order to express them as a
function of r =R/R1, i.e., in units of the first NN dis-
tance R1 and the first NN exchange constants J 1 and
J1,we get

J (R)= —U,if(R/a),
where U, 1 depends on the electronic-structure details of a
particular material and F(R/a) (with a the lattice con-
stant) is the material-insensitive function approximated
by

f(R/a)=51. 2exp( —5. 16R /a ) .

In the case of the BR mechanism, the corresponding ex-
change constant J (R ) has the form

expected for the Mn + ion with S=2.5 in the ground
state; this diminution is attributed to the p-d hybridiza-
tion 1, 16,23

When calculating the total free energy, the summation
over the spheres [see Eq. (4)] has been carried out in such
a way that g„P, (x) ~ 0.995; this condition requires tak-

J J
ing into account up to 200 spheres.

The best overall fit of the GPA to the experimental
data, as presented in Figs. 2 —5, has been obtained for
J, /k'= —53 K and J, /k'= —11 K, which give the
total first NN exchange constant J, /k~= —64 K. We
will return to this point at the end of this section, discuss-
ing first the comparison between theory and experiment
for particular thermodynamic functions in greater detail.
For the purpose of comparison we have inserted in Figs.
2 and 5 the results of calculations within the ENNPA as
performed in Ref. 1 with four exchange constants as
fitting parameters (in the case of Figs. 3 and 4 both the
GPA and the ENNPA give practically the same curves).
At first glance, both approaches seem to give comparably
good descriptions of the experimental data, but our mod-
el is better in the sense that, on the one hand, we have
taken into account the real crystal structure of ZMA and,
on the other hand, we have used only two exchange con-
stants as adjustable parameters.

A. Magnetic specific heat

The magnetic-specific-heat data' along with the
theoretical curves are shown in Figs. 2 and 3. It can be
seen that the GPA describes quite well the experimental
data: Some deviation is observed at low temperatures
and is most probably due to the strong assumption of the
pair approximation restricting the Mn-Mn interaction
within the pairs; thus, larger clusters of Mn ions and in-
teractions between the pairs are neglected. In principle,
in order to get better agreement, one could follow Refs.

J (r) =J, exp[ —asE(r —1)],
J (r) =J i r exp[ —aBR(r —1)],

(10) 0.4-

where asE=5. 16R, /a and aBR=R, (2m, Es)' /A',

with, in the case of ZMA, m, =0.04mo (mo is the free-
electron mass) and Eg = 1. 1 eV. '

Thus, the total interaction strength J(R ) is given by

J(R)=J (R)+J (R) (12)

and contains only two unknown parameters (Ji and

J, ) which are to be found from a fit of the theoretical
dependences obtained with the GPA to the experimental
data.

The other parameters needed in calculations are the
Lande factor g taken, as for other Mn-alloyed DMS's, as

g =2, and the spin S of Mn ions. As for the latter, we
have put its average value S„=2.25 in order to account
for the magnetization and susceptibility data which show
that, in the limit of vanishingly small Mn content, the
saturation magnetization of ZMA is smaller than 5p~, as

0
~ 0.2E

0.1
E

0.0 I

T(K)

FIG. 2. The magnetic specific heat of ZMA in zero field. Ex-
perimental data and the dashed lines calculated within the ex-
tended nearest-neighbor pair approximation for J, /k& = —100
K, J2/kq = —20 K, J3/kz = —6 K, and J(r)/kz = —40r . K
are taken from Ref. 1. The solid lines represent our calculations
within the generalized pair approximation and taking into ac-
count superexchange and the Bloembergen-Rowland mecha-
nism described by Eqs. (10)—(12) with J& /kz= —53 K and
J~'/k~ = —11 K.
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FIG. 3. The magnetic specific heat of ZMA with x =0.01 at
various fields. The data of Ref. 1 and the solid lines are calcu-
lated in the same way as in Fig. 2.

FIG. 5. The inverse susceptibility of ZMA: The data of Ref.
I, solid symbols, Ref. 14, open symbols. The dashed and solid
lines have the same meaning as in Fig. 2.

1 —3 by taking into account the coupled triples, but such
a task would be very diKcult, keeping in mind the com-
plex crystal structure of ZMA, which leads to a very
great number of different kinds of triples.

4
0

3-

~2-
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0.52

B. Magnetization

The high-field magnetization data' and corresponding
GPA lines are shown in Fig. 4. As can be seen, irrespec-
tive of the Mn content, magnetization changes smoothly
with magnetic field and does not exhibit any steplike
structure in the field range investigated. As is known, the
steps occur, for a given exchange constant J„, at fields

B„& determined by the condition gp~B„, =21~J„~k~,
with l = 1 —5, and should be observable if k&T((2|J„~;
the width of the steps is proportional to temperature,
while their magnitude is proportional to the probability
of finding a pair of spins coupled by the exchange interac-
tion with a constant J, .

The absence of any steplike increase of magnetization
in ZMA at fields up to 30 T has led Denissen et al. ' to
the conclusion that

C. Susceptibility

The temperature dependence of the inverse susceptibil-
ity, measured at B=1.2 T and corrected for the diamag-
netic contribution of Zn3As~, along with the theoretical
lines are shown in Fig. 5. Apart from the data of Ref. 1,
we have also inserted in this figure the very recent results
obtained for ZMA with 0.001 ~ x ~ 0.02 and measured at
8=0.01—0.02 T the observed difference between the
two sets of results for the same or similar Mn content
may be due to the uncertainty in the crystal composi-
tion and/or the presence of another paramagnetic ele-
ment introduced unintentionally during the crystal
growth.

At higher temperatures, the data follow straight lines
in accordance with the high-temperature series expansion
of susceptibility leading to the Curie-Weiss law of the
form

X
' = T/C —0/C,

with the Curie constant

(13)

IJ, rk, l& IJ, yk, [&2O ~.
However, the lack of steps is not surprising, if we take
into account, on the one hand, the great number of NN
(12) and NNN (28) pairs occurring in the real structure
(see Fig. 1) with the equal number of corresponding ex-
change constants and, on the other hand, a very small
probability of finding a particular kind of the pair of
spins which, on the whole, may give no observable steps
in the field and temperature ranges investigated, even if
the absolute values of exchange constants are much lower
than those mentioned above.

0
0 5 10 15 20 25 30

C=xX~g p~S(S+1)lk~M,
where X~ is Avogadro's number and M is the mo1ecular
weight, and with the Curie-Weiss temperature

FIG. 4. The high-field magnetization of ZMA collected at
T=2 K (open symbols) and at T=4.2 K (solid symbols). The
data of Ref. 1 and the solid lines are calculated in the same way
as in Figs. 2 and 3.

8=2xS(S+1)g z„J /3k~,

where z is the number of cation sites on consecutive
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coordination spheres. An interesting feature of Eq. (13) is
that the ratio 8/C, which can be determined from experi-
ment, contains all interactions but does not depend on x
and S. Therefore, we have performed our fitting pro-
cedure in such a way that we get the experimental result
(g z J /k~ = —480 K), while the procedure of Ref. 1

gives for this sum —630 K.

D. Spin freezing

The low-field susceptibility measurements of DMS's at
sufficiently low temperatures reveal the presence of a
cusp or kink, interpreted as a transition from the
paramagnetic to the spin-glass state (see, e.g. , the review
papers, Refs. 28 and 29) and the corresponding tempera-
ture T&, known as the freezing temperature, which
strongly depends on the concentration of paramagnetic
ions x, as shown in Fig. 6 for the case of ZMA. ' It ap-
pears that the experimental data behave approximately as
Tf(x)-x", with n =4.5; such a dependence can be ex-
plained by assuming a long-range exchange interaction of
the type J(R)-R " and using the scaling argument
which combines the average distance between paramag-
netic ions R „with their concentration x by the equation
R,~ =const together with the conjecture that T& is re-
lated to the interaction energy at R„by

k~ Tf =J(R,„)S(S+1). (14)

10

%'ithin our model, we can try to describe the experi-
mental Tf(x) relationship by making use of the radial
dependence of the exchange interaction as found from
the analysis of the thermodynamic properties performed
above. An example of such dependence for ZMA with
x =0.08, clearly demonstrating the role of both superex-
change and the BR mechanism, is shown in Fig. 7. It can
be observed that superexchange is dominant to about 5.5
A and quickly vanishes with increasing distance; as for
the BR mechanism, its contribution to the total exchange
is not negligible even at short distances and becomes
dominant at larger distances in spite of the fact that the
energy gap of ZMA is relatively wide (E = 1. 1 eV).

Having determined the J(R) dependence, we will ana-

100 - J

CD

lX
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0.1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R(nm)
FICx. 7. The distance dependence of superexchange, the BR

exchange, and their sum in ZMA with x=0.08 deduced from
our approach (solid curves) with the real crystal structure taken
into account, as indicated by circles in the inset (showing the to-
tal interaction strengths at short distances in greater detail).
The solid rhombs and the dashed line are the result of a fitting
procedure of Ref. 1 for the quasicubic structure.

(ss, = Tr[s, s~exp(2PJS, S~) ]
Tr exp(2PJS, S2)

The probability that a particular ion is free is given by

(16)

Pr„, =(1—x) f,

lyze the spin-glass transition in ZMA combining the ap-
proaches of Refs. 30 and 8. As is known, the spin-glass
freezing condition is based on the existence of a critical
fraction of ions blocked or frozen by coupling with their
magnetic neighbors if the exchange energy between two
neighboring ions with spins S, and S2 is larger than the
thermal energy kz T. On the other hand, there may exist
a certain number of free ions, and such an ion is con-
sidered to be free if it has no magnetic neighbor inside the
sphere of a radius Rf determined by

kg Tf 2J(Rf )(S,S2 )

where (S,S2) is the pair-correlation function [equal to
—S(S+I), as in Eq. (14) in the fully aligned limit]
which follows from the pair Hamiltonian [see Eq. (1) for
B =0] and reads

0.1

0.01
0.001 0.01 0.1

FIG. 6. The spin-freezing temperature of ZMA as a function
of Mn concentration: The data of Ref. 1, solid circles, Ref. 15,
open circle. The solid line is calculated according to Eqs.
(15)—(17).

where mf =4mRj/3A is the total number of cation sites
inside a sphere of the volume of 4rrRf /3 and 2 is volume
per one cation site, which is equal, in the case of ZMA, to
a /6 (where a =6 A; see Sec. III).

The above equations together with the J(R ) depen-
dence as given by Eqs. (10)—(12) have allowed us to calcu-
late numerically the Tf(x) relationship for certain values
of Pf„e As pointed out by Twardowski et ah. , the
choice of Pf„, is not a crucial point of their approach,
especially for low probabilities; therefore, we have adopt-
ed the value of Pf„,=2X10, as estimated by Escorne
and Mauger, ' and the result of our calculations is shown
in Fig. 6 as the solid line.

It can be seen that, in spite of an exponential character



5118 H. BEDNARSKI AND J. CISOWSKI

of the formulas describing both superexchange and the
BR mechanism, the resulting curves, which reproduce
the experimental data very well, are quite close to
straight lines, obtained when adopting a phenomenologi-
cal power-law dependence of the type J(R)-R
which, however, has no theoretical background.

V. SUMMARY AND FINAL REMARKS

We have generalized the pair approximation, which is
applicable, in principle, to simple crystal structures (in
which each cation site has the same arrangement of other
cations), for an arbitrary structure. The resulting model,
which may be called the generalized pair approximation,
has been subsequently applied by us to reinterpreting the
results of magnetic measurements obtained so far for
(Zn, Mn )3As2 (Refs. 14 and 15), a tetragonal DMS
with a complicated crystal structure, characterized by a
quasicontinuous spectrum of possible Mn-Mn dis-
tances, ' "and a great number of NN's (12), NNN's (28),
etc. This fact excludes treating the corresponding ex-
change constants as adjustable parameters and therefore
we have made use of the recent theoretical works indicat-
ing that there are two essential Mn-Mn exchange mecha-
nisms in DMS's, i.e., superexchange and the
Bloembergen-Rowland exchange. ' ' Applying simple
formulas to describe the distance dependence of both
mechanisms' ' ' ' and treating them as being additive,
we have obtained satisfactory agreement between our ap-
proach and experimental data of the specific heat, mag-
netization, and susceptibility by introducing only two
fitting parameters, the first NN exchange constant for su-
perexchange (J, /kz = —53 K) and the BR exchange

(J, /k~= —11 K). This gives the total first NN con-
stant J&/kz= —64 K, which differs substantially from
that found previously (J, /k~ = —100 K) (Ref. 1) but is
still higher than the values of the exchange constant
(J

& /kz = —10 K) found for Mn-alloyed II-VI com-
pounds. ' This fact, however, is not surprising, if one
takes into account the difference between the NN separa-
tion of both systems: for ZMA, we have R, = 3 A, while,
for example, for Cd& Mn„Te (CMT), R&=4.6 A. For
the latter distance, our calculation gives J, = —11 K (see
Fig. 7), which becomes comparable with J, = —7 K, as
found for CMT, ' and the remaining difference may be
ascribed to a higher degree of p-d hybridization in II-V
than in II-VI DMS's alloyed with manganese. '

The J(R ) dependence obtained by us also appears to be
very useful in analysis of the Tf(x) relationship, indicat-
ing a non-negligible role of the BR-type exchange even in
wide-gap materials such as ZMA. On the other hand, we
realize that the analytical formulas used by us to describe
the radial dependence of superexchange and the BR
mechanism may not be completely correct and require
further improvements, as discussed for many years in
theoretical works devoted to this dificult prob-
lem. ' ' ' Nevertheless, based on very good agree-
ment between our approach and experiment, we believe
that these simple formulas reAect the main features of the
interaction strengths in DMS's, confirming the common-
ly accepted theoretical prediction that superexchange is
the main exchange mechanism at short distances but that
it may be also stated that the role of the usually neglected
BR-type mechanism of interaction is also of importance,
especially at larger distances.
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