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Optical-absorption spectrum of a one-dimensional strong-coupling Coulombic Hubbard exciton
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We obtain the optical-absorption spectrum associated with an electron and a hole which attract each
other according to the Coulomb law within a strong-coupling generalized half-filled Hubbard-band
chain. We find a continuous absorption band characterized by a Lifshitz tail-edge singularity, and
penetrated in a resonant manner by an infinite number of localized absorption bands. A comparison is
made with the continuum (or effective-mass approximation) limit of the theory. Finally, a formal expres-
sion is also presented for the case of a quite arbitrary law of electron-hole interaction within the Hub-
bard chain, while in the presence of a constant electric field.

I. INTRODUCTION posed along the chain direction, as

Within the context of the simple Hubbard Hamiltoni-
an' we developed a theory, some time ago, to describe
the optical-absorption spectrum associated with a half-
filled strong-coupling ( U~ ~ ) antiferromagnetic
Hubbard-band chain. In subsequent works, various
aspects of this interesting theory were elucidated, and
extended to include, among other things, mainly the pos-
sible effects of nearest neighbors, or even longer-
ranged ' interelectronic interactions. The latter, within
the framework of the Wigner lattice theory, were pro-
posed by Hubbard ' in 1978 for some of the TCNQ
(tetracyanoquinodimethane) salts. More recently,
Wannier-Stark ladders in the presence of a constant elec-
tric field have also been considered in the optical-
absorption spectrum of our Hubbard-band exciton
theory. They have been shown to modify the spectrum
in a strikingly complex manner.

Yet, a more complete solution has not been given as an
application of this theoretical formalism. This we do
here, and in Sec. II a formal continued fraction expres-
sion is presented for the absorption spectrum of the
"Hubbard exciton. " This expression is appropriate for a
quite arbitrary law of electron and hole attraction, similar
to that proposed by Hubbard ' in his generalized Hamil-
tonian and Wigner lattice theory, ' but it may include
the effects of a constant electric field.

Then, in Sec. III this formal expression is applied to
the important theoretical case of a Coulombic' ' law of
attraction within the electron-hole pair. After studying
diverse results pertaining to the Coulombic law and its
integrated intensity bands of absorption, a brief compar-
ison is made with the continuum (or effective-mass ap-
proximation) limit, associated to Wannier-like Coulombic
excitons. Some conclusions are given in Sec. IV, and an
Appendix explains at length mathematical details per-
taining to the Coulomb problem on a lattice. '

II. CONTINUED FRACTION EXPRESSION

We consider Hubbard's ' generalized Hamiltonian on
a linear chain, with a constant electric field E superim-

H= rg— c +s c. +.U g n~&n~&
j,o., 5=+1 J

+
2 g V~; &~n;n&+a+Pl.

lWJ j

where c (c ) is the creation (destruction) operator for
an electron of spin cr in the Wannier state localized at site
j, and n =c c is the occupation number of this state.
The total number of electrons at site j is given by the
operator n~=g n, and r is the transfer integral (or
hopping matrix element) between nearest-neighbor sites;
U is the repulsion energy of two electrons on the same
site, and V~; j~

= V„=V
„

is the repulsion energy of two
electrons on nth-nearest-neighbor sites; a= ~e ~Ea, where
e is the electronic charge and a is the lattice constant.
The above is the Hamiltonian proposed by Hubbard '

(with a=O) in his Wigner lattice theory for some TCNQ
salts; in particular, Hubbard tried to describe diverse as-
pects of the optical spectra of some of the charge-transfer
salts of TCNQ in terms of the above Hamiltonian with
U —+ oo.

If we consider the Wigner lattice for the half-filled
band, as shown in Fig. 1, with U —+ ~, we see that
charge-transfer absorption occurs when an electron is
made to "jump" to a nearest-neighbor site [Fig. 1(a)],
thereby creating a doubly occupied site and an adjacent
hole. For this to be possible, the two original adjacent
electrons in the chain must have their spins in opposite
directions. The optical frequency for this absorption is
roughly U —Vi+a [depending upon whether the exciton
dipole moment is antiparallel (+), or parallel (

—
) to E].

Once the doubly occupied site (or "electron" ) has been
created, it and the hole can obviously propagate irrespec-
tive of the spin configuration of the rest of the chain.
Thus, when the electron and the hole are nth nearest
neighbors of each other, the energy of the excited
configuration is = U —V„+na, as pictured in Fig. 1(b).
After a straightforward extension of our theory, ' one
finds the real part o ~(co) of the conductivity to be given
by9
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FIG. 1. (a) Creation of the Hubbard exciton in the half-611ed
( U~ ~ ) generalized Hubbard chain. The circles represent the
lattice sites where the localized spins reside, represented by the
arrows; (b) doubly occupied site (or "electron" ) and hole are
moved Ave lattice constants away from each other, and some of
the spins in (a) are thereby reversed by the motion.

o ~(co)= f dx Q(x, P)p(co;x ),
0

(2.2)

=1p+(co;x)= —Irn z+ V, +a
77

(2tx )

z+ V2+2a- (2tx )

z+ V3+3a—

(2.3)

with z —=co —U —iO+. The terms p (co;x ) and p+(co;x ),
respectively, correspond to the antiparallel and parallel
alignment of the exciton dipole moment with the electric
field E. The function Q(x,p) weighs the density of states
p(co;x ), and is given for a uniform lattice by '

Q( p)
2 cosp

ir(1 —x sin P)+I —x
(2.4)

where the angle P (0 & P & vr/2) is defined by
p =tan (P/2). For a "perfectly" antiferromagnetic spin
arrangement of the electrons in the %'igner chain we
have p =1, while for a random or a ferromagnetic spin
arrangement p =

—,
' and 0, respectively. The factor U ' in

(2.2) ensures that the optical absorption vanishes in the
limit U —+ ao. This is as it should be for a half-filled band,
and (2.2) is an asymptotical expression for the vanishing

where N, 0, and p are the number of lattice sites, the
volume of the sample, and the probability of the initial
electron-hole pair creation ("Hubbard exciton"), respec-
tively. We have

p(co;x ) =—[p+(co;x)+p (co;x )]/2

and

of our absorption spectrum cr~ (co) in the strong-coupling
limit U —+~ of the theory. Thus, Eq. (2.2) above gives
the general line shape in our theory for U~ ~; the other
parameters (t, the V„'s, and the electric field E} being
finite, but otherwise quite unrestricted (although t « U,
and V„«U). In consequence (2.2) addresses itself to the
solution, for the half-filled band, of part of the problem
posed by Hubbard ' in his Wigner lattice theory for opti-
cal absorption, namely, the improvement, upon the t =0
treatment presented there, ' of the study of band-motion
effects upon the optical absorption.

Two mathematically distinct cases arise in the treat-
ment of the general solution in (2.2} when a =0.

(a) If V„is such that it vanishes for n )k, then the den-
sity of states p(co;x) has a "continuous" part p, (co;x)
that can be shown' to be of the form

+(4tx) (co U—)—
p, (co;x ) =

P(co —U; tx, V„V~,. . . , Vk )
(2.5)

III. COUI. IAMBIC HUBBARD KXCITQN

By substituting (2.6) into (2.3) (with a=O), and calcu-
lating the value of the infinite continued fraction, after an
interesting piece of mathematics (see Appendix), we find
for o.z (co) the following expression: o z (co)=o, (co)
+ol (co), where the continuous or extended absorption
line shape o, (co) is given by

cr, (co)= e a re u ~

X dx
u (1—ik'i )u (x —ik'i )(cosP)N(x)

0 x (1—x sin P)+I —x

(3.1)

where P(co —U;tx, V„V2,. . . , Vk) is a polynomial in
(co —U) of degree 2k —1, and a rational function of the
other variables. ' Because of this, the "continuous" or
extended absorption spectrum associated to (2.2) can very
remarkably be expressed always in terms of the three
complete elliptical integrals, though in an increasingly
complex manner as k increases. The real simple zeros in
(co —U) of the polynomial of degree 2k —1 in (2.5) can
easily be found numerically, and shown to give rise in
general to a corresponding number of localized absorp-
tion bands when substituted back into the quadrature ex-
pressed in (2.2). For k =1 a completely analytical solu-
tion exists, and for k ) 1 this may also be possible for
special values of the parameters.

(b) The potential V„is of infinite range. As an ideal-
ized description of this case, for which we have found an
analytical solution, we shall take V„=V/n, (2.6), i.e., a
Coulomb potential attraction between the electron and
hole in the Hubbard exciton. Although (2.6) cannot, of
course, be expected to hold experimentally in any "exact"
manner, we surmise that it should contain relevant phys-
ics as pertains to the optical-absorption spectrum of the
"Hubbard exciton. " Theoretically it is certainly of
mathematical interest in itself, since it involves the solu-
tion of a Coulomb potential problem on a lattice. '
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where

N(x) —=exp[ —( lv I
/+x —k' )arcsin(k'/x ) )

sinh(n lv I/2'I/x —k' )

with v = V/2t, k'=(cv —U)/4t, and u(y) the unit step
function. The localized or discrete absorption bands

I

e a tNplv I cosp (3.2)

with L„(k';v, P) expressed through

which arise from the bound eigenvalues of the Coulomb
potential are given by

P= Ikl+Ik

n —1

u(1 —x„)u(—k') 1

n [1—(k' —k';„„)sinP]

X 1

[lk I+ lk I...,.g'V'k' —k.2,„,„+k.'.„„—k' (3.3)

with Ik'I;„„=
I
v I/2n, Ik'I,„„=—+1+k';„„,and

x„=(k'2—k';„„)'~. The unit step functions in (3.3) im-

ply, for the corresponding nth term in the series, the fol-
lowing condition on k': —

I

k' I,„„~k' ~ —
I
k'I

The spectrum oz(co) is shown in Figs. 2—4 for some
selected values of v and P. As v is turned on, there ap-
pear an infinite number n =1,2, 3, . . . , of localized ab-
sorption bands which extend in all from
k = —+I+(v/2) up to k'=0, with diminishing intensi-
ties as n —+~. The band for n =1 behaves differently
from the others: it diverges at both k'= —lk'I,„,and
at O'= —Ik'I;„,= —Ivl/2, while for n ) 1, the absorp-
tion bands diverge only at k'= —lk'I,„„,and tend to
zero when k' —+ —lk'I;„„.The continuous o, (cv) ab-
sorption band in (3.1) which exists in the interval—1 ~ k' ~ 1 has been calculated through Gaussian in-
tegration. It is penetrated in a "resonant" manner by the
localized absorption bands in the region —1 & k' ~0; and
as lvl increases up to IvI =2, the n =1 band square-root
divergence at k'= —lvl/2 moves to the left, until for
lu I

=2 it hits the —lk'l, „„divergenceat k'= —1. This
is shown in Fig. 2 for the ferromagnetic spin arrangement

0„()/A

(p =0) by the confluence of the two infinities at k'= —l.
As lv I

is further increased beyond lu I
=2, the —lk'I

divergence continues its "s~eep" to the left, until at the
«itic» value Ik'I;.

,
i=lk'I ...2, « IvI=4/&3—=2.31,

the n =1 and 2 bands first disentangle from each other.
This is shown in Fig. 3 for

I
v

I

=3, where the n = 1 and 2
o.L(co) bands are clearly separated by an interval of null
spectrum. In this same Fig. 3, the extended or continu-
ous absorption band o., (co) also clearly shows, for k'~1,
a I.ifshitz' tail-edge singularity present in the integral in
(3.1); in this region the absorption is exponentially van-
ishing. As lv I

increases from zero, the o.L(co) bands be-
come narrower and the intensity of the spectrum mono-
tonically leaks into the n =1 band, while going through a
maximum for the other (n ) 1) bands at corresponding
values of

I vo I „(seeFig. 5 for p = 1). Also, as p ap-
proaches p = 1—the value of p for a completely ordered
antiferromagnetic arrangement of the spin of the elec-
trons in the Wigner lattice in Fig. 1(a)—the or (co) bands
become electively narrower, with most of their intensity
localized around the divergences at k'= —lk'I,„„.This
is shown in Fig. 3 for p=0. 97 for the bands n =1,2, 3,
where we notice that for n = 1 the divergence at
k'= —lk'I;„i has efiectiuely disappeared. In Fig. 4 we
exhibit the spectrum for (exactly) p =1 (P=m/2) with
the o'I (co) bands (shown for lv I

=3, only) collapsed into

p
~ 0.97

——p. I/2

p
~ 0

&R ( ai) /A

rom m

I

v. 3

FIG. 2. Plot of o.z(co)/2 (with 2 =—e a tpN/QU) vs
k'=(co —U)/4t is shown for several values of u = V/2t, for a
perfect ferromagnetic (p =0) arrangement of the spins of Fig.
1(a). Except for v =2, only the region lk'I «1 is actually
displayed for visual convenience.

n ~ I n ~ 2 -1 k'

FIG. 3. Plot of o&(co)/3 vs k' for u =3 and several values of
p. For this value of u, the spectrum vanishes in an interval be-
tween the n = 1 and 2 localized absorption bands.
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sorption of DBTSF-TCNQF4 (dibenzotetraselena-
fulvalene-tetrafiuoro- TCNQ) analogously. In both
cases, ' the salient experimental feature of an asymmetric
(continuous) spectrum with a maximum shifted down-
wards in frequency agreed well with our theoretical pre-
dictions. In the present work with a Coulomb interac-
tion, this theoretical feature is also present (as can be seen
in our Figs. 2 —4), but new ones manifest themselves, too.
In particular, the characteristic Lifshitz edge singularity
(see Appendix) with exponentially vanishing absorption
in these same figures implies not only a shorter effective
absorption width, but also one with zero slope at the
upper edge. This is a characteristic edge singularity of
the spectrum which arises from the Coulomb interac-
tion, ' while being absent otherwise. Also present only
here is the infinite number (n =1,2, 3, . . . ) of localized
absorption peaks, arising from the bound eigenvalues of
the Coulomb potential.

Of course, one must bear in mind that some of these
predicted effects might be masked by the screening ' of
the electronic interactions in some of the half-filled-band
linear materials (organic or otherwise) to which our
theory might apply. To the extent that screening has
been argued to be rather ineffective' (especially the
short-range one) for the exactly half-filled-band organic
compounds, ' one might envisage the suitability of our
present results.

Finally, we have solved a Coulomb potential problem
on a "lattice, " ' and have also laid the groundwork
for the further study of the electric Stark effect upon the
absorption spectrum of our Coulombic "Hubbard exci-
ton. "
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APPENDIX

where' we have

G(z)= lim A„/8„.
7f ~ oo

(A2)

3„is given by a second-order linear difference equation,
namely (for n ) 1),

A„+i+ (2tx ) A„ i
= z+ V

n+1 (A3)

with 30=0 and A, =1, while B„satisfies (A3) also, but
with initial conditions BD = 1 and B

&
=z+ V. Thus

G(z) =a
i /b, , (A4)

where a
&

and b, are to be adjusted to satisfy the previous
initial conditions for A„and B„,in the linear combina-
tions

A„=a,8i(n)+a282(n),

B„=b,8, ( n)+b 82(2n) .
(A5)

In (A5), 8, (n) and 82(n) are linearly independent' solu-
tions of (A3), with 8, (n) the dominant one when n ~~.
Solving for a, arid b, from (A5), we find that

1

z+ V —[8,( I)/8p(0)]
(A6)

Although a2 and b2 in the linear combinations in (A5)
also have to be adjusted, they do not appear in (A4) for
G(z). By standard methods, ' the two linearly indepen-
dent solutions of (A3) can be taken to be

x", +' I (n +2)1 (1—k)
8,(n)=

x2 "I (n+2 —k)

XF(1 k, n +2, n +2—k—;x, /xz)

and

In this appendix we evaluate the continued fraction
that appears in (2.3), for a=O and V„=V/n, as well as
deriving (3.1) and (3.2) in the text. Finally, we show (for
p=1) that the spectra o., (co) and oL(co) join "continu-
ously" at O' = —I, with a common value of
~ ~ID I

exp( —
IU I ).

We can write p(co;x )—:(1/n. )lmG(z) with

x"+' "I (n +2)I (1+@)
8 (n)=

x', + I (n +2+k)
XF( 1+k,n +2, n +2+@;x2/xi ),

where k—:V/(x, —x2); and

x, ~=[z++z —(4tx) ]/2

(A7)

G(z)—:
(2tx )2

+ V (2tx)
2 + 4 ~ ~

3

(A 1) are the roots of the quadratic equation in X, namely,
X —zX+(2tx) =0 The functi.ons F(a, b, c;Z) and I (z)
are the hypergeometric and gamma functions, respective-
ly. Substituting 82(1) and 8z(0) from (A7) into (A6), one
finds

G(z) = 1

z+ V—(2x2/2+k) jF(1+k,3, 3+k;x2/xi )/F(1+k, 2, 2+k;x2/x& )]
(A8)
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where the function in [ I in the denominator of (A8), being of the form F(a, b, c;Z)/F(a, b —l, c —1;Z), represents the
so-called continued fraction of Gauss. After some algebra involving Gauss's relations for the "contiguous" func-
tions of the hypergeometric function, (A8) can be simplified to

G(z)== 1

X1

VF(1+k, 1,2+k;x2/x, ) —V
x, (1+k) X1

k —1x1
Bi y i(1+k 0)

2

where F(1+k,1,2+k;x2/x, ) has been expressed in terms of the incomplete beta function B„(a,b), through the rela-
tionship B~(a b)=a 'x'F(a, 1 b,—a+1;x). To find p(co;x), we consider first the case ~z~ ~4tx, and write that
p(co;x ) = [G(z)—G(z )]/Zji, where z =co —U —i0+, and z is the complex conjugate. If ~z

~
(4tx, k becomes pure imagi-

nary and k = —k, with x1 =x2 and x2 =x1. Thus

1
p(co;x ) =

2&ix 1x2

x2F(1+k, 1,2+ k;x2/x i )

x, (1+k)
x iF(1—k, 1,2 —k;x i /x2 )

xz(1 —k)
(A10)

for ~z~
~ 4tx Ver.y remarkably, (A10) can be found in terms of elementary transcendental functions only To sh. ow this,

we express both of the hypergeometric functions that appear in (A10) in terms of F(k, 1, 1+@;x2/x, ), and find, using
the "contiguous" hypergeometric functions, that

while

x, (1+k)
F(1 +k, 1,2 +k; x /ix )i= [F(k, 1, 1+k;x z /x, )

—1],
kx2

(Al 1)

F(1—k 1 2 —k x /x )=k(k —1)l.(k)l.( —k)
x2(1 —k)+ F(k, l, 1+@;x2/x, ) .

kx,
(A12)

Substituting (Al 1) and (A12) into (A10), there results
k

X1
p(to;x ) = . I (k)1 ( —k)

kV
27Tlx 1x2

(A13)

remarkably independent of the hypergeometric function.
After some algebraic simplifications, and noting that
x i /x z is a complex number on the unit circle, (A13) final-

ly leads to

V 2V cos '( —z /4tx )p(co;x ) = ~ exp(2«)' &(4tx)' z'—
—2Vcos '(z/4tx)

i/(4tx ) z—
(A14)

F(1+k, 1,2+k;x2/x i )

1+0
(x~/x, )"

o 1+k+n

and find, after algebraic manipulations, that

for ~z~ ~4tx To obtain . (A14) from (A13), use has been
made of the relationship

I (iy )I (
—iy) =sr/y sinh(my ),

valid for the gamma function. We turn now to the case
~z~ & 4tx. Here we write in (A9) that

with

"i/(4tx) + V /(1+n) —V/(1+n)cz:
i/(4tx) + V /(1+n) + V/(1+n)

(A16)

To obtain (3.1) we substitute (A14) into (2.2), and
make use of the formulas sin 'y=cos '( —y) —(~/2)
=(m /2) —cos 'y, in (A14). To obtain (3.2) we substitute
instead (A16) into (2.2) and find

o.
L (co) a"„(1—a„)I dx Q(x, P) 5(y„(x)),

n=O 1+An

where

2~g 2g 2t 2+p
QU

V 3 " (xz/x, )"
p(to;x ) =

xi „=0(1+n )

X
5(z+V (4tx) + V /(1+n) )

"t/(4tx) (1+n ) + V

(A15)

In (A15), x, and xz have to be evaluated according to the
Dirac 6 functions which appear therein. Doing so, one
finally finds for ~z ~

)4tx that

a„"(1—a„)
p(ro;x ) = g 5(z+i/(4tx)'+ V'/(1+n)'),1+a„
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and

y„(x)=co—U++(4tx) + V /(1+n)

O.t. (co)
g Q(x, ,P)

K „—o
a„"(1—a„)

1 +An x. d+ x =x.
t

with the x;(co) being those simple roots of the equation

Using the properties of Dirac's 5 function, cr~(co) can be
written as

y„(x)=0that satisfy O~x, 1. We find (after relabel-
ling, i ~n },that

x„(co)=+k' —( V/2(n +1))
with k':—(co —U }/4t, and u = V/2t. Furthermore,

2(n +1)Ik'I —lu I

2(n +1)Ik'I+ Iul

for k ' ~ 0. After some manipulations, we obtain for
crL, (co) that

crt. (co) Q(x„,P)u (1—x„)a"„(x„)
K 2t, =o (n+1)[2(n+1)lk'I+lul] +k' —[u/2(n+1)]

7 (A17)

with u(y) the unit step function, and k' in each term of
the series restricted to the interval

cos '( —k')
11III

I, '+ —
& +1—k'2

2(n +1)

'2 I/2

2(n +1)
On the other hand, we will have that, as an interesting
aside, p(k';1) behaves for k'~1 as

Finally, by inserting the value of Q(x„,p) in (A17),
defining

Ik I,„„=—+1+ lk I',„„,
and some additional manipulations, we obtain (3.2) in the
text.

To conclude this appendix, we now show that o, (co)
and o.

L, (co) join smoothly (up to higher-order derivatives)
for p=1, at k'= —1. First, we show that (A14) and
(A16) do so for x = l. In effect, from (A14) we obtain
(setting x =1) that

lim p(k', 1)= exp
V V

(2t)'

p(k', 1) = exp
V mV

k'-~ (2t)' 2tV'I —k'

a"„(1—a„)' e~(„)
lim p(k';1) = lim

l ++n Bn
(A18)

where

co(n)—: +(4t) + V /(n—+1)

But, since

i.e., in the form of a Lifshitz tail-edge singularity.
Thus, for k'=1, p(k', 1) and all its derivatives vanish for
any VWO. Let us turn now to (A16). Here, we will have

—I

where

V V
exp(2t)'

lim (1—a„)=— V
n

" 2t n+1
we have lim„„a"„=exp( —V/2t ).

Thus in (A18) we obtain

V . 1
lim p(k', l)=exp ——lim

k ~—1 2t n~~ 2
V V2

2t(n +1) [(4t)'+ V'/(n +1)']' '(n +1)'

V V
exp

(2t) 2t

Q.E.D. The common value of the spectrum at k'= —1 can easily be found from (2.2) for p =1. Here, we have that
Q(x, m/2) =6(x —1), and consequently,

o.~(k'= —1)= 1 dx Q(x, vr/2)p(k'= —1;x)2X~e a t

=2~~tp(k'= —1;1)= & ~lulexp( —
lu I ) .
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