
PHYSICAL REVIEW 8 VOLUME 48, NUMBER 8 15 AUGUST 1993-II

Transfer-matrix method for non-Hermitian pseudo-Hamiltonians
and the commensurate-incommensurate charge-density-wave transition
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A microscopic commensurability pinning Hamiltonian with charge conservation is presented and ana-
lyzed as a model for the commensurate-incommensurate charge-density-wave transition. The ground
state is always a soliton lattice with its character changing continuously between commensurate and in-
commensurate states depending on the commensurability strength. The existing transfer-matrix
methods are criticized and extended to non-Hermitian pseudo-Hamiltonian systems. Charge conserva-
tion leads to results for the charge-density correlation length and the structure factor that are consistent
with the x-ray-scattering experiment and the NMR Knight-shift experiment on 2H-TaSe2.

I. INTRODUCTION

The incommensurate (IC) to commensurate (C) or
"lock-in" transition of charge-density waves (CDW's) in
systems of reduced dimensionality such as TTF-TCNQ
and 2H-TaSe2 has been studied theoretically along the
two directions: One is the Landau phenomenology and
the other is the transfer-matrix (TM) path-integral
method. The Landau theory was initiated by McMillan'
and developed further by a number of authors. In order
to reproduce rather rich experimental observations, the
direction in the Landau theory is inevitably toward more
complex Ginzburg-Landau (GL) free-energy functionals.
On the other hand, the TM method approach was ini-
tiated by Brazovskii, Dzyaloshinskii, and Obukhov and
further developed by Okwamoto, Takayama, and Shiba
and Turkevich and Doniach. The direction here is to-
ward some exact results on the C-IC crossover in one-
dimensional phase-only GL fields.

In this paper, we shall revisit the latter TM approach
with the following improvements: (i) Instead of GL free-
energy functionals, we start with a microscopic commen-
surability pinning Hamiltonian developed by Lee, Rice,
and Anderson and others. " We thus eliminate certain
parametric ambiguities, and the temperature range to be
explored in comparison with experiments can be
identified. (ii) We take into account charge conservation,
which was totally ignored previously in both the Landau
phenomenology and the TM method approach. As we
will see, charge conservation leads to results qualitatively
different from the previous findings in the TM approach.
(iii) The non-Hermiticity of pseudo-Hamiltonians in the
TM formulations was also overlooked by the previous au-
thors, casting some doubts on their results. We will de-
velop a correct procedure for non-Hermitian pseudo-
Hamiltonians. Through the exact evaluation of the
charge-density —charge-density correlation function lead-
ing to the CDW coherence length and the structure fac-
tor, the present TM theory makes an experimental impli-
cation: At the C-IC transition, the CDW wavelength
should experience a sudden change, whereas the Knight

shift of the NMR absorption lines would not show any
sudden changes. This is consistent with experi-
ments. ' ' '

We have organized the paper as follows: In Sec. II the
model Hamiltonian with the charge conservation is dis-
cussed. Section III discusses the ground state and Secs.
IV and V discuss thermal properties, i.e., the grand parti-
tion function and the charge-density —charge-density
correlation function with an emphasis on the improved
TM method for the non-Hermitian pseudo-Hamiltonian
systems and the charge conservation effect. Section VI
presents numerical results for the charge-density correla-
tion length and the structure factor in comparison with
the experimental results. Finally a conclusion is given in
Sec. VII.

II. THE MODEL HAMILTONIAN

The IC CDW state is characterized by the charge den-
sity

p(x) =P+pocos(qx+4&),

where p is the uniform part of the density, the second
term is the CDW order parameter, and q=2kF with k~
representing the Fermi wave number associated with the
conduction electrons which condense into a CDW state
at low temperatures. The effective Hamiltonian for the
phase 4&(x, t) for describing the low-energy fiuctuations of
an IC CDW can be derived as follows. ' '" Since we are
interested in a weak spatial modulation, we may write
y(x, t)=qx+C&(x, t)=q(x —vt) to get a local speed of
electrons associated with the phase modulation,

Now let m* be an effective mass of electrons in CDW
condensates and n be the number density of electrons per
spin. The kinetic energy per length is then given by

2

2" (3)
2
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VF

4 x (4)

where the factor 2 accounts for up and down spins of
electrons. Note that the total number X of electrons is
related to the IC CDW wave number q as
N=2kF/(2'/L ) where L is the system size, and there-
fore n =q/2~. Next the elastic energy per unit length
should have the form

(11)becomes

H= I dx @,+ IP„—b,qI
2mqn o 47Tn o

+d(1 —cosP)

P(L) —P(0) =5 qL =no5qL =2nno5N

(13)

(14)

where vF is the Fermi velocity, in order that the resulting
linear dispersion relation is consistent with the micro-
scopic theory of Lee, Rice, and Anderson. Finally an in-
teraction potential per unit length describing the cou-
pling of CDW's to the underlying lattice, the so-called
commensurability-pinning potential, can generally be
written as

d cos(nay —Gx) =d cos(h qx+n OC&),

where Aq=—noq —G and G is a reciprocal-lattice vector.
Thus the model Hamiltonian reads

L m 2 VF 2II= J dx 4, + @,+d c os(b, q x+no@) . (6)
0 2~q '

4m

The Hamiltonian (6) and its impurity-pinning variant
have been used before to study various properties of the
IC phase.

We now take (6) as a model Hamiltonian for the C-IC
transition. In fact, we can put (6) in the form (13) below,
which is identical to the GL free-energy functional intro-
duced by McMillan. ' An essential difFerence is that we
take into account the charge conservation. The charge is
related to the phase N as follows. First note that the
current density is given by

j =2nev = —2ne
q

Associated with the current density is the charge density
such that

c~+~j=o.
From (7) and (8) we have

where we have introduced a parameter

noq

It is noted that the Hamiltonian (13) is, apart from
coefficients, identical to the GL free-energy functional of
McMillan as analyzed previously by the TM method
without the charge conservation constraint (14). TM
analyses of the systems identical to (13) with (14) have
been done before by Gupta and Sutherland (GS) (hq =0
case) (Ref. 4) and by Guyer and Miller (GM) on general
ground and in the context of the physisorbed one-
dimensional (1D) monolayer problem. ' For a more gen-
eral approach to the 1D commensurability problem see
Sacco, Widom, and SokoloK' The ground-state analysis
in the next section is thus simply a translation of their re-
sults to our language, but the calculation of the grand
partition function requires some mathematical
clarifications: First, the GS approach is based on a trick
of analytic continuation of the chemical potential to the
complex space, whereas the GM approach can avoid the
trick. A legitimate question is if this remarkable trick is
correct. We will give an affirmative answer to this ques-
tion by providing an equivalence proof for the two ap-
proaches. Second, and more significant, both formula-
tions overlooked the necessity of modifying the existing
TM formulation for non-Hermitian pseudo-Hamil-
tonians. We will develop a correct procedure for the
non-Hermitian pseudo-Hamiltonian systems.

III. THE GROUND STATE

Let us first discuss the ground state. The equation of
motion for P is the sine-Gordon equation

2ne 2e +p= (9) +d sing=0 .
7Tqn 2&n

(16)

and the net charge associated with the phase dynamics is
given by

Q = [C'(L) —@(0)] .2e
2~

(10)

N(L) —4(0)=0 .

Now making the transformation

Taking the IC ground state as a reference state, the
charge conservation requires that the phase dynamics is
restricted to

VF

27Td no

and a characteristic energy (soliton energy for b.q =0)

The degenerate vacua /=0, +2', +4', . . . are connected
by soliton (+ ) and antisoliton ( —) excitations

I /2

$+=4tan .exp + 2TJYf
(17)

VF

which provide a characteristic length (soliton size)
1/2

no@+bqx =P, (12) E=8sd . (19)

the model Hamiltonian (6) and the boundary condition Since these excitations accompany +2~ phase shifts, the
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6y=qx+@= x+
no no

(20)

and therefore the vacua /=0(mod2n ) are of a commens-
urate nature. Thus the ground state may be viewed as
commensurate regions separated by solitons or
McMillan's "discommensurations. " In contrast, McMil-
lan regarded a soliton lattice as an incommensurate state
and a Bat vacuum as a commensurate state. This is be-
cause in his theory the charge is not conserved. Al-
though the ground state is always a soliton lattice in our
charge conserved analysis, it is clearly incommensurate
when d =0, commensurate when d is large, and continu-
ously changes its character between commensurate and
incommensurate with d.

A more appropriate parameter to measure the degree
of commensurability is

I —no5&s

n O5&s
(21)

which describes the fraction of commensurate areas in
the total length I.; the larger g means the stronger com-
mensurability. In Fig. 1, we have plotted the ground-
state configurations for various q.

Here we get a rough idea for the size of the system pa-
rameters no in (5), 5 in (15), the soliton size s in (18), the
soliton energy E in (19), and the commensurability
strength rI in (21). For TTF-TCNQ, "' no=4, 5-0.17,
s -130 A, E-280 K, and q-10. For 2H-TaSe2, ' '
n11=3, 6-0.02, s/a —5 where a is the lattice constant,
E -50 K, and g-10. In the latter estimate, we have as-
sumed the same value vF/a —1 sec ' as in TTF-TCNQ
and used the relationship between our q and the parame-
ter y of Suits, Couturie, and Slichter, '

charges carried by these particles are found from (9) and
(12) to be +2e/no. Note that the no =2 case is the q1 par-
ticle of Rice et al. "

It is clear that the ground state, characterized by (16)
with P, =0 and the boundary condition (14), is a lattice of
no6N solitons. Note that from (12),

f ~/2 dz

+y +cos z
(22)

Their values 0.0008-0.08 correspond to our q=7-16,
q=10 being an average. In our numerical calculations
below, we will use the parameters for 2H-TaSe2. In this
case, the IC-CD% locks in to the underlying lattice and
becomes a C-CDW by decreasing its wavelength about
2%. Note also that small 5 implies ~P„~ &(q, consistent
with our assumption of weak spatial modulation.

IV. THE GRAND PARTITION FUNCTION

I*ax
~

mqn o

(24)

is the canonical momentum in the discretized, I.=Mhx,
version of the Hamiltonian (13). We will take b,x ~0 and
M~(x in the end. Z is a simple Gaussian integral
(p—:1/t, Boltzmann const = 1)

M/2

(25)
pqn o

Taking into account the boundary condition (14), Z& is
written as

Z~= f dent f dAx+16('t1M+1 01 2rrXno&)

X gE(Q;, P;,), (26)

where we have introduced the TM operator

Pi+1 4i
Ax

—hq
Uy

K(p;, p;+, )
=—exp pb,x-

4mn 0

2

We put the system (13) and (14) in a heat bath of tem-
perature T. The classical partition function can be writ-
ten as a path integral

Z= me ~~=Z Z~, (23)

where

+d(1 —cosit1;+, )
' (27)

$ (x)
Now the standard TM procedure is to expand the 6 func-
tion in (26) in terms of the eigenfunctions 4„of the TM
equation

f d(t;X(P;,P;, )C&„(P;)
' 1/24~ hxno

e "N„(p;+1) (28)

FIG. 1. The ground-state configurations for g= 0, 5, 10, and
15 (bottom to top). P(x) vs x for five solitons. =E„N„(P) . (29)

which, after Taylor expanding 4&„(iI),. ) around P;+, and
performing the Gaussian integral with respect to
reduces to the pseudo-Schrodinger equation

~"o d 1 d+—bq +d(1 —cosP) @„(P)
vFp dp
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This does not work here because of the non-Hermiticity
of the pseudo-Hamiltonian HTM. Indeed, HTM is not
Hermitian, —PLc.~ I, ik2vrNn05a k

Using (28) M times and (33), (38) becomes
' M/2

4m. noix
(40)

2hq d
~TM ~TM

P d(t
(30)

As for Bn, we need to expand

(e fe„&=
m ~n

(31)

But since HrM and d/dP do not commute, 0&„ is not a
simultaneous eigenfunction of d/dP and HrM. There-
fore we have in general

&C fe„&WO (32)

and the expansion theorem does not hold.
It is noted that due to the periodic potential, the

Bloch-Floquet theorem applies, and we can write

(33)

where g k(P) is 2~ periodic. The index is now replaced
by a band index u and a wave number k is in the first
Brillouin zone

J
~', = Xgk~'h .

h=o
(41)

n —1 j
X y y g„&eJfe„&e '"e' " "' (e„fe„&.

n j=O h=O

(42)

It is now clear that B„=O, because 4h is a linear com-
bination of 4 with m h +j h —1 all of which are or-
thogonal to 4„. From (23), (25), (37), (40), and B„=O,we
obtain the partition function

—pLc.o k ik2mNno5
O, ke (43)

Substituting (41) into (39) and applying (28) M times gives
M/24~ n()hxBn=—

ke
f

—
—,', —,'] . (34) where the unimportant factor

The correct procedure is the following. We first Schmidt
orthogonalize the set f &Pn ] as

Ax 8m*~ M/2

p gUF
n —1c„e„=c„—y. &e, fe„&e, ,
j=0

1/2

c„= 1 —y f(a, fc„&f'
j=O

The 5 function can now be expanded as

s(yM+, y, 2~—Nn, —s)

(35)

has been omitted and we have kept only the lowest band
a=0 in the thermodynamic limit L ~~. The result (43)
turns out to be identical with the previous result obtained
by the unjustified procedure.

The k integral in (43) can be done by the GS analytic
continuation of the chemical potential p to the complex
plane, p)M= —2m. iA, . The grand partition function is eval-
uated as

=+4„'((tM+, —2+Nnos)4„((t ) ) .

(36)

Substituting (35) and (36) into (26) gives

Z~=g(A„+8„),
where

(44)

(45)

1/2 pLEO(k) —00 ivsno(p)0+2nki )

—1/2 00

—PLd I c.o(g) /d I
7

where

f dP( . f d(t)M+(en(it)M+( 2nno~)—
n

Of course the chemical potential is related to the soliton
minus antisoliton number fixed by the charge conserva-
tion,

X QK(Q;, P, , )N„(P,), (38) Nno5=eP" lnZ .a
Be~)"

(46)

Bn ( ( ( M+1@ (@M+1 2"rNno~)
n

M
x grc(y„y

n —1

x g &c,. fq„&@,(y, ) .

By solving the coupled equations (29) and (46) for g and
the lowest band energy Eo(g), one can obtain the grand
partition function (44).

Let us transform (29) and (46) to the forms suitable for
numerical calculations. We measure the temperature in
units of the soliton rest energy,

j=O

(39)
= T

Ssd
(47)
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Using (14), (18), and (47), and substituting (33) with the
analytic continuation (45), (29) becomes

1

dP d 32t
+f +

2 cosE)E g (=b tg (, (48)

where

=1—32t g o+P+ (58)

The remaining procedure toward the grand partition
function is almost the same as in the GS formulation. We
have, neglecting an unimportant factor,

f= —2g-
2t(1+rl) '

+g2+
d

' 'c 2t(1+~)

(49)

(50)

—PL@0, 0

As for the chemical potential v, it is determined by

2vrNno5=(PM+i —PE) = — lnZ,
a

(59)

(60)

Since 1( k is 2m periodic, we can expand with a large in-
teger J

J
g C(e"

I= —J
(51)

and the eigenvalue problem (48) is reduced to a matrix ei-
genvalue problem

1
( —1 +Elf )CE+ 2 (CE E+CE+E)=b~ ~CE .

64t
(52)

As for (46), with the use of (44), (45), and (50) it simplifies
to

a
bo, g+2$ (53)

( —EE[H —( v/2m ) [ P(L) —P(o) ) ] ) (54)

GM absorbs the chemical potential term into the Hamil-
tonian by writing it as

Now the skeptical reader may need to be convinced of
the correctness of the GS trick. Fortunately, GM
presented yet another formulation which cleverly avoids
the GS trick and is certainly correct. We provide here an
equivalence proof of the two formulations, thereby giving
a firm basis to the remarkable trick.

In the evaluation of the grand partition function

or using (58) and (59),

ag
-go, o+20=0 (61)

showing the equivalence of the two formulations.

V. THE CHARGE-DENSITY —CHARGE-DENSITY
CORRELATION FUNCTION

As we will see in Sec. VI the charge-density —charge-
density correlation function is directly relevant to the x-
ray-scattering experiment and the NMR Knight shift ex-
periment. It has been studied before by Turkevich and
Doniach without the charge conservation and with the
TM procedure which is correct only for Hermitian
pseudo-Hamiltonians. Unlike in the grand petition func-
tion, the correct TM result for the charge-
density —charge-density correlation function is now
different from the result of the incorrect TM procedure.

The charge-density —charge-density correlation func-
tion is defined by

H(x —x') = (e'~' 'e '~' ')

One can now easily see that the coupled equations (57)
and (61) are identical to the coupled equations (48) with
(49) and (53) with the identification

(62)

I (t'(L ) —(t (0) I
= g b x (EIt';+ E

—p; ),
&=1

(55)
i(G/n0)(x —x') 1 (e~") ' Z Y,

n 6N= —oo0

Z= f 5$f 5m 5((t)) —c)+R(p;,p;+E) . (56)

thereby leaving the unconditional phase-space path in-
tegral

Y= f d(t)) . f dEt))it+)&(yE(t+) —(t) —2Erno&&)

M

(63)

d P2
d 1

2t(1+21) dP 32t 2

ga, o Pu, o &
(57)

where g=Pv/2m. and

The term 5(p( —c ) with a constant c had to be introduced
to avoid the divergence arising from the global transla-
tional invariance in (t space. The TM operator
R((tE;, (tE;+, ) is now slightly different from K(Q,., Et);+, ) and
the new pseudo-Schrodinger equation reads

where we have written x =(I—1)bx, x'=(m —1)bx,
Et)(x) =EtEE, and (t)(x') =p . Let us consider the case
x &x'. To evaluate Y we proceed as follows. We first use
the expansion theorem (36) for the 5 function in (64).
Here we use the Einstein convention, i.e., a sum is meant
over repeated indices. Expanding

@a,k Ca, j,k+j, k

we can apply the TM equation (28) / —1 times. Next we
expand
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if( /n p iP/n p~ J,k(kl ) & ~ i, k+)/ le l@j,k &Ci j', k+)/ @j',k+)/ (66)

which allows us to perform the next (m —l) TM operations. Repeating the similar steps, we get (again omitting an
unimportant factor)

I'= fdeM+)+.', k(OM+( 2~&~05)C k(PM+) )C

iglnp —iP/npx &c'I k+)/ Ole l@j,k &clj', k+)/ n&@(kle, 'I@,
, k+)/„, &

I—pc, . x p j', k+1 jn —pq.„(L—x')
XC ~ e j e ' eI'j",k (67)

We now substitute the expansion

~ II k d .II1tl k @[IIJ ~ J (68)

into (67) and perform the integration over PM+). Using
the property

I

numerical calculations.
The results (71) and (72) are for x (x'. For x )x ',

H(x —x') = tright-hand side of (71) with x~x'J' .

(75)

djlC1m ~jm

Y' reduces to
ik 2mNn p6 iP/np

&~ l, k+)/, Ie 'Ic,, k &ci,', k+)/,

(69) From (71) and (75), we finally have for general x and x'
iy(x) —iy(x')

&

i(G/np)(x —x') —p~x —x'~(Rec, ~,. /
—

cp ~)=e ' g W(a)e
—i//npx&~ i , kle 'l@j',k+)/ &C('j, k

p(E'l k+$/ 6'k)(XX)p
Xe (70)

Substituting (70) into (63) and performing the series sum
with the GS trick gives

i(G/no)(x —x')
H x —x')=e

l P( X X )ImE,

Xe p (76)

It is noted that the lowest band energy co &
is real.

It is interesting to compare (76) with what would be
obtained by the erroneous TM procedure. By letting the
coefticient matrix be a unit matrix, we get the same form
(76) but W(a) is now replaced by

—p(x' —x )(c, ~,./„—cp ~)
x+W(a)e (71)

w( )=l&y. g;,„ lit, g&l'. (77)

W(a)=QC 0&&/ &Ig &,/„&

xXC)., g ;/. ,&Ol,g-
1

(72)

Our numerical result for the case g=5 and t=0.01 is
that

g W(a) =0.9992+0.9243+0.9392+0.7285
a

Our numerical calculation shows that W(a) is a real
function of a and the lowest band +=0 contribution is
overwhelmingly large with the higher bands contribution
being at most a few percent for the temperature ranges
and commensurability strengths considered (see below).
The nonunitarity of the coeKcient matrix C;. prevented
us from finding an analytical proof of the reality of W(a),
but we could prove a sum rule as required by putting
x =x' in (63) and (71),

Xw(~)=pc „&q,lq«&

+0.7351+0.4651+0.4582+ 0.2314

+0.2197+0.081+ (78)

which not only violates the sum rule but totally denies
the naive argument that the lowest band contribution
would be dominant. It would be fair to point out that the
previous TM analyses made two serious mistakes to
reach the approximately correct result lput W(a)=5
in (76)] for the charge-density —charge-density correlation
function: one in treating the non-Hermitian pseudo-
Hamiltonian and one in neglecting the higher band con-
tribution in (78).

=Coo ~=1 (73)

The sum rule provides a good test of the numerical accu-
racy. For example, for g= 5 and t =0.01 we obtain

g W(a) =0.9736+0.014 83+0.011 61+

= 1.0000+0(10 ), (74)

which simply demonstrates a very high precision of our

VI. NUMERICAL RESULTS
AND EXPERIMENTAL IMPLICATIQNS

Based on the charge-density —charge-density correla-
tion function (76), we can calculate some quantities of ex-
perimental relevance. The x-ray-scattering structure fac-
tor due to the CDW condensed electrons is given by the
Fourier transform of the correlation function,
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g(g) ~2f d& e
—izQ(eiy(z)e —iy(0) ) (79)

f I I I I l I I I I l 7 I ) l

0.04

Substituting (76) into (79) and keeping only the dominant
contribution from the lowest band gives a Lorentzian line
shape 0.03

&( )=
2+(Q Q )2

where the linewidth is given by

'(q, t ) =P(Reeo ~;~„—eo ~),

(80)
I

0.02

0.01
which also describes the charge-density inverse correla-
tion length and the peak position is given by

G
Q (g t)= +PImep gljo ) 0

(82)
O.oo

0 0.1 0.2 0.3 0.4

(83)

The reduced temperature t„ is simply the temperature
measured in units of the rest soliton energy at q=10.
The result Fig. 2 is physically reasonable. For larger g,
the system has a stronger tendency toward a less charged
state, and to conserve the net charge, one needs to apply
a stronger external force leading to a larger p. Since this
tendency is thermally weakened, p must decrease with
temperature.

In Fig. 3, we have plotted the inverse correlation
length in units of the inverse lattice constant

(1+g)5a Re
8t

~0, g—i /no Ep g

d
(84)

The coupled equations (52) and (53) have been solved by
an iteration method. We And that the 51 X 51 matrix size
is sufficient to make the calculation convergent for the
parameter ranges considered. Figure 2 shows the chemi-
cal potential in units of the rest soliton energy p/(8sd)
versus the reduced temperature t„, which is related to t as

FIG. 3. Inverse correlation length vs temperature for the
charge conserved case.

In Fig. 4, we have plotted the peak position measured
from G/no again in units of the inverse lattice constant

aug=a Q- G (1+g)6 Im
no 8t

~o, g —iynO
(85)

The corresponding results, Fig. 5 for ag, and Fig. 6 for
a b, g, of Turkevich and Doniach can be obtained by sim-

ply letting /=0, thereby removing the charge conserva-
tion constraint.

In the charge nonconserved case Fig. 5, the decrease of
correlation length starts at higher temperature for larger

This is simply because the soliton energy is larger for
larger q and a higher temperature is necessary to
thermally create solitons and antisolitons. In contrast,
the charge conserved case Fig. 3 shows an opposite ten-

I 1 I I I I I I 3 I

0.6
0.04

0.03

0.4
0.02

0.2 0.01

0.0
0.1 0.2 0.3 0.4

0.00 t ( I I I

0 0.1
I t I I t I I I

0.2 0.3 0.4

FICx. 2. Chemical potential vs temperature.
FIG. 4. Scattering peak position vs temperature for the

charge conserved case.
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0.04
I I I I I I I I I I I I I I I I

0.03

0.02

0.01

0.00
0 0.1 0.2 0.3 0.4

FIG. 5. Inverse correlation length vs temperature for the
charge nonconserved case.
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FIG. 6. Scattering peak position vs temperature for the
charge nonconserved case.

dency', the correlation length decreases more rapidly with
temperature for large g. The fragility of the T =0 soliton
lattice states was pointed out before by GS (Ref. 4) and
GM. Our result shows that the stronger the commen-
surability, the more fragile the soliton lattice. As for the
scattering peak position, in the charge nonconserved case
Fig. 6, the deviation from the commensurate wave num-
ber starts at higher temperatures for larger g. This is
reasonable because for stronger commensurability the
soliton energy is larger, and therefore the ground state is
less charged and more stable against temperature. The
result for the charge conserved case Fig. 4 is again in
sharp contrast with the p=O case. The scattering peak
does not converge toward G /no in the same temperature
range as in Fig. 6. However, since at T=O and for large
q the system is predominantly near the commensurate
state, the peak must be located near G lno at T =0. As

in the case of correlation length, the result can be natu-
rally understood in terms of the fragility of the soliton
lattice states. It is noted that p-0 for all t at g=O and
thus the two cases give similar results.

We consider here the two experimental results on the
transition-metal dichalcogenide layer compound 2H-
TaSez. One is the x-ray-scattering experiment' reporting
an abrupt change, about 2%%uo, of the CDW wave number
at the C-IC transition. The other is the NMR Knight
shift experiment' reporting no abrupt change in the sig-
nal at the C-IC transition. The consistency of our result
for the temperature dependence of the scattering peak
position, Fig. 4, with the x-ray-scattering experiment is
obvious. As for the Knight shift experiment, it was re-
garded as a strong support to McMillan's argument that
an IC-CDW state is understood as commensurate regions
separated by discomrnensurations. This is nothing but
our soliton lattice at T=O. Clearly, the argument of
Suits, Couturie, and Slichter' is missing an important
point. That is, in order for their argument to remain
correct, the charge-density correlation length must be
much larger than the unit cell size of the C-CDW state,
i.e., noa. Our result for the temperature dependence of
the correlation length shows that, although the soliton
lattice state is certainly fragile, the correlation length is
still much larger than noa, implying a smooth change in
the NMR spectra at the C-IC transition.

VII. SUMMARY

We have started with the commensurability pinning
Hamiltonian for the phase mode of the charge-density
wave with the charge conservation as a microscopic mod-
el Hamiltonian for the C-IC CDW transition. As a re-
sult, unlike in the GL free-energy functional approaches,
we have an idea about the size of the system parameters
and the experimentally relevant temperature range, al-
though as a common drawback of simplified one-
dimensional models, we must reinterpret T=O as the
transition temperature T, . Charge conservation plays an

important role both in the ground state and in thermal
fluctuations. McMillan interpreted a soliton lattice as an
IC-CDW state and a Aat vacuum a C-CDW state. Due to
the charge conservation, the ground state is always a soli-
ton lattice, but its character continuously changes be-
tween commensurate and incommensurate according to
the commensurability strength.

Our study of thermal fluctuations consists of two parts.
One is technical, extending the existing TM formulation
to the non-Herrnitian pseudo-Hamiltonian systems. We
have also proved the equivalence of the GS formalism
and the GM formalism, thereby giving a finn basis to the
remarkable trick of analytic continuation of the chemical
potential to the complex space. The other is physical.
We have seen that the charge conservation leads to re-
sults qualitatively different from the previous analyses
without the charge conservation. Although one cannot
disprove the possible existence of a charge reservoir in
certain CDW systems which might support the latter ap-
proach, the x-ray-scattering experiment reporting an
abrupt jump in the CDW wavelength at the C-IC transi-
tion is consistent with our charge conserved analysis. We
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have also made an important point that the smooth
change in the NMR spectra at the C-IC transition re-
quires a long-enough spatia1 correlation in the charge
density, again in consistency with our results for the
correlation length.
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