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The chemical property of hardness is extremely important in the correct prediction of electron
transfer between reacting chemical systems. Hardness is defined to be one-half the second derivative of
the total energy of a chemical system with respect to the number of electrons. The requirement that the
total energies of atom and pseudoatom match to second order with arbitrary changes in valence-state oc-
cupancy yields major decreases in the errors made when using psudopotentials. The concept also
clarifies the role of core density in pseudopotential application. A practical prescription is presented for
generating such pseudopotentials and their corresponding core densities, and several ab initio results are
compared with those of high-quality norm-conserving pseudopotentials. Significant improvements are
found.

I. INTRODUCTION

The intent of this work is to show one way to
significantly reduce errors inherent in the pseudopoten-
tial method. Modern pseudopotentials already are at a
high state of development, but the introduction of gra-
dient corrections and other improvements in density-
functional theory are showing the possibility of further
order-of-magnitude reductions in the already small errors
inherent in the local-density approximation (LDA). As
the theory itself becomes more capable, users will become
less tolerant of errors introduced by pseudopotential ap-
proximations. The direction taken will be to introduce
into pseudopotential construction the concept of chemi-
cal hardness in a state-dependent manner. The reason for
the introduction is to ensure the correctness of the total
energy to second order in valence-state occupancies. The
errors in hardness in a good norm-conserving pseudopo-
tential are small, but they are about the same size as the
errors in the pseudopotential itself. The constraints im-
posed by this concept are moderate, but the improve-
ments in the prediction of material properties are
significant. These changes usually result in wave func-
tions which require higher kinetic-energy plane waves
than a comparable norm-conserving pseudopotential and
so a plane-wave basis set will require more plane waves.
This difficulty is amehorated by two facts: (l) The added
details in the wave function are real and physically
significant; (2) new solution methods scale nearly linearly
with the number of plane waves and so the impact on
solution time is bearable.

Those wishing to simulate systems of interacting atoms
have three reasonable choices for basis sets: bases which
resemble atomic orbitals, plane-wave or grid-based
methods, and mixtures of the two. Most computational
chemists use the first set, which is usually based on
Gaussian functions. Solid-state physicists have tradition-
ally used the second because of the requirements of
periodicity for crystals. When neither of the first two are
appropriate by themselves, mixed basis sets are used. A

major advantage of atomic orbital and mixed bases is that
they can represent energetic core states with only a few
parameters. To represent a deep 1s core state using an
equally spaced grid requires spatial resolution
significantly better than 1/Z, where Z is the atomic num-
ber of the nucleus. To describe the 1s state of silicon
within a 10-bohr cube requires a minimum of 10 grid
points, or, in momentum space, approximately 10 plane
waves within the cutoff sphere. Even with new plane-
wave solution algorithms which scale nearly linearly with
the number of plane waves, solving for the wave func-
tions using a basis set -this large is a tedious numerical
task. It is, however, perfectly feasible given sufficient

computer memory.
The need for this high spatial resolution has tradition-

ally been bypassed through the use of pseudopotentials
which eliminate the core states. Even so, systems which
have ls, 2p, 3d, 4f, or 5g valence wave functions require
deep pseudopotentials because these wave functions are
nodeless in the radial direction and the pseudopotential
cannot soften the electron-nuclear interaction by elim-
inating oscillations in the wave function and thereby re-
ducing the corresponding kinetic energy. If one wishes to
generate pseudopotentials for an atom which has a node-
less valence wave function, nonlocal pseudopotentials are
generally required to accurately model the atom because
different angular momentum states of the same principle

quantum number require very different potentials. The
number of plane waves required to model the states re-
sulting from these deep potentials is large. Since the use
of regular nonlocal pseudopotentials scales as the square
of the number of plane waves, deep nonlocal pseudopo-
tentials have become the bottleneck in the application of
the new solution methods. Thus whole families of impor-
tant materials have been excluded from plane-wave simu-
lation for several years. These included materials with
ions containing 2p valence states such as oxides, 3d tran-
sition metals, and 4f rare earth metals.

The use of separable pseudopotentials as proposed by
Kleinman and Bylander allows norm-conserving nonlo-
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cal pseudopotentials to be used in a plane-wave formula-
tion without destroying the nearly linear scaling of the
new algorithms. Allan and Teter first showed that the
deep 2p pseudopotential in oxides could be accurately
simulated using separab1e pseudopotentials. The use of
separable nonlocal pseudopotentials coupled with the
new fast solution algorithms has opened up light atom
chemistry and 3d transition metals to fast plane-wave
simulation.

The simplicity of using a constantly spaced grid cou-
pled with extremely fast solution algorithms makes the
plane-wave pseudopotential (PWP) method fully competi-
tive with normal computational chemistry methods even
for isolated molecules. ' Forces and higher derivatives
are much easier to generate in the PWP method than in
methods where the basis set depends upon atomic posi-
tions. The large energies associated with the core states
do not confound the delicate energetic changes associated
with chemical reactions among the valence electrons.
The only coherent argument against their use is the error
in the pseudopotential approximation itself. With
modern norm-conserving pseudopotentials, that error is
small, but not necessarily negligible. Thus the goal of
this work is to determine and significantly reduce the
dominant source of error remaining in the use of pseudo-
potentials.

Modern pseudopotentials have a long history. A short
review and list of references may be found in the book by
Cohen and Chelikowsky. " For those interested in more
detail, the excellent review by Pickett is recommended. '

The breakthrough in the construction of ab initio pseudo-
potentials which were both practical and accurate came
from the implementation of norm-conservation in non-
local pseudopotentials. A norm-conserving pseudopoten-
tial conserves the normalization of the pseudo-wave-
function inside the core region so that the wave function
outside the core resembles as nearly as possible that of
the all-electron atom. Norm-conservation was first im-
plemented in empirical pseudopotentials by Topp and
Hopfield, ' in ab initio local ionic pseudopotentials by
Starkloff and Joannopoulos, ' and stressed in the creation
of nonlocal pseudopotentials by Hamann, Schluter, and
Chiang. ' This work was refined by Bachelet, Hamann,
and Schluter. '

If a spherical boundary is placed around an atom and
one requires that outside that sphere the valence wave
functions of the pseudoatom are exactly the same as
those of the all-electron atom, then the boundary condi-
tions are matching eigenvalues, matching wave functions,
and matching derivatives on the surface of the sphere.
To guarantee a solution to Schrodinger's equation outside
the sphere in the all-electron potential, only the ratio of
the wave-function derivative to the wave function (log
derivative) is required to be correct on the surface of the
sphere. For the normalized wave function to have the
correct magnitude outside the sphere, however, it is re-
quired that the integral of the square of the wave function
inside the sphere be the same for atom and pseudoatom.
This is the norm-conservation condition. This condition
guarantees that outside the spherical surface, the magni-
tude as well as shape of the electron density will be the

same for the norm-conserving pseudoatom and the all-
electron atom. This will preserve as closely as possible
electrostatic interactions between valence wave functions.
Norm conservation also has a deeper result. It guaran-
tees that the log derivative of the pseudo-wave-function
on the surface of the sphere will vary in the same manner
as that of the all-electron atom with small variations in
energy around the eigenvalue.

Transferability in a pseudopotential is the quality that
the pseudoatom described by the pseudopotentia1 accu-
rately mimic the quantum-mechanical behavior of the
a11-electron atom in a wide range of environments. After
the success of norm-conserving pseudopotentials in many
applications, there has been a great tendency to associate
transferability with the correct variation of 1og deriva-
tives of the pseudo-wave-function with energy. Thus
many attempts to improve norm-conserving pseudopo-
tentials have centered around the log derivatives of the
atomic and pseudoatomic wave functions and attempting
to improve the energy range over which they match. The
extended-norm-conserving condition of Shirley et al. ' is
a significant attempt to improve pseudopotentials past
the norm-conserving condition. One major difficulty
with using their formulation is that their analytic expres-
sion for the extended-norm-conservation condition is not
integrable over a radial node in the wave function. In
practice the condition must be implemented by matching
the log derivatives at a sequence of energy points around
the eigenvalue. The recent work of Chou' shows one
way of performing this construction approximately. Van-
derbilt achieves log derivative matching over an extend-
ed energy range by a different construction technique
which will be discussed later.

The normal method of pseudopotential construction is
to generate a pseudo-wave-function with the desired
properties and then invert Schrodinger's equation to yield
the pseudopotential. If a series of wave functions are
generated at different energies, inversion does not guaran-
tee that they will yield the same potential. They usually
do not. Chou forms a pseudopotential from a linear com-
bination of the resulting pseudopotentials which gives the
best match to log derivatives at the reference energies.
She also directly associates transferability with the
correct energy behavior of the log derivatives. A numeri-
cally tedious, but more general, approach is to bypass the
construction of pseudo-wave-functions altogether and
parametrize the pseudopotential itself. For any given set
of parameters, the pseudopotential may be evaluated with
regard to any number of variables including log deriva-
tives of pseudoatomic wave functions over an extended
energy range. A penalty function may then be evaluated
which compares the resulting pseudo-wave-function
properties with those of the all-electron atom, and the
pseudopotential may then be optimized via a nonlinear
least-squares procedure. Unfortunately, extending the
energy range over which log derivatives match usually
yields only a small improvement in the error associated
with using a good norm-conserving pseudopotential. The
reason for this seems to be that the error in the log
derivatives of the pseudo-wave-function with energy is
not the dominant error in pseudopotential use. A simple
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example is that of the oxygen atom. Given a large core
radius of 2 bohr, it is possible to make a set of soft norm-
conserving pseudopotentials whose log derivatives match
those of the all-electron atom to better than 1% over a 1

hartree energy range. Using these pseudopotentials, the
equilibrium radius of the 02 molecule is 7.5% higher
than that of the experimental value. The vibration fre-
quency is in error by over a factor of 2. This example
will be discussed further in Sec. IV.

Concentration on the log derivatives has also led to
methods to generate pseudopotentials whose wave func-
tions require a minimum number of plane waves, ' '

known as soft pseudopotentials, because it is often possi-
ble to generate soft norm-conserving pseudopotentials
with good log derivatives. The use of the adjective soft
should not be confused with the concept of chemical
hardness to be introduced later. A soft pseudopotential is
to be desired since minimization of the number of plane
waves required for convergence facilitates the solution
process. The real wave function often has details which
require many plane waves for their description. To
soften the wave function requires that these details be
smoothed. This smoothing process quite often leads to
large atomic core radii since outside the core radius, the
all-electron and pseudo-wave-functions are identical.
One may only modify the wave function inside the core
radius. If the details which are smoothed are physically
significant, their effect is lost. In the absence of a
coherent theory of transferability, the two techniques
that the pseudopotential user has to increase transferabil-
ity are to decrease the core radius for a given state or to
include core states in the creation of the pseudoatom.
Thus the desire for soft pseudopotentials seems to be at
variance with the desire for transferability and chemical
accuracy. %'ith the new plane-wave algorithms, it is rela-
tively painless to add plane waves, and associated costs
such as computer memory are dropping rapidly. Thus
the tradeoff of accuracy for softness is becoming less and
less justifiable. It is not unreasonable to request that of
all the pseudopotentials of equal performance, the softest
one be chosen, but as mentioned above the matching of
log derivatives alone is not a good measure of transfera-
bility.

A major contribution to transferability in pseudopoten-
tials came from Louie, Froyen, and Cohen, ' who real-
ized that the deletion of the electron density of the core
states removed by the pseudopotential construction gave
a nonlinear error in the exchange-correlation potential in
the LDA. By restoring the core density, they were able
to show that atoms would respond correctly over a wider
range of conditions and that many of the problems with
modeling sodium were overcome. Their method is prac-
tical and almost without fail yields improvement in
transferability. There are a few conceptual difficulties,
however. For example, why is the core density of the
all-electron atom the best one to be added to improve the
behavior of the pseudo-wave-functions of the pseudo-
atom? If it is not the best density, how may one deter-
mine which density is best? Bylander and Kleinman at-
tacked the problem from a different point of view by
showing that it was possible to generate an exchange po-

tential with the core which corrected the problems with
sodium without resorting to core density.

Vanderbilt has provided a procedure for generating
multireference soft separable pseudopotentials with log-
derivative matching over an extended energy range. He
is able to keep his wave functions soft because he does
not require that they be norm-conserving in the usual
sense. Instead he adds a compensating valence density to
the density of the wave functions to achieve a norm-
conserving condition. Vanderbilt thereby achieves softer
pseudopotentials at a cost of a somewhat more complex
projection operation.

The state of the art in highly transferable pseudopoten-
tials is to construct them with small core radii with a
norm-conserving procedure and to include core densities.
If they are to be used in a separable manner then multiple
reference states are advantageous not only for accuracy,
but also to avoid ghost states. "'

Since extending the energy range of correct log deriva-
tives does not necessarily enhance the performance of a
pseudopotential, let us reexamine what errors we may be
making in the pseudopotential approximation. As isolat-
ed atoms are allowed to interact new states are produced
which yield new eigen values, and in many cases
significant transfer of electrons from one atom to anoth-
er. Thus the changes in wave functions with eigenvalue
and with occupancies are interrelated. The eigenvalue of
a state is the derivative of the total energy with respect to
the occupation of that state. By requiring the same ei-
genvalues, one has enforced the condition that small
changes in the occupancies of atomic valence states yield
the same energy changes in both the atom and pseudo-
atom. The norm-conservation condition enforces the
condition that if the eigenvalues of atom and pseudoatom
have the same changes, the valence wave functions for
both the pseudoatom and the all-electron atom will
change in the same manner on the surface of the sphere.
There is, however, no guarantee that for a given pertur-
bation, the change in the eigenvalues of the pseudoatom
will be correct. Thus ensuring the correct eigenvalue
changes under perturbation will remove an important
source of error in pseudopotentials. This work will at-
tempt to remedy the situation and guarantee that for at
least one important case, namely, that of arbitrary
changes in valence-state occupancy, changes in the eigen-
values of atom and pseudoatom will track exactly.

II. CONSERVATION OF DETAILED HARDNESS

If isolated systems composed of electrons and nuclei
are allowed to interact, one result of the interaction is to
bring the chemical potentials of the electrons of the iso-
lated systems into agreement. The electron chemical po-
tential p of the system is defined as

where E is the total energy of the system and n is the
number of electrons.

Despite the fact that the number of electrons in a sys-
tem is an integer, throughout this work we will treat elec-
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Conservation of electrons implies that

6n, = —6n2

and ignoring constraints on the occupancies then gives

6n
P2 P&

Bpy Bpp+

tron number and state occupancies as continuous vari-
ables. Thus the concept of differentiation with respect to
occupancies has at least a mathematical meaning.

The minimization of the tota1 energy E requires that
electron transfer take place between the subsystems until
the chemical potential is constant throughout the in-
teracting systems. Given two systems, expanding the
chemical potential of each linearly in the number of elec-
trons and requiring that the two chemical potentials be
equal give

Bp) Bp2
p + 6n, =@~+ 6n~ .

Bn, nz

BE
af,

and combining the two expressions

1B'
2 afJ

This expression has an explicit contribution resulting
from the direct dependence of the density on the state oc-
cupancy and an implicit part which results from the re-
laxation of the wave functions with changes in state occu-
pancy. While the exact hardness expression includes the
effects of self-consistency, we will treat the wave func-
tions as frozen in this work for two reasons: (l) the prop-
er treatment of self-consistency greatly extends the neces-
sary computation and (2) the inclusion of self-consistency
makes no detectable difference in the quality of the pseu-
dopotential.

The expression for the electron density in terms of the
occupation numbers is

p(r)= g f,p, (r),

Thus the number of electrons transferred between the
two systems depends upon the difference in their chemi-
cal potentials divided by the sum of the derivatives of the
chemical potentials with respect to the number of elec-
trons. One-half of this derivative is defined by Parr and
Pearson to be the "hardness" of the system g

1 BE9=2
B ~

The electron chemical potentials of the systems and the
hardnesses of the systems then have equal roles in deter-
mining the amount of electron transfer between them.

There is an indeterminate number of ways to arrange
the eigenvalue spectra of a pseudoatom to reproduce the
derivative of the total energy with respect to electron
number of an all-electron atom. If the occupancy of the
highest occupied valence state is to be infinitesmally
changed, then only the eigenvalues of that state in the
atom and pseudoatom must match. If the concept is gen-
eralized to allow changes in any of the valence states,
however, then all of the eigenvalues of corresponding
valence states in the atom and pseudoatom must match.
The usual norm-conserving pseudopotential construction
accomplishes this matching essentially exactly. Similarly,
there are again an indeterminate number of ways to make
the hardnesses of the atom and pseudoatom match. If,
however, arbitrary changes are again allowed in valence-
state occupancies, then the entire matrix of second
derivatives of the total energy with respect to the various
occupancies must match in order to have the correct
changes of the eigenvalues of atom and pseudoatom with
such changes in occupancy.

We therefore define a hardness matrix for the atom

1 B~E

2 afaf
where f, is the occupation of the ith state. The eigenval-
ue e,- is

where

p, (r)=P;(r)g, (r) .

The LDA expression for e; is

e, = —
—,
' f P~(r)p' g, (r)d r+ f .p, (r)V,„,(r)d r

p, (r)p(r')
+ ff, d r d r'+ fp;(r)IJ,„,[p(r)]d r .

Assuming frozen wave functions, the only terms in the
eigenvalue expression which have dependence on the to-
tal density p(r) and therefore nonzero derivatives with
respect to occupation number are the Hartree term and
the exchange-correlation term. Using the result that

B = B

af, =p'ap '

the expression for the derivative of the ith eigenvalue
with respect to the jth occupation number generates the
following form for g,":

p;(r)p, ( r')

+ —,
' fp;(r)p (r) d r .

Bp

This expression has a very simple interpretation. The
variation of f will change the density which will affect
the eigenvalue of state i in two distinct manners: first
through electrostatic coupling and second through
changes in the exchange-correlation potential. Typically
the electrostatic term dominates the exchange-correlation
term by an order of magnitude and is always positive.

It is postulated in this work that errors in the hardness
matrix of a norm-conserving pseudoatom dominate its
transferability. An error in hardness gives a second-order
error in the total energy with changes in occupancy and a
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first-order error in the variation of a valence-state eigen-
value. If the eigenvalue change is wrong, then matching
log derivatives to higher order than first in energy is use-
less. If the energy changes match correctly to higher or-
der, then extended norm-conservation may very we11 be
significant.

The diagonal parts of the matrix resemble self-energies.
They do not necessarily dominate the off-diagonal parts.
The more nearly the densities of the individual states of
the pseudoatom and atom match, the closer the electro-
static terms will become. The role of core density also
becomes clear. Even if the densities of the valence states
were perfect matches, Bp„,/Bp depends upon the total
density including the core density. For this term to be
correct, some form of the core density must be included.
It is not necessary to include the exact core density.
Since the pseudo-wave-functions are not the real wave
functions, the exact core density would not give the exact
derivatives anyway. It is merely necessary to bring the
exchange-correlation part of the hardness matrix into
better agreement with that of the all-electron atom than
that caused by the complete neglect of the core charge.
A reasonable smooth form as shown in the Appendix
can, given the proper multiplier and core radius, reduce
the disagreement between the all-electron case and the
pseudoatom case by 2 —3 orders of magnitude. The rela-
tionship between the Louie-Froyen-Cohen ' and
Bylander-Kleinman treatment of sodium becomes clear-
er also. It is possible to partially compensate deficiencies
in the exchange-correlation term by variations in the
electrostatic term. The performance of norm-conserving
pseudopotentials may be improved either with or without
core charges if the hardness matrix of the pseudoatom
can be made to more closely match that of the all-
electron atom.

In the development of this work, the best results have
been found by treating the electrostatic and exchange-
correlation contributions to the hardness matrix separate-
ly and attempting to make each part match independent-
ly in the atom and pseudoatom without introducing com-
pensating errors. Enforcing constraints on the electro-
static interaction between states couples the pseudopoten-
tials and makes their generation an iterative process.
After creating several pseudopotentials in this manner, it
was found that a single constraint per state on its electro-
static self interaction in addition to the norm-
conservation condition gave nearly as much improvement
in the electrostatic part of the hardness matrix as fully
coupling the states. This is reasonable. The additional
constraint makes the densities of atomic and pseudo-
atomic states resemble one another more closely. As the
self-interaction is improved, the interactions with more
distant states should also improve. Thus only one addi-
tional constraint per state is necessary —the matching of
the electrostatic self-energies of the atomic and pseudo-
atomic states. This always brings the log derivatives into
better agreement as energies deviate from the eigenvalue.
The converse is not necessarily true. Better log deriva-
tives may or may not improve the hardness.

Core density only appears when unscreening the pseu-
dopotential. A core density is added to the valence

charge densities after the pseudopotential construction
has been completed and the core density is varied to min-
imize the sum of squares of the differences of the
exchange-correlation parts of the hardness matrices of
the atom and pseudoatom. The sum of squares of
differences can usually be improved by 2 —4 orders of
magnitude in this manner. The pseudopotentials are then
unscreened by removing the pseudovalence density. The
suggestion of Louie, Froyen, and Cohen ' is followed in
that the core density is used for exchange-correlation
only and not in any of the electrostatic terms. This
avoids strong electrostatic interactions which ideally
should subtract, but in practice do not always exactly
compensate. The form of the core density is chosen to be
smooth in the sense of having an exact Fourier cutoff as
well as decaying rapidly in real space. This is important
for not creating errors in forces related to errors of in-
tegration of the exchange-correlation functions.

III. CONSTRUCTION OF HARDNESS
CONSERVING PSEUDOPOTENTIALS

The scalar relativistic all-electron atom is solved on a
radial grid in a manner very similar to that described by
Hamann. There are a few differences. First, because of
the manner in which solutions are to be used on the grid,
a much finer grid is used. It was found that the exponen-
tial grid usually used placed far too many points near the
nucleus. After a great deal of numerical experimentation,
the following grid was determined to be the best among
those tested in the sense that it seemed to give the best
overall accuracy for the least number of points:

5
1

10'
r(n) =100

nmax

where r„was chosen to be the approximate size of the nu-
cleus, 10 bohr. The use of a finite nucleus also allows
the radial wave function to start as r' at the origin. Here
l is the angular momentum quantum number. The atom-
ic solutions are iterated unti1 the sum of squares of the

where n varies from 0 to n „.This gives a grid which
grows nearly exponentially near the nucleus, but the
growth factor dies down later and therefore the grid dis-
tributes a larger percentage of the points in the valence
region of the atom. In this work n „was chosen to be
2000. This 1arge number is necessary because the method
used to determine the optimum pseudopotential was non-
linear least-squares minimization of a penalty function.
It was required that the wave functions be determined to
at least nine significant figures so that the effects of very
small changes in the coefficients describing the pseudopo-
tentia1s could be tracked. Accuracy was checked by
comparing numerical results with known analytic results
such as hydrogenic solutions with high atomic number
and harmonic-osci11ator solutions. To avoid relativistic
singularities near the nucleus, the nuclear potential was
taken to be

—z
2 2 in'(r +r„)
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changes in the eigenvalues are smaller than 10
The states for which pseudopotentials are to be gen-

erated are chosen along with their core radii, and the
pseudopotentials are parametrized in the following
manner:

V (r)= g a;g, (r)+h(r)V„~(r) .

The g, (r) are independent functions which have a value
of one at the origin, have i —1 nodes, and then go to zero
at r, with zero slope. The function which multiplies the
all-electron potential h (r) starts at zero at the origin with
zero derivatives through fourth order and goes to one at
r, with zero slope. These functions will be described in
the Appendix. V„& is the total self-consistent potential of
the all-electron atom. The core radius in this construc-
tion is therefore of the Kerker type and not of the
Hamann-Schluter-Chiang type. After r, in a Kerker con-
struction, the wave function is exactly the all-electron
wave function and the potential is the all-electron poten-
tial. In a Hammann-Schluter-Chiang construction, the
pseudo- and all-electron wave-functions and potentials
gradually blend into one another after r, . Reasonable
values of r, in this work range from a minimum value
slightly inside the last radial maximum of rg, (r) to a
maximum defined by

r,„= I g;(r) 4mr dr
0

1/2

where g, (r) has been normalized such that

I g; ( r ) 4nrdr = l . .
0

The squares of the differences between certain features
of the all-electron wave function and those of the
pseudo-wave-function are collected into a penalty func-
tion and minimized. These features include ratios of
function values and derivatives at r, not only for the ei-
genvalue, but for ten other points covering a range of
one-half a hartree on either side of the eigenvalue. Log
derivatives as such are not used because a zero in the
wave function will generate a singularity in the log
derivative. Instead, the following transformed log deriva-
tives (TLD's) are used:

~( )
df(r)

ar
dg(r)

~( )2

It is clear that if the numerator and denominator are both
divided by g(r) the above expression depends only on
the log derivative of g(r). The advantage of the TLD's in
avoiding singularities is obvious since g(r) and its deriva-
tive cannot be zero at any place other than the origin
without both being zero everywhere as long as the poten-
tial is restricted from going to positive infinity.

There exists a small inconsistency in a pseudopotential
construction in which the nonrelativistic Schrodinger
equation is inverted after the pseudo-wave-function
which satisfies the appropriate conditions has been gen-
erated. If the atom has been solved using scalar relativi-

ty, the wave function outside the core radius is a solution
of the scalar relativistic equation and not Schrodinger's
equation, creating relative errors of the range
10 —10 . The inversion of Schrodinger's equation is
necessary since the scalar relativistic wave equation may
not be inverted easily. Given the pseudopotential rather
than the pseudo-wave-function, one may then use the sca-
lar relativistic wave equation in solving for the pseudo-
wave-function avoiding this minor inconsistency. Unfor-
tunately the use of the scalar relativistic wave equation
slightly decouples the log derivatives from the norm-
conserving condition. Thus the generalized norm-
conserving condition of Hamann for energies other
than the eigenvalue is used in addition to the TLD's and
the squares of deviations at the 11 energy points are add-
ed to the penalty function. The square of the difference
between the electrostatic self energies of the atomic state
and pseudoatomic state is also added to the penalty func-
tion.

If a cutoff energy is specified, the spherical Bessel
transform of the pseudo-wave-function is constructed and
the square of the fraction of the kinetic energy which lies
above the cutoff energy is added to the penalty function
as specified by Rappe et al. ' This construction must be
used delicately since attempts to grossly soften the pseu-
dopotential destroy its quality. On the other hand, it is
occasionally necessary because the optimization routine
will sometimes deepen the pseudopotential by a factor of
2 or more to gain less than a part per thousand in the
penalty function.

Normally, if the pseudopotential were to be used in a
separable construction, such detailed attention to the per-
formance of the pseudopotential would be wasted, since
only the norm-conserving characteristic is guaranteed to
survive being case into separable form. If, however, a
pseudo-wave-function from one of the other energies is
added to the reference set after orthogonalization in a
Blochl construction, then the details of the pseudopo-
tential behavior are conserved over a much broader ener-

gy range. The use of a second reference state projects out
most of the ghost states which are possible in the
Bylander-Kelinman construction and also allows the
maximum angular momentum pseudopotential to be used
as the local pseudopotential. The cost paid for a second
reference state is an increase in projection time, but since
the second reference state is suitably orthogonal to the
first, one may disable its use to see if the difference is
significant. One may also make a gain by being permitted
to use the highest angular momentum pseudopotential as
local and avoid the most complex projection.

A surprisingly good second reference wave function
may be generated for any state by simply multiplying the
initial reference state by r and orthogonalizing to the
first using Blochl's weighted orthogonalization. The
reason that this works is that if the pseudopotential is an
even power series in r, then the radial wave function for
any angular momentum I is of the form r times an even
power series in r. The first term is not energy dependent
and thus the leading term in the energy derivative of the
wave function is r'+, so that r times the reference wave
function mimics the energy derivative of the wave func-
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tion for small r and makes a very good second reference
wave function when suitably orthogonalized. The use of
an exact wave function at a different energy is to be pre-
ferred, but this approximate procedure works quite well
if such a wave function is not easily available. It is also a
trivial procedure for those possessing a separable pseudo-
potential with a single reference wave function who want
to see the improvement inherent in adding a second.

Finally, if a ghost state appears despite the double
reference state, it is because one of the nonlocal poten-
tials has dipped below the local potential. In this case,
the square of a final residual may be added to the penalty
function: the integral of the local potential minus the
nonlocal one over those regions where the difference is
positive. This final residual is then used along with all
the others in an iterative manner to adjust the various
pseudopotentials until the ghost state disappears.

To perform the nonlinear optimization, the
Levenberg-Marquart algorithm is used. To initialize
the optimization, only g, (r) is used, and a search is per-
formed covering the range of —100 to 100 for its
coefficient. The minimum value of the penalty function
discovered in the search determines the starting value. In
general, optimization is performed sequentially using first
one parameter and then this result is used as the starting
case for two parameters and so on until the required ac-
curacy in the penalty function is achieved. In general
fewer parameters give softer potentials and so an accu-
rate pseudopotential using only a small number (2 —4) is
desirable. The optimization is computationally intensive
and the creation of a pseudopotential may take an hour
of supercomputer time. Adding to the difticulty of creat-
ing the pseudopotentials is the large number of choices to
be made among core radii, cutoff energies the number of
residuals to use, number of parameters, and the like. The
only justification for such a cumbersome procedure must
lie in its results. It is important to note that the only
reason for the nonlinear optimization procedure lies in
the desire to make a single pseudopotential have
extended-norm-conserving properties in its log derivative
as well as making it hardness conserving. If changes in
eigenvalues with respect to occupation numbers are now
essentially correct, it is only reasonable to require that
changes in the wave function with eigenvalue also be as
error free as possible. If a user only wants the improve-
ment from hardness conservation, the electrostatic self-
energy condition may be simply added to a regular con-
struction procedure. This will improve the resulting
pseudopotentials and also improve the energy depen-
dence of the log derivatives.

After the pseudopotentials and pseudo-wave-functions
have been created, a two-parameter core density is creat-
ed, with the form

p„„=Cf(r/r„„) .

The function f is also described in the Appendix. Both
the coefficient and the core radius are adjusted so that the
sum of squares of the differences between the exchange-
correlation parts of the hardness matrices of the atom
and pseudoatom are minimized. This is also an easy
feature to add to any normal pseudopotential program.

It is generally worthwhile to perform this optimization
whether or not the electrostatic part of the hardness ma-
trix is conserved.

IV. RESULTS

%'hen possible, comparisons are made between the pre-
dictions of various pseudopotentials and all-electron cal-
culations. These calculations include spherically sym-
metric silicon using the atomic program and a three-
dimensional series of all-electron plane-wave calculations
for carbon in the diamond structure. These all-electron
plane-wave calculations are presented for carbon and
mark the first time, to our knowledge, that all-electron
plane-wave calculations for species other than hydrogen
have been performed. The reason is clear:
100000—200 000 plane waves per band are required
within the cutoff sphere. The kinetic-energy cutoff re-
quired for converging such a simulation is approximately
9Z hartrees, where Z is the atomic number. Neverthe-
less, the convergence time for a typical all-electron simu-
lation of diamond in a two-atom cell with ten special k
points is merely a few hours on a work station. At
present, computer memory restrictions identify nitrogen
as the largest atom which may be reasonably simulated in
this manner. These simulations are important in that
they can approach the LDA limit without using experi-
ment as the judge of the quality of a pseudopotential.
Agreement with experiment should be used to judge the
basic density-functional theory, the pseudopotential
should be judged by its agreement with all-electron re-
sults. Nevertheless, in the case of the oxygen diatomic
molecule and the relaxed structure of a-quartz, experi-
ment is quoted for two reasons. First, we do not have
suf5cient computer memory to perform the all-electron
calculation, and second, agreement is embarrassingly
close.

A. Silicon eigenvalues

Silicon was chosen as the test case to determine if the
non-self-consistent hardness constraint truly makes self-
consistent eigenvalues track with occupation number and
the number of valence electrons was varied from zero to
eight. The spherically symmetric atomic program was
used. This test monitored the self-consistent eigenvalues
of the 3s, 3p, and 3d states as silicon was taken from the
plus four ion in the neon configuration to the minus four
ion in the argon configuration. A harmonic-oscillator po-
tential was added to the silicon ion potential in order to
stabilize the negative ions. The form of the potential was

V(r)=r /100

and is added to all of the test cases.
Table I shows the self-consistent eigenvalues of the 3s,

3p, and 3d states as the number of valence electrons
varies. The various pseudopotentials were a norm-
conserving pseudopotential, the same norm-conserving
pseudopotential with core density added by the prescrip-
tion in Sec. III, and finally an extended-norm and
hardness-conserving (ENHC) pseudopotential with core
density. The addition of the core density makes a major
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TABLE I. Self-consistent eigenvalue differences in hartrees from all-electron calculations for various
pseudopotentials and occupations.

State
occupation

3s'
3p
3d'
3s'
3p
3d'
3s
3p
3d'
3s
3p
3d'
3s
3p
3d'
3s
3p
3d'
3s
3p
3do
3s
3p
3do
3s
3p
3d

All-electron
eigenvalue

—1.790 24
—1.440 41
—0.992 51
—1.416 50
—1.089 99
—0.663 83
—1.001 06
—0.695 80
—0.302 12
—0.629 77
—0.345 29
+0.009 15
—0.291 16
—0.270 28
+0.283 40
+0.011 17
+0.256 04
+0.520 74
+0.276 87
+0.504 42
+0.726 08
+0.508 86
+0.721 70
+0.906 61
+0.712 55
+0.913 54
+ 1.069 23

Norm
conserving

+0.195 40
+0.175 29
+0.13705
+0.029 86
+0.029 50
+0.014 29
+0.010 82
+0.01142
+0.003 78
+0.002 49
+0.003 26
+0.000 56
—0.000 82
+0.000 52
+0.000 18
—0.001 55
—0.000 71
+0.000 55
—0.001 26
—0.000 54
+0.000 81
—0.000 77
—0.000 20
+0.000 87
—0.000 36
+0.000 04
+0.000 80

Norm
conserving
with core

+0.021 48
+0.032 71
+0.01196
+0.01605
+0.01921
+0.005 89
+0.008 40
+0.009 71
+0.002 75
+0.002 50
+0.003 22
+0.000 56
—0.000 21
+0.002 86
+0.000 17
—0.000 98
—0.000 59
+0.000 40
—0.000 85
—0.000 56
+0.000 63
—0.000 47
—0.000 28
+0.000 72
—0.000 13
—0.000 02
+0.000 71

Hardness
conserving
with core

—0.015 86
—0.011 43
—0.005 09
+0.000 09
+0.000 87
+0.000 01
+0.001 56
+0.001 79
+0.000 60
+0.000 75
+0.000 78
+0.000 27
+0.000 06
+0.000 65
+0.000 12
—0.000 24
—0.000 20
+0.000 13
—0.000 26
—0.000 19
+0.000 17
—0.000 20
—0.000 10
+0.000 20
—0.000 12
—0.000 02
+0.000 19

improvement as Louie, Froyen, and Cohen discovered. It
is important to note that the core density construction
used in this example is one constructed to optimize the
exchange-correlation part of the hardness matrix, and is
not the core charge construction of Louie, Froyen, and
Cohen. Finally the remaining error is essentially re-
moved with the hardness-conservation condition. All of
the pseudopotentials had 1.75 bohrs core radii. The
hardness-conserving pseudopotential had the cutoff con-
dition added to the list of residuals so that 99.9% of the
kinetic energy was below 25 hartrees. It is interesting to
note that for the all of the pseudopotentials, the error is
largest for the fewest valence electrons. The error essen-
tially disappears by the time that the ion reaches the ar-
gon configuration. This is reasonable. In the limit of
zero valence density, the core density is providing the en-
tire exchange-correlation potential, and any errors in the
core density will be magnified. By the time that there are
eight valence electrons, the presence or absence of the
core makes little difference.

cutoff energy of only 20 hartrees. Nevertheless, the log
derivatives of the pseudo-wave functions tracked those of
the all-electron atom to better than 1% over an energy
which ranged from half a hartree below the eigenvalue to
half a hartree above it. The 2p extended-norm and hard-
ness conserving pseudopotential had 99.9% of the kinetic
energy of its pseudo-wave-function below 40 hartree. A
cutoff energy of 50 hartree was used throughout to ensure
convergence. Two oxygen atoms were placed in a
10X10X15 bohr box and their energy calculated as a
function of separation. A spin-polarized calculation was
done with seven valence electrons in one spin state and
five valence electrons in the other to ensure the correct
ground-state spin configuration. The equilibrium radii
and curvature are given in Table II for the two cases as
well as for experiment. ' The norm-conserving case had
an equilibrium radius 7.5% too high and a curvature
60%%uo too low. The ENHC case reproduced the experi-
mental equilibrium radius to better than 0.5% and the
curvature to within 3%.

B. Diatomic oxygen molecule C. Carbon under very high pressure

Two test cases are reported. Norm-conserving, and
extended-norm and hardness conserving pseudopotentials
are constructed with core radii of 2 bohrs for both the 2s
and 2p states. The large core radius was chosen so that
the norm-conserving pseudo-wave-functions required a

Total energies were calculated for three test cases. A
norm-conserving pseudopotential at a cutoff of 50 har-
trees and a core radius of 1.25 bohrs, an ENHC pseudo-
potential with a cutoff of 50 hartrees and a core radius of
1.25 bohrs, and an all-electron calculation performed
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T~gLE &&. Fquilibrium radius ro and a'V(r)/ar ~„ for the X~ oxygen molecu&e &or n«m-
0

conserving, extended norm, and hardness-conserving pseudopotentials, and experiment (Ref. 31).

ro (bohr)
8 V(r)/dr ~, (hartree/bohr )

Norm-conserving

2.453
0.307

ENHC

2.275
0.778

Expt.

2.282
0.756

with a local ENHC pseudopotential for the 1s state of
carbon with a 300-hartrees cutoff and a 0.4-bohrs core ra-
dius. A two-atom unit cell of diamond was simulated us-
ing ten special points under isostatic compression. Both
pseudopotential calculations were taken to complete en-
ergy convergence. The lattice constant was varied from 5
to 8 bohrs. The results are given in Table III. For both
pseudopotentials a constant was added to the total ener-
gies to bring their averages into agreement with the all-
electron calculation. The total energies of the ENHC
pseudopotential have a standard deviation of less than 2
mhartree when compared with those of the all-electron
calculation. This is to be compared with a standard devi-
ation of 49 mhartree for the norm-conserving pseudopo-
tential. There is a reduction in the error of comparison
with the all-electron case of a factor of more than 25.

Other physical properties are compared with their all-
electron values. These properties include equilibrium lat-
tice constant, bulk modulus, and pressure derivative of
the bulk modulus. The all-electron values are reproduced
an order of magnitude more accurately by the ENHC
pseudopotential. The norm-conserving results may be

improved by lowering the core radius, but the 2s radial
node puts a limit on how far this improvement may be
pushed. At the same core radius, the ENHC result will
always be an order of magnitude better.

D. Quartz structure

The silicon and oxygen ENHC pseudopotentials
defined earlier were used to refine the structure of a-
quartz. Table IV shows the results of this work, an ear-
lier work using norm-conserving pseudopotentials, and
experiment. The all-electron calculation for this struc-
ture could not be performed due to the extremely high
cutoff energy required for silicon. The earlier calculation
has errors in the lattice constants and coordinates of the
order of 2%%uo. The results from the ENHC pseudopoten-
tials show agreement at the O. l%%uo level.

V. SUMMARY

The requirement that the total energies of atom and
pseudoatoms track to second order with respect to arbi-

TABLE III. Energies for diamond under isostatic compression for norm-conserving pseudopoten-
tial, all-electron, and extended norm- and hardness-conserving pseudopotential. A constant has been
subtracted from both pseudopotential calculations to make their average energies the same as the all-
electron case. Also included are the standard deviations of the differences from the all-electron case,
the equilibrium lattice constant ao, the bulk modulus B, and the pressure derivative of the bulk
modulus.

5.0
5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
8.0

Lattice
constant

(bohr)

Norm-conserving
—63.112 325

(hartree)

—73.559 096
—74.206 141
—74.281 435
—74.334 449
—74.360 408
—74.389 790
—74.398 456
—74.397 801
—74.389 796
—74.313485

All-electron
(hartree)

—73.679 091
—74.242 149
—74.301 995
—74.342 446
—74.364 967
—74.374 818
—74.373 822
—74.364 842
—74.348 265
—74.247 460

ENHC
—62.361 247

(hartree)

—73.677 824
—74.240 666
—74.300 981
—74.340 841
—74.364 244
—74.374 361
—74.373 871
—74.365 143
—74.350 026
—74.251 898

o. (hartree)
ao (bohr)
B (hartree/bohr' )

OByaI

0.049 2
6.882
0.013 62
3.728

6.678
0.01628
3.599

0.001 8
6.689
0.015 71
3.648



5040 MICHAEL TETER 48

TABLE IV. Structure of n-quartz for norm-conserving,
hardness and extended norm-conserving pseudopotentials, and
experiment.

Vt(r)= g at g (r)+h(r)V„I(r),
m =1

Parameter

a (bohr)
c (bohr)
Si
0
Oy
0,

Norm-conserving

9.363
10.304
0.4638
0.4081
0.2758
0.2782

HENC

9.285
10.209
0.4688
0.4140
0.2699
0.2839

Expt.

9.290
10.215
0.4697
0.4135
0.2669
0.2858

with unknown parameters a& . Using the scaling

x =r/r, ,

then in the range 0 ~ x ~ 1, the functions g (x) have the
form

sin(m trx )
gm x F71Jm vrx

trary variations in valence-state occupancies when added
to the usual norm-conserving conditions has led to the
creation of a new class of pseudopotentials which have
uniformly shown order-of-magnitude reduction in the er-
rors associated with their use when compared with either
all-electron or experimental results. These pseudopoten-
tials conserve chemical hardness and have extended-
norm-conserving characteristics. Analysis of the hard-
ness matrix shows the reason for the importance of core
densities in pseudopotential use and acts as a guide to the
construction of reasonable core densities. When used in a
separable construction these pseudopotentials are gen-
erated with dual reference states to not only stabilize
them against ghosts, but also to ensure that the proper-
ties of these pseudopotentials track over much broader
conditions than single reference ones. The condition that
electrostatic self-energies of atomic and pseudoatomic
states match is one that may be added to any pseudopo-
tential construction program and together with the use of
core densities should generate pseud opotentials of
sufficient accuracy as to be practically indistinguishable
from the corresponding a11-electron calculation.
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where

b o
= 1 ~ 000 000 000 000 000

b
&

= 1 ~ 644 934 006 684 822m

b~~ 4o 7 1 5 200 508 447 23 1 6o 409 990 562 438 04 1 m

b 3=8.258 744 178 343 138+10.457 122270276 11m

6~4 6e 458 685 729 920 1 3 8e 072 930 869 0 1 8 365m

and

b 5
= 1.915 142 903 096 105+2.380 865 094 332 069m

The m dependence of the b's has been chosen to smooth
the functions. These functions have been built to incorp-
orate the Troullier-Martins condition that the
coefficient of r at the origin is zero. A great deal of nu-
merical experience has shown that, while the softest pseu-
dopotentials do not match this condition, the pseudopo-
tentials with this condition and only one or two g terms
are never very far from the optimum in terms of cutoff
energy:

h (x) = 1 —(1—x s)~.

For x ) 1 the g's are all zero and h (x)= l.
As noted in the text, the form of the core density is

p, (r) =p,af (x)' .

The form for f(x) is

sin(2vrx )

2~x(1 —x )(1—4x2)

The Fourier transform off is

r, [2 sin(err, G)+sin(2trr, G )]f(G)=

APPENDIX

The functional form used to describe the pseudopoten-
tial is

for G between 0 and 1lr, and f(G)=0 after 1lr, . This
form has been chosen to have an exact cutoff in Fourier
space as well as die off quickly in real space. Practically,f(x) =0 after x =3.
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